首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The comparison of equilibrium and disequilibrium assay conditions for ergocalciferol, cholecalciferol and their major metabolites were investigated to evaluate: (1) optimization of sensitivity (2) crossreactivity of these compounds in their respective assays and (3) side chain steric requirements of the vitamin D molecule for optimum binding to the calciferol binding protein or bovine thymus receptor. Disequilibrium assay conditions improved assay sensitivity 30-fold for the calciferol assay and approx 3-fold for metabolites in the 25-hydroxycalciferol and 1,25-dihydroxycalciferol assays. Ergocalciferol compounds were uniformly less efficient in their association with the proteins tested than were their cholecalciferol counterparts, with one exception. In the calciferol assay, cholecalciferol had greater affinity for the the calciferol binding protein than did ergocalciferol. In the 25-hydroxycalciferol assay affinity for the calciferol binding protein was 25-hydroxycholecalciferol = 24,25-dihydroxycholecalciferol greater than 25-hydroxyergocalciferol greater than 25S,26-dihydroxycholecalciferol greater than 24,25-dihydroxyergocalciferol greater than 25,26-dihydroxyergocalciferol. In the assay for 1,25-dihydroxycalciferol, bovine thymus receptor recognized 1,25-dihydroxyergocalciferol and 1,25-dihydroxycholecalciferol equally. From the forthcoming data it appears that hydroxyl and/or methyl groups on the calciferol side chain alter the ability of these physiological compounds to associate with the calciferol binding protein.  相似文献   

2.
Several reports have appeared that suggest that 24,25-dihydroxycholecalciferol has a possible biological role in bone formation. We have utilized competition studies, saturation analysis, sucrose-density-gradient sedimentation and DEAE-cellulose chromatography to demonstrate that long bones of vitamin D-depleted newborn rats contain cytoplasmic and possibly nuclear receptors that bind 24,25-dihydroxycholecalciferol with specificity and high affinity (Kd = 1.79 nM). Sucrose-density-gradient analysis of the cytoplasmic 24,25-dihydroxycholecalciferol-binding component showed a single binding macromolecule for 24,25-dihydroxycholecalciferol with a sedimentation coefficient of 3.1 S. DEAE-cellulose chromatography showed a [3H]24,25, dihydroxycholecalciferol-macromolecular complex that binds to DEAE-cellulose and elutes between 0.15 and 0.21 M-KCl. The finding of 24,25-dihydroxycholecalciferol receptors in long bones of newborn rats suggests a possible involvement of 24,25-dihydroxycholecalciferol in the metabolism of developing skeletal tissues.  相似文献   

3.
Rat intestinal Golgi-enriched membrane fractions take up Ca2+ by a vitamin D-dependent process that has been shown to recover within 15 min of repletion of vitamin D-deficient animals with intravenous 1,25-dihydroxycholecalciferol. The present paper reports studies characterizing the Ca2+-binding sites of these membrane fractions. Equilibrium binding of Ca2+ at concentrations between 5 and 400 microM showed significant decreases at all concentrations in membranes derived from vitamin D-deficient animals when compared with normal control-diet-fed animals. The predominant class of binding sites had a relatively high affinity for Ca2+ (KD approx. 3 microM). Vitamin D-deficiency did not change the affinity of this class of site, but decreased the number from 347 +/- 26 to 168 +/- 50 nmol of Ca2+ bound/mg of protein (means +/- S.D.). Mg2+ inhibited binding only at low Ca2+ concentrations, and the characteristics of this binding suggested positive co-operativity between two binding sites. Equimolar concentrations of Zn2+, La3+, Pb2+ and Mn2+ inhibited Ca2+ binding by over 50%. Increased ionic strength decreased Ca2+ binding by no more than half. Binding was maximal at pH 7.5 and half-maximal at pH 6.3. The large number of binding sites with relatively high affinity for Ca2+ suggests that it is unlikely that this binding is to any specific protein or to non-specific sites present on many proteins, and that the most likely sites are lipid molecules.  相似文献   

4.
A simple method for production of antisera with high affinity and selectivity for 1 alpha, 25-dihydroxyergocalciferol and 1 alpha, 25-dihydroxychole-calciferol is described. 1 alpha-Hydroxy-25,26,27-trisnorcholecalciferol-24-oic acid was coupled directly to bovine serum albumin. Rabbits immunized with this conjugate rapidly produced antibodies that bound 3H-1 alpha,-25-dihydroxycholecalciferol with high affinity and demonstrated nearly equal reactivity with 1 alpha, 25-dihydroxyergocalciferol and poor reactivity with 25-hydroxycholecalciferol; 24,25-dihydroxycholecalciferol; 25,26-dihydroxycholecalciferol; and 1 beta,25-dihydroxycholecalciferol. The use of one of these antisera has led to the development of a specific assay for 1 alpha,25-dihydroxyergocalciferol and 1 alpha,25-dihydroxycholecalciferol in human serum.  相似文献   

