首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chicken liver plasma membranes, minimally contaminated with Golgi apparatus-derived vesicles, were prepared from a low-speed (400 g) pellet by means of flotation in isotonic Percoll solution, followed by a hypotonic wash and flotation in a discontinuous sucrose gradient. Based on the analysis of suitable marker enzymes, alkaline phosphatase and alkaline phosphodiesterase, two plasma membrane fractions were isolated with enrichments, depending on the equilibrium density and marker of 28-97 and with a total yield of 4-5%. Golgi apparatus fractions were prepared by flotation of microsomes, obtained from the same homogenate as the low-speed pellet, in a discontinuous sucrose gradient. The trans-Golgi marker galactosyltransferase was 27-fold enriched in a fraction of intermediate density (d=1.077-1.116 g/ml). Approximately 12% of galactosyltransferase was recovered in the membranes equilibrating d=1.031-1.148 g/ml. Contamination with plasma membrane fragments was low in the light (d=1.031-1.077 g/ml) and intermediate density Golgi vesicles. The isolation of purified plasma membranes and Golgi vesicles from one liver homogenate will enable future studies on receptor cycling between these cell organelles.  相似文献   

2.
ISOLATION OF PLASMA MEMBRANE FRAGMENTS FROM HELA CELLS   总被引:13,自引:7,他引:6       下载免费PDF全文
A method for isolating plasma membrane fragments from HeLa cells is described. The procedure starts with the preparation of cell membrane "ghosts," obtained by gentle rupture of hypotonically swollen cells, evacuation of most of the cell contents by repeated washing, and isolation of the ghosts on a discontinuous sucrose density gradient. The ghosts are then treated by minimal sonication (5 sec) at pH 8.6, which causes the ghost membranes to pinch off into small vesicles but leaves any remaining larger intracellular particulates intact and separable by differential centrifugation. The ghost membrane vesicles are then subjected to isopycnic centrifugation on a 20–50% w/w continuous sucrose gradient in tris-magnesium buffer, pH 8.6. A band of morphologically homogeneous smooth vesicles, derived principally from plasma membrane, is recovered at 30–33% (peak density = 1.137). The plasma membrane fraction contained a Na-K-activated ATPase activity of 1.5 µmole Pi/hr per mg, 3% RNA, and 13.8% of the NADH-cytochrome c reductase activity of a heavier fraction from the same gradient which contained mitochondria and rough endoplasmic vesicles. The plasma membranes of viable HeLa cells were marked with 125I-labeled horse antibody and followed through the isolation procedure. The specific antibody binding of the plasma membrane vesicle fraction was increased 49-fold over that of the original whole cells.  相似文献   

3.
PREPARATION OF PLASMA MEMBRANE FROM ISOLATED NEURONS   总被引:5,自引:3,他引:5  
A bulk fraction enriched with respect to neuronal cell bodies was used as starting material for the isolation of neuronal plasma membrane The cells were gently homogenized in isotonic sucrose and a crude membrane containing fraction sedimented at 3000 g. Subsequently, the membrane fraction was purified on a discontinuous sucrose density gradient between 35% and 25 5% sucrose (w/w). Enzymatic analyses showed a 4–5-fold enrichment in plasma membrane markers, and a 10–15% contamination of mitochondrial and microsomal material. Electron micrographs of the membrane fraction confirmed the enzymatic data Fragmented membranes were found, mainly in vesicular form No ribosomes, but a few mitochondria and some multilamellar membranes were seen  相似文献   

4.
A method is described for simultaneous preparation of brush-border and basolateral sea bass enterocyte membranes using simple differential centrifugation and discontinuous sucrose gradient density centrifugation techniques. Basolateral membranes were purified with a Na+/K(+)-ATPase yield of about 11% of the original activity, with an enrichment factor of 12. The yield of maltase-glucoamylase, a specific marker of brush-border membranes, was also about 11% of the original activity, with 15-fold enrichment. The characteristics of these membrane preparations were determined. Electron microscopy analysis showed that these two membrane preparations were uniform in size and vesicular in nature. Orientation studies revealed that the luminal membrane vesicles were right-side out and 43% of the antiluminal membrane vesicles were sealed inside out. Investigation of D-glucose and L-leucine uptake showed that these two plasma membrane preparations retained their transport properties.  相似文献   

