首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(1) Voltage-clamp experiments were performed with myelinated fibres isolated from the sciatic nerve of the frog to study slow changes of the specific sodium and potassium currents as a function of membrane (holding) potential and time. (2) The level of the peak sodium current depends on holding potential VH. This dependence can be described by a sigmoidal function uinfinity(VH). The underlying process is called "ultra-slow sodium inactivation" and is different and separable from the short time steady-state inactivation, hinfinity(V), and from the slow inactivation depending on the extracellular potassium concentration (Adelman, Jr., W. J. and Palti, Y. (1969), J Gen. Physiol. 54, 589-606; Peganov, E. M., Khodorov, B.I. and Shishkova, L. D. (1973), Bull. Exp. Biol. Med. 25, 15-19; Khodorov, B. I. Shishkova, L. D. and Peganov, E. M. (1974), Bull. Exp. Biol. Med. 3, 10-14). (3) After a sudden change of the holding potential the sodium current reaches a new steady-state level (due to the transition of uinfinity(VH) to the corresponding value) within approx. 4 min. The kinetics of the transition cannot be described by a single exponential function. (4) A corresponding voltage- and time-dependent process of ultra-slow inactivation exists for the potassium current in the node of Ranvier. The kinetics are faster than those of the sodium system.  相似文献   

2.
The effects of some potassium channel blockers on the ionic currents and on the so-called K(+)-depolarization in intact myelinated nerve fibres were studied. 4-AP, and in particular, Flaxedil, proved to be selective K(+)-current blockers. However, TEA, a crown ether (DCH18C6), a longchained triethylammonium compound (C10-TriEA), capsaicin, and the extract from the medicinal herb Ruta graveolens proved not to be selective K(+)-current blockers; they all block Na(+)-currents as well, although to a lesser extent. The sodium inactivation curve did not change under TEA and Flaxedil but was shifted on the potential axis in negative direction by DCH18C6, 4-AP, capsaicin and the Ruta extract whereas C10-TriEA caused a shift of both sodium inactivation and activation parameters in positive direction. Regarding to the kinetics of the persisting K(+)-current fraction, two different kinds of blockade were found: 1. Unchanged K(+)-kinetic which is typical for the effects of TEA, 4-AP, Flaxedil, and C10-TriEA. 2. Clearly changed K(+)-kinetic, characterized by K(+)-transients; which is typical for the effects of capsaicin and in particular, for those of DCH18C6 and of the Ruta extract. The possibly different modes of action of both groups of blockers are discussed in terms of current models for the action of potassium channel blockers.  相似文献   

3.
The effects of a neurotoxin, purified from the venom of the scorpion Leiurus quinquestriatus, on the ionic currents of toad single myelinated fibers were studied under voltage-clamp conditions. Unlike previous investigations using crude scorpion venom, purified Leiurus toxin II alpha at high concentrations (200-400 nM) did not affect the K currents, nor did it reduce the peak Na current in the early stages of treatment. The activation of the Na channel was unaffected by the toxin, the activation time course remained unchanged, and the peak Na current vs. voltage relationship was not altered. In contrast, Na channel inactivation was considerably slowed and became incomplete. As a result, a steady state Na current was maintained during prolonged depolarizations of several seconds. These steady state Na currents had a different voltage dependence from peak Na currents and appeared to result from the opening of previously inactivated Na channels. The opening kinetics of the steady state current were exponential and had rates approximately 100-fold slower than the normal activation processes described for transitions from the resting state to the open state. In addition, the dependence of the peak Na current on the potential of preceding conditioning pulses was also dramatically altered by toxin treatment; this parameter reached a minimal value near a membrane potential of -50 mV and then increased continuously to a "plateau" value at potentials greater than +50 mV. The amplitude of this plateau was dependent on toxin concentration, reaching a maximum value equal to approximately 50% of the peak current; voltage-dependent reversal of the toxin's action limits the amplitude of the plateauing effect. The measured plateau effect was half-maximum at a toxin concentration of 12 nM, a value quite similar to the concentration producing half of the maximum slowing of Na channel inactivation. The results of Hill plots for these actions suggest that one toxin molecule binds to one Na channel. Thus, the binding of a single toxin molecule probably both produces the steady state currents and slows the Na channel inactivation. We propose that Leiurus toxin inhibits the conversion of the open state to inactivated states in a voltage-dependent manner, and thereby permits a fraction of the total Na permeability to remain at membrane potentials where inactivation is normally complete.  相似文献   

