首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many species inhabiting the benthic marine ecosystems of the central and northern Chilean coast have been intensively harvested and this exploitation has increased considerably in recent years. Despite this harvest pressure, few studies have attempted to establish a more holistic, systems-based management plan. On the contrary, research continues to rely on population models in which the species of interest are isolated from their ecological context. This work offers several keystone indices in order to help multispecies fisheries management. The indices used are: (1) functional indices based on steady-state and dynamic trophic models; (2) structural indices based on bottom-up and top-down control mechanisms; and (3) qualitative keystone species indices using loop models (mixed control). The quantitative trophic models were constructed using Ecopath with Ecosim (EwE; v. 5.0) software, and the qualitative model was analysed using Loop Analysis. All models describe the interactions of the most representative species and functional groups inhabiting the benthic ecosystems of Tongoy Bay, La Rinconada Marine Reserve (Antofagasta Bay), and the kelp forest of Mejillones Peninsula (Antofagasta). Even though our results only represent the short-term dynamics of these systems, we have found keystoneness properties of several species and functional groups, including primary producers, herbivores, and top predators. Despite this wide variability of groups, we detected a different core set of species or functional groups, each of which contained prey–predator and plant–herbivore relationships. Because the traditional keystone concept of a single species is difficult to apply, we suggest shifting away from this view towards a more holistic alternative such as that of a keystone species complex. This kind of approach would facilitate the design and assessment of sustainable management strategies for ecological marine ecosystems. Despite the ecological relevance of our results, further experimental studies and modelling using other theoretical frameworks should be performed.  相似文献   

2.

Aim

Climate change affects ecological communities via impacts on species. The community's response to climate change can be represented as the temporal trend in a climate-related functional property that is quantified using a relevant functional trait. Noteworthy, some species influence this response in the community more strongly than others.

Innovation

Leveraging on the concept of keystone species, we propose that species with a strong effect on the community's functional response to climate change beyond their relative abundance can be considered as ‘climate keystone species’. We develop a stepwise tool to determine species' effects on a community's climate response and identify climate keystone species. We quantify the species-specific effect by measuring the difference in the community's climate response with and without the species. Next, we identify climate keystone species as those with a strong residual effect after weighting with their relative abundances in the community.

Main Conclusions

To illustrate the use of the stepwise tool with empirical data, we identify climate keystone species that have a strong effect on the change in the average temperature niche in North American bird communities over time and find the identification tool ecologically relevant. Identification of climate keystone species can serve as an additional conservation method to efficiently protect ecological communities and, in turn, the ecosystem functions they provide.  相似文献   

3.
The keystone species concept was introduced in 1969 in reference to top‐down regulation of communities by predators, but has expanded to include myriad species at different trophic levels. Keystone species play disproportionately large, important roles in their ecosystems, but human‐wildlife conflicts often drive population declines. Population declines have resulted in the necessity of keystone species reintroduction; however, studies of such reintroductions are rare. We conducted a literature review and found only 30 peer‐reviewed journal articles that assessed reintroduced populations of keystone species, and only 11 of these assessed ecosystem‐level effects following reintroduction. Nine of 11 publications assessing ecosystem‐level effects found evidence of resumption of keystone roles; however, these publications focus on a narrow range of species. We highlight the deficit of peer‐reviewed literature on keystone species reintroductions, and draw attention to the need for assessment of ecosystem‐level effects so that the presence, extent, and rate of ecosystem restoration driven by keystone species can be better understood.  相似文献   

4.
Human‐induced alterations in the birth and mortality rates of species and in the strength of interactions within and between species can lead to changes in the structure and resilience of ecological communities. Recent research points to the importance of considering the distribution of body sizes of species when exploring the response of communities to such perturbations. Here, we present a new size‐based approach for assessing the sensitivity and elasticity of community structure (species equilibrium abundances) and resilience (rate of return to equilibrium) to changes in the intrinsic growth rate of species and in the strengths of species interactions. We apply this approach on two natural systems, the pelagic communities of the Baltic Sea and Lake Vättern, to illustrate how it can be used to identify potential keystone species and keystone links. We find that the keystone status of a species is closely linked to its body size. The analysis also suggests that communities are structurally and dynamically more sensitive to changes in the effects of prey on their consumers than in the effects of consumers on their prey. Moreover, we discuss how community sensitivity analysis can be used to study and compare the fragility of communities with different body size distributions by measuring the mean sensitivity or elasticity over all species or all interaction links in a community. We believe that the community sensitivity analysis developed here holds some promise for identifying species and links that are critical for the structural and dynamic robustness of ecological communities.  相似文献   