5.
In pregnant rats it has been possible to show that the distribution of cholecalciferol metabolites in their fetuses reflects the distribution of these metabolites in the blood. In these experiments, pregnant rats were maintained on a vitamin D deficient diet but were supplemented with radiolabelled cholecalciferol. The metabolites found were 25-hydroxycholecalciferol and 24,25-dihydroxycholecalciferol and, to a lesser extent, cholecalciferol. 1,25-Dihydroxycholecalciferol was not detected in fetal tissues, despite the ability of fetal kidney homogenates to hydroxylate 25-hydroxycholecalciferol in C-1. Kidney homogenates of newborn pups were found to possess marked activity of 25-hydroxycholecalciferol-24-hydroxylase, which was retained even in hypocalcemic pups born to pregnant rats that were fed a low-calcium diet. Injection of radiolabeled cholecalciferol to newborn pups resulted in the formation of 25-hydroxycholecalciferol and 24,25-dihydroxycholecalciferol. 1,25-Dihydroxycholecalciferol was not detected. Tissues thought of as target organs for vitamin D (in pregnant rats), namely, intestine, kidney and bone, were found to contain none or very little 1,25-dihydroxycholecalciferol. Mammary glands obtained from lactating rats were found to contain mainly the unchanged vitamin.  相似文献   

6.
Thin-layer chromatography (TLC) on silica gel coated HPTLC plates, using chloroform—ethanol—water as mobile phase, is highly effective in the quantitative separation of biologically active metabolites of vitamin D. The combination of TLC and competitive protein-binding assay results in a rapid, sensitive and reproducible method for the analysis of nanogram quantities of metabolites of vitamin D3 (25-hydroxycholecalciferol, 24,25-dihydroxycholecalciferol and 25,26-dihydroxycholecalciferol) in plasma samples.  相似文献   

7.
To evaluate possible functional roles for 24,25-dihydroxyvitamin D3, 24,24-difluoro-25-hydroxyvitamin D3 has been synthesized and shown to be equally as active as 25-hydroxyvitamin D3 in all known functions of vitamin D. The use of the difluoro compound for this purpose is based on the assumption that the C-F bonds are stable in vivo and that the fluorine atom does not act as hydroxyl in biological systems. No 24,25-dihydroxyvitamin D3 was detected in the serum obtained from vitamin D-deficient rats that had been given 24,24-difluoro-25-hydroxyvitamin D3, while large amounts were found when 25-hydroxyvitamin D3 was given. Incubation of the 24,24-difluoro compound with kidney homogenate prepared from vitamin D-replete chickens failed to produce 24,25-dihydroxyvitamin D3, while the same preparations produced large amounts of 24,25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3. Kidney homogenate prepared from vitamin D-deficient chickens produced 24,24-difluoro-1,25-dihydroxyvitamin D3 from 24,24-difluoro-25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3. In binding to the plasma transport protein for vitamin D compounds, 24,24-difluoro-25-hydroxyvitamin D3 is less active than 25-hydroxyvitamin D3 and 24R,25-dihydroxyvitamin D3. In binding to the chick intestinal cytosol receptor, 24,24-difluoro-25-hydroxyvitamin D3 is more active than 25-hydroxyvitamin D3 which is itself more active than 24R,25-dihydroxyvitamin D3. The 24,24-difluoro-1,25-dihydroxyvitamin D3 is equal to 1,25-dihydroxyvitamin D3, and both are 10 times more active than 1,24R,25-trihydroxyvitamin D3 in this system. These results provide strong evidence that the C-24 carbon of 24,24-difluoro-25-hydroxyvitamin D3 cannot be hydroxylated in vivo, and, further, the 24-F substitution acts similar to H and not to OH in discriminating binding systems for vitamin D compounds.  相似文献   