4.
The actions of tolperisone on single intact Ranvier nodes of the toad Xenopus were investigated by means of the Hodgkin-Huxley formalism. Adding tolperisone to the bathing medium (100 micromol/l) caused the following fully reversible effects: 1. The sodium permeability P'Na was decreased by about 50% in a nearly potential-independent manner while the so-called sodium inactivation curve was shifted in the negative direction by about 3 mV. 2. The remaining parameters of the sodium system, i.e. m, taum and tauh, did not change. 3. The potassium permeability P'K decreased at strong depolarizing potentials (V > 60 mV); hence the permeability constant P(K) decreased by about 8%. However, weak depolarizations (V < 60 mV) caused P'K to increase by about 7%. 4. The potassium activation curve was shifted in the positive direction by about 9 mV and the exponent of n, b, was reduced from about 3.5 to about 1.5. Concentration-response relations for reduction of the sodium permeability constant PNa and of the potassium permeability constant P(K) yielded apparent dissociation constants of about 0.06 mmol/l and 0.32 mmol/l, respectively. The increase of P'K at V = 40 mV, however, was largely concentration-independent. Our findings show that, in contrast to the prevailing view, tolperisone cannot be said to have a so-called lidocaine-like activity, because its effect on potassium permeability in the threshold region is fundamentally different from that of other known local anaesthetics. We infer that this effect, in combination with the decrease in sodium permeability, is responsible for the tendency of tolperisone to reduce excitability and hence for the antispastic action of tolperisone documented by clinical observations.  相似文献   

5.
Ionic currents through the frog Ranvier node membrane were measured by the voltage clamp method on the membrane of a single myelinated frog's nerve fiber under conditions when Na+ in the external solution was replaced by nonpenetrating cations. When pH fell below 4.0, small (under 0.1 nA) inward currents were found and on the basis of various features (kinetics, region of activation, and blocking by the local anesthetic benzocaine — 1.0 mM) were identified as currents through sodium channels. The results of control experiments with variation of the concentrations of cations in the external solution led to the conclusion that the H+ (or H3O+) ion is the main carrier of the measured inward current. According to the results of measurement of the reversal potential of these currents, the relative permeability of sodium channels for hydrogen ions (PH/PNa) averages 205 ± 14. The results are discussed in terms of a model of the water pore with saturation. It is concluded that the energy barriers for H+ in the sodium channel are low. It was also shown that the velocity of passage of protons through the channel is limited by binding with an acid group.Institute of Cytology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 14, No. 5, pp. 499–507, September–October, 1982.  相似文献   

6.
7.
Ionic currents through aconitine-modified sodium channels of the Ranvier node membrane were measured by a voltage clamp method in an external medium free from sodium ions. A shift of pH of the solution below 4.6 led to the appearance of inward ionic currents, whose kinetics and activation region were characteristic of aconitine-modified sodium channels at low pH. These currents were blocked by the local anesthetic benzocaine in a concentration of 2 mM. Experiments with variation of the concentration of Ca++, Tris+, TEA+, and choline+ in acid sodium-free solutions showed that these cations make no appreciable contribution to the inward current. It is concluded that the inward currents observed under these conditions are carried by H+ (or H3O+) through aconitine-modified sodium channels. From the shifts of reversal potentials of the ionic currents the relative permeability (PH/PNa) for H+ was determined: 1059 ± 88. The results agree with the view that the aconitine-modified sodium channel is a relatively wide water pore, and that movement of H+ through it is limited by its binding with an acid group.Institute of Cytology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 14, No. 5, pp. 508–516, September–October, 1982.  相似文献   