5.
Plasma membranes have been prepared from Friend erythroleukaemic cells using a Dounce homogenization technique followed by differential and sucrose gradient centrifugations. (I) A plasma membrane fraction was obtained which showed a 20- to 30-fold enrichment in 5'-nucleotidase, alkaline phosphodiesterase I, alkaline phosphatase and in 32P-labeled (poly)phosphoinositides. About 1% of the total protein, 6-7% of phospholipid, 8-9% of cholesterol and 12-15% of each of the above markers were recovered in the plasma membrane fraction with an average yield of 15-20%. The plasma membrane was characterized by a high cholesterol to phospholipid molar ratio (0.626), a 2-fold enrichment in sphingomyelin and in phosphatidylserine as compared to the whole cell and by the complete absence of diphosphatidylglycerol. (2) When compared to the phospholipid composition of the mature mouse erythrocyte membrane, the plasma membrane of the Friend cell only differs by a higher phosphatidylcholine and a lower phosphatidylethanolamine content, whereas the levels of sphingomyelin and phosphatidylinositol plus phosphatidylserine are similar. (3) Friend cells were treated with sphingomyelinase C (S. aureus) under non-lytic conditions and subsequently submitted to subcellular fractionation. The results showed that the plasma membrane accounted for 38.5% of the total phospholipid, 64.1% of the total cholesterol and about 4.4% of the total protein content of Friend cells. (4) Sphingomyelin appeared to be asymmetrically distributed in the plasma membrane of Friend cells, with about 85% of this phospholipid being present in the outer monolayer.  相似文献   

6.
In this work we report on the isolation of two plasma membrane fractions of a glycogen-free substrain of Ehrlich-Lettré ascites cells, a light fraction sedimenting in a sucrose gradient at 1.10 g/ml, and a heavy fraction sedimenting at nuclei by a combination of short-term swelling and mild Dounce homogenization. A 12 000 X g postnuclear pellet (PII) containing major portions of the plasma membrane marker enymes, 5'-nucleotidase, ouabain-sensitive (Na+ + K+)-ATPase and the alkaline phosphatase, was prepared by differential centrifugation. The two plasma membrane fractions were obtained by centrifugation on a discontinuous sucrose gradient, from which they were further purified on a linear sucrose gradient applying sedimentation velocity conditions only. Enrichment factors for the three marker enzymes were between 5- and 14-fold for the light fraction and between 3- and 7-fold for the heavy fraction with an overall yield of 1--4% and 0.5--1.7%, respectively, of cellular protein. Contamination of both fractions with nuclear material was minor. Mitochondrial contamination was about 8% for the light material and somewhat higher for the heavy material. In the light fraction, co-sedimentation of lysosomal and Golgi marker enzymes was detected. The presence of membrane structures of these organelles could not be confirmed definitely by electron microscopy. Differences in sialic acid content and phospholipid composition within the two fractions, especially in the relative proportion of lecithin to sphingomyelin, suggests differences in membrane fluidity. The light material showed mostly unit membrane vesicles in thin-section and freeze-etch electron microscopy, whereas the heavy fraction mainly consisted of sheet-like membrane fragments.  相似文献   

7.
Crude homogenates of rat cardiac muscle were fractionated in order to examine the subcellular location of adenylate cyclase in this tissue. The fractionation procedure employed differential centrifugation of homonized material, followed by collagenase treatment, centrifugation on a discontinuous sucrose density gradient and extraction with 1 M KCl. The particulate fraction obtained by this procedure contained a high specific activity and yield of adenylate cyclase, moderate levels of mitochondria and low levels of sarcoplasmic reticulum and contractile protein as judged by marker enzyme activities. Adenylate cyclase was purified 20-fold with a 33% yield from the crude homogenate, while mitochondrial, sarcoplasmic reticulum and contractile protein yields were 5, 0.4 and 0.7% respectively. The membrane fractions prepared in this manner were examined by sodium dodecyl sulfate · gel electrophoresis.Adenylate cyclase copurified with ouabain-sensitive (Na+ + K+)-ATPase, a plasma membrane marker enzyme, and not with Ca2+-accumulating activity, which is associated with the sarcoplasmic reticulum. The distribution of marker enzyme activities indicates that heart adenylate cyclase is not located in the sarcoplasmic reticulum but is localized predominantly, if not exclusively, in the plasma membrane.  相似文献   