8.
In pregnant rats it has been possible to show that the distribution of cholecalciferol metabolites in their fetuses reflects the distribution of these metabolites in the blood. In these experiments, pregnant rats were maintained on a vitamin D deficient diet but were supplemented with radiolabelled cholecalciferol. The metabolites found were 25-hydroxycholecalciferol and 24,25-dihydroxycholecalciferol and, to a lesser extent, cholecalciferol. 1,25-Dihydroxycholecalciferol was not detected in fetal tissues, despite that ability of fetal kidney homogenates to hydroxylate 25-hydroxycholecalciferol in C-1.Kidney homogenates of newborn pups were found to possess marked activity of 25-hydroxycholecalciferol-24-hydroxylase, which was retained even in hypocalcemic pups born to pregnant rats that were fed a low-calcium diet.Injection of radiolabeled cholecalciferol to newborn pups resulted in the formation of 5/25-hydroxycholecalciferol and 24,25-dihydroxycholecalciferol. 1,25-Dihydroxycholecalciferol was not detected.Tissues thought of as target organs for vitamin D (in pregnant rats), namely, intestine, kidney and bone, were found to contain none or very little 1,25-dihydroxycholecalciferol.Mammary glands obtained from lactating rats were found to contain mainly the unchanged vitamin.  相似文献   

9.
Chick intestinal brush border proteins were examined by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulfate. Following injection of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3, a large molecular weight protein present in the vitamin D-deficient brush borders diminishes and a larger protein appears. This change occurs before calcium binding protein can be detected by Chelex assay and prior to the increase in total alkaline phosphatase but correlates closely with increased intestinal calcium absorption in response to the metabolites. The two brush border proteins have been solubilized with n-butanol and partially characterized. The vitamin D-deficient protein has a molecular weight of about 200,000 and has alkaline phosphatase activity but no detectable calcium binding activity. The protein which appears in response to metabolites has a molecular weight of 230,000, binds calcium, and also has alkaline phosphatase activity.  相似文献   

10.
11.
O2-dependent CA2+ uptake by rat duodenal discs has been characterized and used in a revised assay for 1,25-dihydroxycholecalciferol-induced intestinal Ca2+ transport. Although both muscle and mucosal surfaces are exposed in this free-floating-disc assay, the Ca2+ influx across the muscle surface is small, not O2- or vitamin D-dependent, and can be subtracted out. Depriving the animals of food for 9-14 h before assay increases the O2-dependent uptake by about 75%. Half-saturation values for O2-dependent Ca2+ uptake as determined with this assay are: 0.8mM-Ca2+ (fed) and 0.5mM-Ca2+ (food-deprived) for vitamin D-deficient rats, and 0.9mM-Ca2+ (fed) and 1.5mM-Ca2+ (food-deprived) for rats dosed with 1,25-dihydroxycholecalciferol. The maximum velocity of uptake varies from 6.7nmol of Ca2+ per cm2/min (fed) to 7.0nmol of Ca2+ per cm2/min (food-deprived) for vitamin D-deficient rats and 16.7nmol of Ca2+ per cm2/min (fed) to 29 nmol of Ca2+ per cm2/min (food-deprived) for 1,25-dihydroxycholecalciferol-treated rats. By using a 5 min preincubation and 15 min incubation with 1.0mM-Ca2+, duodenal tissue taken from vitamin D-treated rats shows about a 3-fold increase in O2-dependent Ca2+ uptake when compared with tissue taken from vitamin D-deficient animals. The calcium ionophore A23187, depending on concentration, either has no significant effect on or inhibits the O2-dependent uptake, rather than increasing it. Actinomycin D, at a dose of 2 micrograms/g, inhibits the O2-dependent uptake in intestinal discs from both vitamin D-deficient and vitamin D-treated rats by 58 and 80% respectively, when administered in vivo 3 1/2 h before assay.  相似文献   

12.
1,25-Dihydroxycholecalciferol was prepared from [26,27-3H]-25-hydroxycholecalciferol and from [1,2-3H]-25-hydroxycholecalciferol enzymatically and purified chromatographically. Injection of 62.5 pmoles of 1,25-dihydroxycholecalciferol intravenously into vitamin D-deficient chicks resulted in the accumulation of a maximum of 5.9% of the dose in the intestine. During the 12 hr period following injection, this radioactivity was found almost entirely as 1,25-dihydroxycholecalciferol. It has previously been shown that intestinal calcium absorption is initiated by 1,25-dihydroxycholecalciferol during this period. These results provide strong evidence that the 1,25-dihydroxycholecalciferol is not metabolized further before it initiates intestinal calcium absorption.  相似文献   