5.
Understanding the interactive effects of multiple keystone species where they co-occur may have important consequences for regional biodiversity. Additionally, understanding how the impacts of keystone species vary across different ecosystems is important for effectively guiding conservation and management. We conducted a large-scale field study in northern Mexico where the geographic distributions of black-tailed prairie dogs Cynomys ludovicianus and banner-tailed kangaroo rats Dipodomys spectabilis overlap. These species are considered both keystones and ecosystem engineers of grassland environments, but little is known about their separate and interacting roles in desertified systems where they co-occur. Our research evaluated 1) the independent impacts of black-tailed prairie dogs and banner-tailed kangaroo rats in a desertified annual grassland, and 2) their interactive effects on grassland community structure and biodiversity. Prairie dogs and kangaroo rats differentially affected vegetation structure, plant cover, species composition, and species richness across multiple spatial and temporal scales. The interactive effects of these keystone species resulted in enhanced landscape heterogeneity and biodiversity. Our results demonstrate the importance of prairie dogs and kangaroo rats in desertified grasslands, and have important implications for understanding the interactive effects and context-dependency of keystone species.  相似文献   

6.
The Agaricomycotina are a phylogenetically diverse group of fungi that includes both saprotrophic and mycorrhizal species, and that form species – rich communities in forest ecosystems. Most species are infrequently observed, and this hampers assessment of the role that environmental heterogeneity plays in determining local community composition and in driving β‐diversity. We used a combination of phenetic (TRFLP) and phylogenetic approaches [Unifrac and Net Relatedness Index (NRI)] to examine the compositional and phylogenetic similarity of Agaricomycotina communities in forest floor and surface soil of three widely distributed temperate upland forest ecosystems (one, xeric oak – dominated and two, mesic sugar maple dominated). Generally, forest floor and soil communities had similar phylogenetic diversity, but there was little overlap of species or evolutionary lineages between these two horizons. Forest floor communities were dominated by saprotrophic species, and were compositionally and phylogenetically similar in all three ecosystems. Mycorrhizal species represented 30% to 90% of soil community diversity, and these communities differed compositionally and phylogenetically between ecosystems. Estimates of NRI revealed significant phylogenetic clustering in both the forest floor and soil communities of only the xeric oak‐dominated forest ecosystem, and may indicate that this ecosystem acts as a habitat filter. Our results suggest that environmental heterogeneity strongly influences the phylogenetic β‐diversity of soil inhabiting Agaricomycotina communities, but has only a small influence on forest floor β‐diversity. Moreover, our results suggest that the strength of community assembly processes, such as habitat filtering, may differ between temperate forest ecosystems.  相似文献   

7.
Keystone species restoration, or the restoration of species whose effect on an ecosystem is much greater than their abundance would suggest, is a central justification for many wildlife reintroduction projects globally. Following restoration, plains bison (Bison bison L.) have been identified as a keystone species in the tallgrass prairie ecoregion, but we know of no research to document similar effects in the mixed‐grass prairie where restoration efforts are ongoing. This study addresses whether Northern Great Plains (NGP) mixed‐grass prairie plant communities exhibit traits consistent with four central keystone effects documented for bison in the tallgrass prairie. We collected species composition, diversity, abundance, bare ground cover, and plant height data in three treatments: where livestock (Bos taurus L.) continuously grazed, livestock were removed for 10 years, and bison have been introduced and resident for 10 years. We observed mixed support for bison acting as keystone species in this system. Supporting the keystone role of bison, we observed higher species richness and compositional heterogeneity (β‐diversity) in the bison treatment than either the livestock retention or livestock removal treatments. However, we observed comparable forb, bare ground, and plant height heterogeneity between bison‐restored sites and sites where livestock were retained, contradicting reported keystone effects in other systems. Our results suggest that after 10 years of being restored, bison partially fulfill their role as a keystone species in the mixed‐grass prairie, and we encourage continued long‐term data collection to evaluate their influence in the NGP.  相似文献   