8.
Large amounts of injected radiolabeled low density lipoproteins have been found by others to accumulate primarily in the liver and studies in various types of isolated cells, including hepatocytes, have indicated the presence of specific cell membrane recognition sites for lipoproteins. In the present studies, the high affinity binding of radiolabeled low density lipoproteins ([125I]LDL, d 1.020--1.063 g/mL) was measured in the major subcellular fractions of porcine liver homogenates. The nuclear and mitochondrial fractions were 1.9- and 1.4-fold enriched in binding activity with respect to unfractionated homogenates and contained 15% and 12% of the total binding activity, respectively. The microsomes, which contained most of the plasma membranes and endoplasmic reticulum, were approximately 4-fold enriched in binding and contained 73% of the binding activity. Microsomal subfractions obtained by differential homogenization and centrifugation procedures were 5.6--7.0-fold enriched in LDL binding and contained 54--58% of the homogenate binding activity. They were separated by discontinuous sucrose density gradient centrifugation into fractions which contained "light" and "heavy" plasma membranes and endoplasmic reticulum. The heavy membrane fraction was 2--4 fold in binding with respect to the parent microsomes (16--22 fold with respect to the homogenate). There was no enrichment of binding activity in the other two fractions. Two plasma membrane "marker" enzymes, nucleotide pyrophosphatase and 5'-nucleotidase, were also followed. Of the two, binding in the sucrose density gradient subfractions most closely followed nucleotide pyrophosphatase, which was also most highly enriched (3.2--3.3-fold) in the heavy membrane fraction, but did not follow it exactly. The enzyme was 2-fold richer in the light membranes than in the parent microsomes, though the light membrane binding activity was only 0.4--1.4 times that of the parent microsomes. High affinity binding was time and temperature dependent, saturable, and inhibited by unlabeled low density lipoproteins but not by unrelated proteins. Binding was stimulated 2--3 fold Ca2+, was not affected by treatment with Pronase or trypsin and was inhibited by low concentrations of phospholipids and high density lipoproteins (HDL). Heparin-Mn2+ treatment of HDL did not affect its ability to inhibit [125I] LDL binding. The LDL recognition site was distinct from the liver membrane asialoglycoprotein receptor; LDL binding was not inhibited by desialidated fetuin. We conclude that porcine liver contains a high affinity binding site that recognizes features common to both pig low density and high density lipoproteins. Further studies may elucidate the significance of this binding site in lipoprotein metabolism.  相似文献   

9.
A difference in the organization of adenylate cyclase and 3′5′-cyclic phosphodiesterase in isolated plasma membranes was observed. Observation of this difference was made possible by the development of a new technique for the lysis of Dictyostelium discoideum using the polyene antibiotic amphotericin B. A particulate fraction prepared from the cell lysate contains adenylate cyclase, 3′5′-cyclic phosphodiesterase and 5′-nucleotidase. The yield of adenylate cyclase is 40% higher than in paniculate fractions prepared from cells lysed by sonication or with Triton X-100. Purification of the particulate fraction on discontinuous sucrose gradient completely separates membranes from mitochondria and other cellular material as shown by electron microscopic analysis of different fractions. Biochemical characterization of the purified membrane fraction shows it contains adenylate cyclase, 3′5′-cyclic phosphodiesterase and 5′-nucleotidase activities while electron microscopic analysis shows a vesicular morphology. Additional studies on the purified membranes used Triton X-100, trypsin and phospholipase C to probe the relationship between membrane structural elements and enzymatic activities. The results of these studies show distinct differences in the organization of each enzyme molecule within the membrane.  相似文献   