13.
A competitive protein binding radioassay for 24,25-dihydroxyvitamin D in human serum has been developed, which is relatively simple and rapid. Acetonitrile is used for sample extraction and protein precipitation. column chromatography is then performed in a Sep-pak cartridge. High pressure liquid chromatography follows. The dried eluate is assayed using rat serum as the source of binding protein. Since 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 are equipotent in their competitive displacement of tritiated 25-hydroxyvitamin D3 from at serum, 25-hydroxyvitamin D3 can be used as the assay standard.  相似文献   

14.
1. The occurrence of 25-hydroxy vitamin D binding protein in human, bovine, monkey and porcine milk was investigated. 2. Sucrose gradient ultracentrifugation revealed the presence of 4.2 S and 5.7 S binding globulins in the whey of human, monkey and porcine milk. 3. Although bovine plasma also contains a 4.2 S globulin only a 5.7 S protein was found in bovine milk. 4. The 4.2 S and 5.7 S globulins in milk could not be resolved by polyacrylamide gel electrophoresis or by isoelectric focusing. 5. Plasma and whey binding proteins of any one species had the same isoelectric point but there were small differences among species (4.5-4.8). 6. Competitive displacement studies showed that the binding proteins in milk have high affinity for 25-hydroxy-cholecalciferol and 24,25-dihydroxycholecalciferol.  相似文献   

15.
At the end of gestation plasma levels of 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D were lower in pregnant than non pregnant female rats. In fetal plasma, concentrations of both metabolites were higher than in maternal plasma. This materno-fetal gradient led us to compare maternal and fetal plasma binding abilities. Fetal plasma was half as potent in binding 25-hydroxyvitamin D as maternal plasma. In fetal plasma binding was mainly due to the plasma vitamin D binding protein. On the other hand this study clearly showed that amniotic fluid contained 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D. In addition this fluid was found to possess vitamin D-metabolite binding activity. The molecule responsible for this has been identified as the plasma vitamin D binding protein.  相似文献   

16.
Serum concentrations of 25-hydroxycholecalciferol (25-OHD), 24,25-dihydroxycholecalciferol (24,25-(OH)2D), and 1,25-dihydroxycholecalciferol (1,25-(OH)2D) were measured at monthly intervals throughout the year in eight normal subjects. 25-OHD was measured by competitive protein-binding assay after Sephadex LH 20 chromatography, 24,25-(OH)2D by competitive protein-binding assay after Sephadex LH 20 and high-pressure chromatography, and 1,25-(OH)2D by radioimmunoassay after the same separation procedure as for 24,25-(OH)2D. A seasonal variation, apparently dependent on exposure to ultraviolet light, was found for all three metabolites. A study in six other normal subjects showed that there was no diurnal rhythm in any of the metabolites. Oral administration of 2 microgram 1,25-(OH)2D caused a sharp rise in serum concentrations of 1,25-(OH)2D and no change in the concentrations of the two other metabolites, but by 12 hours the 1,25-(OH)2D concentration had returned to the basal value. The concentrations of all three metabolites studied vary according to the season. Thus to interpret these concentrations in any subject the normal range for the particular season must be referred to.  相似文献   

17.
Small doses (1-10 microgram daily) of 24,25-dihydroxycholecalciferol (24,25-(OH)2D3), a renal metabolite of vitamin D of uncertain function, increased intestinal absorption of calcium in normal people and in patients with various disorders or mineral metabolism, including anephric subjects. In five of six patients studied, calcium balance increased, but, unlike 1,25-dihydroxycholecalciferol, 24,25-(OH)2D3 did not increase plasma or urinary calcium concentrations. These results suggest that 24,25-(OH)2D3 may be an important regulator of skeletal metabolism in man with potential value as a therapeutic agent.  相似文献   

18.
Lysosomes in chick intestinal absorptive cells from rachitic (vitamin D-deficient) and vitamin D-replete animals were studied utilizing transmission electron microscopic histochemistry and ultrastructural morphometry. Absorptive cells from rachitic animals, serum calcium = 7.3±0.3 mg%, contained an average of 4.0±0.3 supranuclear lysosomes. In rachitic chicks sacrificed 9 hr post-injection of 1,25-dihydroxycholecalciferol, the active metabolite of vitamin D, the values for both serum calcium, 9.8 ± 0.2 mg%, and the number of apical absorptive cell lysosomes, 12.9±0.6, were increased over non-injected or vehicle-only injected animals. Lysosomes in vitamin D-replete absorptive cells were characterized by their intense staining with pyroantimonate, indicative of their high calcium content. The same organelles also produced a positive reaction for acid phosphatase. Rachitic lysosomes, also acid phosphatase positive, were only lightly stained with pyroantimonate. The lysosomal proliferation apparently induced by 1,25-dihydroxycholecalciferol may be a further indication that these organelles play a role in intestinal calcium transport and/or intracellular calcium homeostasis within the absorptive cell.  相似文献   