8.
Scaling up keystone effects from simple to complex ecological networks   总被引:2,自引:0,他引:2  
Predicting the consequences of species loss requires extending our traditional understanding of simpler dynamic systems of few interacting species to the more complex ecological networks found in natural ecosystems. Especially important is the scaling up of our limited understanding of how and under what conditions loss of ‘keystone’ species causes large declines of many other species. Here we explore how these keystone effects vary among simulations progressively scaled up from simple to more complex systems. Simpler simulations of four to seven interacting species suggest that species up to four links away can strongly alter keystone effects and make the consequences of keystone loss potentially indeterminate in more realistically complex communities. Instead of indeterminacy, we find that more complex networks of up to 32 species generally buffer distant influences such that variation in keystone effects is well predicted by surprisingly local ‘top‐down’, ‘bottom‐up’, and ‘horizontal‘ constraints acting within two links of the keystone subsystem. These results demonstrate that: (1) strong suppression of the competitive dominant by the keystone may only weakly affect subordinate competitors; (2) the community context of the target species determines whether strong keystone effects are realized; (3) simple, measurable, and local attributes of complex communities may explain much of the empirically observed variation in keystone effects; and (4) increasing network complexity per se does not inherently make the prediction of strong keystone effects more complicated.  相似文献   

9.
关键捕食者在生态系统中对饵料生物的数量波动、丰富度和空间分布等都起到重要的调控作用。本研究基于在海州湾进行的5个航次的渔业资源底拖网调查资料及胃含物分析数据,通过对传统SURF指数进行改进,甄选海州湾鱼类群落中的关键捕食者。结果表明: 星康吉鳗、长蛇鲻、大泷六线鱼、小眼绿鳍鱼和小黄鱼为海州湾鱼类群落中的关键捕食者,这5种鱼类不但具有较高的连接数,还是多种生物的主要捕食者,在物种连接中具有较强的聚集效应,它们的数量波动会对生态系统能量流动和食物网结构产生较大的影响。通过本方法对关键捕食者进行甄选,不仅考虑了物种间的摄食比例,还将捕捞量及物种的资源量作为重要影响因素,与传统方法相比,具有较大的改进,为关键捕食者的甄选提供了一种新的方法。本研究还发现,物种之间的强相互作用在维护食物网的结构与功能中起着重要作用,加强对关键捕食者的保护,有利于维持生物群落的稳定性和物种多样性,在实施基于生态系统的管理时,要优先保护这些关键物种。星康吉鳗和小黄鱼作为重要的经济鱼种,承受的捕捞压力较高,尤其需要加强保护和管理。  相似文献   

10.
Most spatial ecology focuses on how species dispersal affects community dynamics and coexistence. Ecosystems, however, are also commonly connected by flows of resources. We experimentally tested how neighbouring communities indirectly influence each other in absence of dispersal, via resource exchanges. Using two‐patch microcosm meta‐ecosystems, we manipulated community composition and dynamics, by varying separately species key functional traits (autotroph versus heterotroph species and size of consumer species) and trophic structure of aquatic communities (species growing alone or in presence of competitors or predators). We then analysed the effects of species functional traits and trophic structure on communities connected through spatial subsidies in the absence of actual dispersal. Both functional traits and trophic structure strongly affected dynamics across neighbouring communities. Heterotroph communities connected to autotroph neighbours developed better than with heterotroph neighbours, such that coexistence of competitors was determined by the functional traits of the neighbouring community. Densities in autotroph communities were also strikingly higher when receiving subsidies from heterotroph communities compared to their own subsidies when grown in isolated ecosystems. In contrast, communities connected to predator‐dominated ecosystems collapsed, without any direct contact with the predators. Our results demonstrate that because community composition and structure modify the distribution of biomass within a community, they may also affect communities connected through subsidies through quantitative and qualitative changes of detritus flows. This stresses that ecosystem management should account for such interdependencies mediated by spatial subsidies, given that local community alterations cascade across space onto other ecosystems even if species dispersal is completely absent.  相似文献   

11.
The loss of a species from an ecological community can trigger a cascade of secondary extinctions. The probability of secondary extinction to take place and the number of secondary extinctions are likely to depend on the characteristics of the species that is lost--the strength of its interactions with other species--as well as on the distribution of interaction strengths in the whole community. Analysing the effects of species loss in model communities we found that removal of the following species categories triggered, on average, the largest number of secondary extinctions: (a) rare species interacting strongly with many consumers, (b) abundant basal species interacting weakly with their consumers and (c) abundant intermediate species interacting strongly with many resources. We also found that the keystone status of a species with given characteristics was context dependent, that is, dependent on the structure of the community where it was embedded. Species vulnerable to secondary extinctions were mainly species interacting weakly with their resources and species interacting strongly with their consumers.  相似文献   

12.
Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights into the important ecological associations between understory plant community composition and heterogeneity in ecosystem properties and processes within forests dominated by a single canopy species.  相似文献   