10.
A method was developed to isolate renal basolateral membranes from cortical kidney tubule cells of single rats. The isolated membrane fraction was characterized by the measurement of marker enzyme activities and by electron microscopy. 1. After centrifugation of crude plasma membranes on a discontinuous sucrose density gradient the basolateral membranes accumulated at a sucrose density of p= 1.14-1.15 g/ml. The yield was 147 mug membrane protein/g kidney wet weight. Protein recovery was 0.1%. 2. (Na+ + K+)-ATPase was enriched 22-fold from the homogenate. The recovery was 2.6%. The (Na+ + K+)/Mg2+-ATPase ratio was 4.1. 3. The contamination by brush borders was small. Alkaline phosphatase was 1.6-fold enriched and 0.2% was recovered. Aminopeptidase was 1-fold enriched with a recovery of 0.1%. The contamination by mitochondria, lysosomes and endoplasmic reticulum was negligible. 4. In electron micrographs the basolateral membranes showed a typical triple layered profile and were characterized by the presence of junctional complexes, gap junctions or tight junctions.  相似文献   

11.
Subcellular membrane fractions were isolated from the circular muscle of the corpus of canine stomach by differential and isopycnic sucrose density gradient centrifugation. Differential centrifugation gave a mitochondrial fraction enriched (fourfold) in cytochrome c oxidase and a microsomal fraction enriched (fourfold) in 5'-nucleotidase and NADPH-cytochrome c reductase over postnuclear supernatant. On the basis of a study using continuous gradient, a discontinuous sucrose density gradient was prepared to yield F1 to F5 fractions. The F3 fraction at the interface of 18-32% (w/w) sucrose was maximally enriched (13-fold) in 5'-nucleotidase. The fraction contained very low levels of cytochrome c oxidase but did contain NADPH-cytochrome c reductase (eightfold enrichment). The F4 fraction, at the interface of 32-40% (w/w) sucrose, was maximally enriched in NADPH-cytochrome c reductase (12-fold) and cytochrome c oxidase (6-fold). The distribution of the azide-insensitive. ATP-dependent Ca2+ uptake correlated very well with that of 5'-nucleotidase but less well with NADPH-cytochrome c reductase and not at all with cytochrome c oxidase. Sodium azide and ruthenium red inhibited the ATP-dependent Ca2+ uptake by the mitochondrial fraction and postnuclear supernatant, but not by the F3 fraction. ATP-dependent Ca2+ uptake by the F3 fraction was inhibited by calcium ionophores A23187 and ionomycin, but not by the sodium ionophore, monensin. These results are consistent with the hypothesis that the plasma membrane plays a major role ih regulating intracellular Ca2+ concentration in canine corpus circular muscle.  相似文献   

12.
A strain derived from a colony of BALB/c mice at the National Center for Toxicological Research, Jefferson, AR, USA (NCTR-BALB/c) suffers from an autosomal recessive disorder characterized by proliferation of secondary lysosomes with accumulation ofunesterified cholesterol in several tissues. The unesterified cholesterol content of spleens and lungs from the affected mice were elevated 8- and 3-fold respectively over age- and sex-matched controls. Postnuclear supernatants of tissue homogenates were fractionated by sucrose density gradient centrifugation and the fractions were analyzed for unesterified cholesterol, protein and marker enzyme activities for lysosomes (N-acetyl-beta-D-glucosaminidase, beta-D-glucuronidase), plasma membrane (alkaline phosphodiesterase I), endoplasmic reticulum (glucose-6-phosphatase) and mitochondria (cytochrome oxidase). The enzyme distribution profile showed that lysosomes of affected tissues floated at low density regions (density 1.05-1.08) of the gradient and contained substantial amount of tissue unesterified cholesterol. These low density lysosomes were purified about 17-fold (58% yield) from spleen and about 6-fold (32% yield) from lungs with minimal contamination by other organelles They were mostly intact as judged by high latency for N-acetyl-beta-D-glucosaminidase activity (70-100%). Lysosomes of control tissues were not found at the low density regions. The distribution profiles for other organelles were similar between affected and control tissues. Phospholipid composition of low density lysosomes were distinctly different from their respective tissue homogenates. Spleen and lung lysosomes were enriched in sphingomyelin and phosphatidylcholine respectively. The results suggest that these lysosomes acquire their low densities due to accumulation of unesterified cholesterol, the retention of which may be aided by sphingomyelin and phosphatidylcholine content of the lysosomes.  相似文献   