19.
A multiple assay capable of reliably determining vitamins D(2) and D(3) (ergocalciferol and cholecalciferol), 25(OH)D(2) (25-hydroxyvitamin D(2)) and 25(OH)D(3) (25-hydroxyvitamin D(3)), 24,25(OH)(2)D (24,25-dihydroxyvitamin D), 25,26(OH)(2)D (25,26-dihydroxyvitamin D) and 1,25(OH)(2)D (1,25-dihydroxyvitamin D) in a single 3-5ml sample of human plasma was developed. The procedure involves methanol/methylene chloride extraction of plasma lipids followed by separation of the metabolites and purification from interfering contaminants by batch elution chromatography on Sephadex LH-20 and Lipidex 5000 and by h.p.l.c. (high-pressure liquid chromatography). Vitamins D(2) and D(3) and 25(OH)D(2) and 25(OH)D(3) are quantified by h.p.l.c. by using u.v. detection, comparing their peak heights with those of standards. 24,25(OH)(2)D and 25,26(OH)(2)D are measured by competitive protein-binding assay with diluted plasma from vitamin D-deficient rats. 1,25(OH)(2)D is measured by competitive protein-binding assay with diluted cytosol from vitamin D-deficient chick intestine. Values in normal human plasma samples taken in February are: vitamin D 3.5+/-2.5ng/ml; 25(OH)D 31.6+/-9.3ng/ml; 24,25(OH)(2)D 3.5+/-1.4ng/ml; 25,26(OH)(2)D 0.7+/-0.5ng/ml; 1,25(OH)(2)D 31+/-9pg/ml (means+/-s.d.). Values in two normal human plasma samples taken in February after 1 week of high sun exposure are: vitamin D 27.1+/-7.9ng/ml; 25(OH)D 56.8+/-4.2ng/ml; 24,25(OH)(2)D 4.3+/-1.6ng/ml; 25,26(OH)(2)D 0.5+/-0.2ng/ml. Values in anephric-human plasma are: vitamin D 2.7+/-0.8ng/ml; 25(OH)D 36.4+/-16.5ng/ml; 24,25(OH)(2)D 1.9+/-1.3ng/ml; 25,26(OH)(2)D 0.6+/-0.3ng/ml; 1,25(OH)(2)D was undetectable.  相似文献   

20.
The effect of the X-linked Hyp mutation on 25-hydroxyvitamin D3 (25-OH-D3) metabolism in mouse renal cortical slices was investigated. Vitamin D replete normal mice and Hyp littermates fed the control diet synthesized primarily 24,25-dihydroxyvitamin D3 (24,25-(OH)2D3); only minimal synthesis of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) was detected in both genotypes and 1,25-(OH)2D3 formation was not significantly greater in Hyp mice relative to normal littermates, despite hypophosphatemia and hypocalcemia in the mutants. Calcium-deficient diet fed to normal mice reduced serum calcium (p less than 0.01), increased renal 25-hydroxyvitamin D3-1-hydroxylase (1-OHase) activity (p less than 0.05), and decreased 25-hydroxyvitamin D3-24-hydroxylase (24-OHase) activity (p less than 0.05). In contrast, Hyp littermates on the calcium-deficient diet had decreased serum calcium (p less than 0.01), without significant changes in the renal metabolism of 25-OH-D3. Both normal and Hyp mice responded to the vitamin D-deficient diet with a fall in serum calcium (p less than 0.01), significantly increased renal 1-OHase, and significantly decreased renal 24-OHase activities. In Hyp mice, the fall in serum calcium on the vitamin D-deficient diet was significantly greater than that observed on the calcium-deficient diet. Therefore the ability of Hyp mice to increase renal 1-OHase activity when fed the vitamin D-deficient diet and their failure to do so on the calcium-deficient diet may be related to the resulting degree of hypocalcemia. The results suggest that although Hyp mice can respond to a disturbance of calcium homeostasis, the in vivo signal for the stimulation of renal 1-OHase activity may be set at a different threshold in the Hyp mouse; i.e. a lower serum calcium concentration is necessary for Hyp mice to initiate increased synthesis of 1,25(-OH)2D3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号