13.
Bacteria of the genus Methylobacterium are widespread in the environment, but their ecological role in ecosystems, such as the plant phyllosphere, is not very well understood. To gain better insight into the distribution of different Methylobacterium species in diverse ecosystems, a rapid and specific cultivation-independent method for detection of these organisms and analysis of their community structure is needed. Therefore, 16S rRNA gene-targeted primers specific for this genus were designed and evaluated. These primers were used in PCR in combination with a reverse primer that binds to the tRNA(Ala) gene, which is located upstream of the 23S rRNA gene in the 16S-23S intergenic spacer (IGS). PCR products that were of different lengths were obtained due to the length heterogeneity of the IGS of different Methylobacterium species. This length variation allowed generation of fingerprints of Methylobacterium communities in environmental samples by automated ribosomal intergenic spacer analysis. The Methylobacterium communities on leaves of different plant species in a natural field were compared using this method. The new method allows rapid comparisons of Methylobacterium communities and is thus a useful tool to study Methylobacterium communities in different ecosystems.  相似文献   

14.
A keystone species complex (KSC) is a small set of interacting species that play an outstandingly important role in community organization. Two KSC indices are suggested and have been calculated in the coastal benthic/pelagic ecosystem of Fildes Bay, King George Island (Antarctica). These indices of keystoneness emerge after considering: (1) functional indices based on steady-state and dynamic quantitative trophic models (using bottom-up, mixed and top-down control flow mechanisms); (2) structural indices including bottom-up and top-down control mechanisms, (3) semi-quantitative (qualitative) keystone indices using loop analysis (under mixed control); and (4) topological key player indices based on the centrality of node sets in the network. The models constructed and analyzed describe the interactions of the most abundant species and functional groups inhabiting the coastal ecological systems of Fildes Bay. Although our results only represent the transient dynamics of these ecological systems, the KSC indices identified the following trophically connected common core of components: the functional groups of Seastars (top-predators), the herbivorous sea urchin species Sterechinus neumayeri and the Phytoplankton (primary producers). The KSC indices for Fildes Bay could facilitate the design and assessment of conservation monitoring, especially when the Antarctic ecosystems are being severely stressed by the direct effects of global warming and UV radiation. A more holistic view of conservation remains difficult because the traditional view is based principally on single species. This imposes an even greater challenge, for global changes accompany the network of interacting species, co-varying with the variables of the natural system.  相似文献   

15.
Aims Studies that investigate the space-filling heterogeneity of biological structures in plant communities remain scarce. The main objective of this study was to evaluate the relationship between newly developed photographic measures of structural heterogeneity in digital images and plant species composition in the context of a long-term grassland experiment.Methods We tested a close-range photographic protocol using measures of structural heterogeneity in gray-tone images, namely mean information gain (MIG) and spatial anisotropy, to assess differences in the compositional (species richness) and functional characteristics (plant height and flowering) of 78 managed grassland communities. We also implemented a random placement model of community assembly to explore the links between our measures of structural complexity and the geometric pattern of plant communities.Important findings MIG and spatial anisotropy correlated with the growth and species richness of grassland communities. Simulations showed that structural heterogeneity in gray-tone digital images is a function of the size distribution and orientation pattern of plant modules. This easy, fast and non-destructive methodological approach could eventually serve to monitor the diversity and integrity of various ecosystems at different resolutions across space and time.  相似文献   

16.
Neutral models of community dynamics are a powerful tool for ecological research, but their applications are currently limited to unrealistically simple types of dynamics and ignore much of the complexity that characterize natural ecosystems. Here, we present a new analytical framework for neutral models that unifies existing models of neutral communities and extends the applicability of existing models to a much wider spectrum of ecological phenomena. The new framework extends the concept of neutrality to fitness equivalence and in spite of its simplicity explains a wide spectrum of empirical patterns of species diversity including positive, negative and unimodal productivity–diversity relationships; gradual and highly delayed declines in species diversity with habitat loss; and positive and negative responses of species diversity to habitat heterogeneity. Surprisingly, the abundance distribution in all of these cases is given by the dispersal limited multinomial (DLM), the abundance distribution in Hubbell's zero-sum model, showing DLM's robustness and demonstrating that it cannot be used to infer the underlying community dynamics. These results support the hypothesis that ecological communities are regulated by a limited set of fundamental mechanisms much simpler than could be expected from their immense complexity.  相似文献   