13.
A procedure for cellular fractionation and preparation of plasma membrane from a Burkitt's lymphoma cell line is described. This procedure involves homogenization with a Polytron in buffered isotonic sucrose, and separation of cellular fractions by differential and isopycnic centrifugation in sucrose. The isolated plasma membrane fraction contains 44% of the cellular cholesterol, 50% of the ouabain-sensitive (Na+ + K+)-ATPase activity, 43% of the γ-glutamyltranspeptidase activities and 16% of the phospholipid. This fraction contains only 3% of cellular protein and is contaminated with less than 4% of the total cellular activities of microsomal, lysosomal, mitochondrial, Golgi and soluble marker enzymes. The cholesterol : phospholipid molar ratio of the crude plasma membrane is 0.56. The membranes in this fraction are in the form of vesicles. Further purification of plasma membrane is achieved by sucrose density gradient centrifugation and results in a 25- to 30-fold enrichment of plasma membrane markers. Plasma membrane markers band in these gradients between 1.10 and 1.15 g/cm3.The distribution patterns in the cell fractions of 18 cellular constituents are quantitatively determined. Most constituents are found to distribute in a fashion consistent with the results obtained in other systems. Thymidine-5′-phosphodiesterase (phosphodiesterase I), esterase, nucleoside diphosphatase and glucose-6-phosphatase, however, are shown to be poor markers of membrane fractions in this system.Lactoperoxidase-catalyzed iodination was used to identify several plasma membrane proteins which are exposed at the surface. After separation of labeled polypeptides by sodium dodecyl sulfate gel electrophoresis, the predominant labeled protein was identified as the heavy chain of IgM. Several lesser labeled proteins were observed.  相似文献   

14.
Plasma membranes were isolated from lactating bovine mammary gland. Two crude membrane fractions; medium/d 1.033 (light membrane) and 1.033/1.053 interfaces (heavy membrane), were obtained by Ficoll density gradient centrifugation of osmotically washed microsomal fraction. Two crude membranes were further purified separately by sucrose density gradient centrifugation. Both light and heavy membranes banded at a sucrose density of 1.14. The purified membranes appeared as heterogeneous smooth membrane vesicles on electron microscopy. The contaminating suborganelles were not detected. The yield of the purified membranes relative to the homogenate was 1.2%. The degree of purity of the membranes was shown by a great increase in the specific activity of 5′-nucleotidase over the homogenate of 20-fold for light membrane and of 16-fold for heavy membrane. The relative activities of Mg2+-ATPase, (Na+ + K+)-ATPase, γ-glutamyl transpeptidase, phosphodiesterase I, akaline phosphatase and xanthine oxidase were also high (12–18-times) and nearly 20% of these enzymes was recovered. The activity of marker enzyme for mitochondria, endoplasmic reticulum and Golgi apparatus was very low, while that of acid phosphatase for lysosome was relatively high (5-times). DNA and RNA contents were very low. The major polypeptides rich in other suborganelles were not detected profoundly in the membrane fraction and the polypeptide compositions in both light and heavy membranes were similar upon SDS-polyacrylamide gel electrophoresis.  相似文献   

15.
Ochromonas danica cell homogenate can be fractionated by differential centrifugation into chloroplast, mitochondrial, ribosome, lysosomal, plasma membrane and soluble fractions. The plasma membrane fraction was further purified by discontinuous sucrose density gradient centrifugation and was found to be enriched 4–16-fold in the following enzymes: β-galactosidase, acid phosphatase, alkaline phosphatase, 5′-nucleotidase, and (Na+, K+)-ATPase. The role of plasma membrane phosphatase in the phosphate metabolism of plants is discussed.  相似文献   

16.
A technique for obtaining glial plasma membrane has been developed, starting with a bulk-prepared glial cell-enriched fraction from rabbit cerebral cortex. The astrocytic-enriched fraction was hand-homogenized in isotonic sucrose media, and the crude membrane fraction sedimented at 3,000g. The isolation of a membrane-enriched fraction was accomplished with sucrose density gradient centrifugation. The plasma membrane fraction was collected at the interphase between 31.5% and 25.5% sucrose. Enzymatic and electron-microscopical analyses indicated a 4–7-fold enrichment in plasma membrane, and a 15–20% contamination with microsomal and mitochondrial material. Some multilaminar membrane structures were also seen in the fraction.  相似文献   

17.
Cardiac microsomes represent a heterogeneous fraction which contains mitochondrial, plasma membrane and lysosomal enzymes in addition to markers believed to originate in the sarcoplasmic reticulum. The exact composition of this fraction depends on the method of preparation in that prolonged homogenization of ventricular myocardium increases both the yield of microsomal protein and the proportion of the mitochondrial contaminant.