17.
Genes and their expression levels in individual species can structure whole communities and affect ecosystem processes. Although much has been written about community and ecosystem phenotypes with a few model systems, such as poplar and goldenrod, here we explore the potential application of a community genetics approach with systems involving invasive species, climate change and pollution. We argue that community genetics can reveal patterns and processes that otherwise might remain undetected. To further facilitate the community genetics or genes-to-ecosystem concept, we propose four community genetics postulates that allow for the conclusion of a causal relationship between the gene and its effect on the ecosystem. Although most current studies do not satisfy these criteria completely, several come close and, in so doing, begin to provide a genetic-based understanding of communities and ecosystems, as well as a sound basis for conservation and management practices.  相似文献   

18.
Certain species play particularly large roles in ecosystems, and are often referred to as keystones. However, little is known about the interactive effects of these species where they co-occur. Prairie dogs ( Cynomys spp.) and banner-tailed kangaroo rats Dipodomys spectabilis are commonly considered keystone species of grassland ecosystems, creating a mosaic of unique habitats on the landscape through ecosystem engineering and herbivory. We examined the separate and interactive effects of these species on the structure of grassland arthropod communities. We conducted a cross-site study at two locations in the northern Chihuahuan Desert, and evaluated the impacts of these rodents on ground-dwelling arthropod and grasshopper communities in areas where prairie dogs and kangaroo rats co-occurred compared to areas where each rodent species occurred alone. Our results demonstrate that prairie dogs ( C. gunnisoni and C. ludovicianus ) and banner-tailed kangaroo rats had keystone-level impacts on arthropod communities both separately and interactively. Their burrow systems provided important habitats for multiple trophic and taxonomic groups of arthropods, and increased overall arthropod abundance and species richness. Many arthropods also were attracted to the aboveground habitats around the mounds and across the landscapes where the rodents occurred. Detritivores, predators, ants, grasshoppers, and rare rodent burrow inhabitants were especially associated with prairie dog and kangaroo rat activity. The impacts of prairie dogs and kangaroo rats were unique, and the habitats they created supported different assemblages of arthropods. Where both rodent species co-occurred, there was greater heterogeneity and arthropod diversity on the landscape. Our results suggest that the interaction of multiple keystones, especially those with engineering roles, results in unique and more diverse communities in time and space.  相似文献   

19.
Neuroecology unifies principles from diverse disciplines, scaling from biophysical properties of nerve and muscle cells to community-wide impacts of trophic interactions. Here, these principles are used as a common fabric, woven from threads of chemosensory physiology, behavior, and population and community ecology. The "keystone species" concept, for example, is seminal in ecological theory. It defines a species whose impacts on communities are far greater than would be predicted from its relative abundance and biomass. Similarly, neurotoxins could function in keystone roles. They are rare within natural habitats but exert strong effects on species interactions at multiple trophic levels. Effects of two guanidine alkaloids, tetrodotoxin (TTX) and saxitoxin (STX), coalesce neurobiological and ecological perspectives. These molecules compose some of the most potent natural poisons ever described, and they are introduced into communities by one, or only a few, host species. Functioning as voltage-gated sodium channel blockers for nerve and muscle cells, TTX and STX serve in chemical defense. When borrowed by resistant consumer species, however, they are used either in chemical defense against higher order predators or for chemical communication as chemosensory excitants. Cascading effects of the compounds profoundly impact community-wide attributes, including species compositions and rates of material exchange. Thus, a diverse array of physiological traits, expressed differentially across many species, renders TTX and STX fully functional as keystone molecules, with vast ecological consequences at multiple trophic levels.  相似文献   

20.
Aims Soil heterogeneity is ubiquitous in many ecosystems. We hypothesized that plant communities with higher species richness might be better adapted to soil heterogeneity and produce more biomass than those with lower richness. This is because there is niche differentiation among species and different species can complement each other and occupy a broader range of niches when plant species richness is high. However, no study has tested how soil particle heterogeneity affects the yield of plant communities, and whether such effects depend on the spatial scale of the heterogeneity and the species richness within the communities.Methods In a greenhouse experiment, we sowed seeds of four-species or eight-species mixtures in three heterogeneous treatments consisting of 32, 8 or 2 patches of both small (1.5mm) and large quartz (3.0mm) particles arranged in a chessboard manner and one homogeneous treatment with an even mixture of small and large quartz particles.Important findings Biomass production was significantly greater in the communities with high species richness than those with low species richness. However, soil particle heterogeneity or its interactions with patch scale or species richness did not significantly affect biomass production of the experimental communities. This work indicates that plant species richness may have a bigger impact on plant productivity than soil particle heterogeneity. Further studies should consider multiple sets of plant species during longer time periods to unravel the potential mechanisms of soil heterogeneity and its interactions with the impacts of species richness on community yield and species coexistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号