Ultracentrifugation of cardiac microsomes on density gradients made with sucrose alone is of limited value in isolating fragmented sarcoplasmic reticulum. Because of aggregation of the microsomes, zonal ultracentrifugation in sucrose permits isolation of material with only slight enhancement in the activity of markers for the sarcoplasmic reticulum. In the presence of LiBr, used under conditions which inhibit the damaging effects of this salt on the activities studied, aggregation of the microsomal fraction is reduced and density gradient fractionation is more effective.

The fragmented sarcoplasmic reticulum prepared by zonal centrifugation in 0.5 M LiBr contains less than 1/5 the level of mitochondrial enzymes found in the original microsomes while the rate of Ca2+ uptake is enhanced 2-fold and the extent of Ca2+ uptake is enhanced 4-fold over that in the crude microsomal fraction. The sarcoplasmic reticulum markers were concentrated in a region of the gradient containing approx. 5% of the original protein that did not correspond to an obvious protein peak.  相似文献   


18.
Fractionation of rat liver by homogenization and differential centrifugation revealed that only about 83% of the transglutaminase activity in the tissue is in a soluble form, and that the remainder is associated with the particulate fraction. This latter activity remained with the membranes even after they were extensively washed to remove 99% of such soluble enzymes as lactate dehydrogenase and aldolase. Subsequent fractionation of the membranes by isopycnic density gradient centrifugation in sucrose resulted in a single band of transglutaminase activity at a density of 1.194 g/cm3. This activity was coincident with the major band of plasma membranes, which was identified by its content of 5'-nucleotidase, alkaline phosphodiesterase I, alkaline phosphatase and leucine aminopeptidase activities. After treatment with digitonin and fractionation on sucrose gradients, the transglutaminase activity and the plasma membrane marker enzyme activities were found at a new density of 1.210 g/cm3, while the enzyme markers for the other membrane fractions remained unchanged. From these data, we conclude that approximately 17% of the transglutaminase activity in rat liver is specifically associated with the plasma membranes.  相似文献   

19.
A novel procedure is described for preparing a plasma membrane fraction from skeletal muscle (i.e., sarcolemma). The procedure entails evacuating the myoplasm from muscle slices as a preliminary step to homogenization and fractionation. The evacuated muscle slices are composed of a stroma-containing sarcolemma, which is then homogenized and fractionated, utilizing a sequence of differential and discontinuous sucrose density gradient centrifugations. On the basis of electron microscopy, selective enzyme markers and α-bungarotoxin binding in innervated and denervated muscles, the fraction most enriched with sarcolemma is recovered from the 0.5/0.7 M interface of a discontinuous sucrose gradient.  相似文献   

20.
The cytoplasmic membrane of Saccharomyces carlsbergensis was isolated by enzymatic digestion of the yeast cell wall, followed by lysis of the protoplasts and fractionation by ultracentrifugation in a discontinuous sucrose density gradient. Location of the cytoplasmic membrane fraction on the sucrose gradient was made by labeling intact protoplasts with [G-3H]dansyl chloride, and was settled at the 50% (wt/vol) sucrose gradient (d = 1.186 g/cm3). Approximately 80% of the radioactivity was found in the membrane fraction prepared in the presence of Mg2+ ions. However, when protease inhibitors were used in the preparation step, the membrane fraction contained over 90% of the total radioactivity. The presence of Mg2+ ions during membrane isolation and purification enhanced the aggregation of membrane components but, at higher concentrations, as well as in the prolonged presence of Mg2+ ions in the membrane suspension, it caused the breakdown of membrane components. The membrane preparation contained Mg2+-adenosine triphosphatase, which was insensitive to oligomycin and ouabain. The distribution of Mg2+-adenosine triphosphatase in different fractions during sucrose gradient is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号