8.
This paper is concerned with the accurate and rapid calculation of extracellular potentials and currents from an active myelinated nerve fiber in a volume conductor, under conditions of normal and abnormal conduction. The neuroelectric source for the problem is characterized mathematically by using a modified version of the distributed parameter model of L. Goldman and J. S. Albus (1968, Biophys. J., 8:596-607) for the myelinated nerve fiber. Solution of the partial differential equation associated with the model provides a waveform for the spatial distribution of the transmembrane potential V(z). This model-generated waveform is then used as input to a second model that is based on the principles of electromagnetic field theory, and allows one to calculate easily the spatial distribution for the potential everywhere in the surrounding volume conductor for the nerve fiber. In addition, the field theoretic model may be used to calculate the total longitudinal current in the extracellular medium (I0L(z)) and the transmembrane current per unit length (im(z)); both of these quantities are defined in connection with the well-known core conductor model and associated cable equations in electrophysiology. These potential and current quantities may also be calculated as functions of time and as such, are useful in interpreting measured I0L(t) and im(t) data waveforms. An analysis of the accuracy of conventionally used measurement techniques to determine I0L(t) and im(t) is performed, particularly with regard to the effect of electrode separation distance and size of the volume conductor on these measurements. Also, a simulation of paranodal demyelination at a single node of Ranvier is made and its effects on potential and current waveforms as well as on the conduction process are determined. In particular, our field theoretic model is used to predict the temporal waveshape of the field potentials from the active, non-uniformly conducting nerve fiber in a finite volume conductor.  相似文献   

9.
10.
Ultraviolet radiation irreversibly reduces the sodium permeability in nerve membranes and, in addition, induces a change of the potential dependence of the kinetic parameters of sodium inactivation in the node of Ranvier. This second ultraviolet effect shifts the kinetic parameters of sodium inactivation h infinity (V), alpha h (V), and beta h (V) to more negative potentials (no changes of the slopes of the curves). The amount of the displacement delta V along the potential axis is equal for the three parameters and depends on the ultraviolet dose. It is about delta V = --10 mV after an irradiation dose of 0.7 Ws/cm2 at 280 nm. Both ultraviolet-induced effects depend on membrane potential and on the wavelength of the applied radiation. But while the potential shift is enhanced at more negative holding potentials, the ultraviolet blocking is diminished and vice versa. Further, the ultraviolet-induced potential shift is greater at 260 nm than at 280 nm, whereas a maximum sensitivity of ultraviolet blocking is found at 280 nm. Therefore, the two radiation effects are the result of two separate photoreactions. For explanation of the radiation-induced potential shift it is assumed that ultraviolet radiation decreases the density of negative charges at the inner surface of the nodal membrane. From this hypothesis a value for the inner surface potential psii was derived. --19 mV less than or equal to psii less than or equal to --14 mV.  相似文献   

11.
Modeling state-dependent inactivation of membrane currents.   总被引:3,自引:1,他引:2  
  相似文献   

12.
The effect of the alkaloid lappaconitine on passive ion transport through the somatic membrane of identified neurons of the snailHelix pomatia was studied under voltage clamp conditions. In a concentration of 4 mM lappaconitine has a reversible blocking action on the calcium channels of the excitable membrane. To study the effect of the alkaloid on inward sodium currents a solution in which calcium ions were replaced by the equivalent number of magnesium ions was used. Lappaconitine has no appreciable effect on the inward sodium current.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Institute of Chemistry of Plant Substances, Academy of Sciences of the Uzbek SSR, Tashkent. Translated from Neirofiziologiya, Vol. 11, No. 5, pp. 469–474, September–October, 1979.  相似文献   

13.
 A double cable model of the myelinated human motor nerve fibre is presented. The model is based on the nodal and internodal channels in a previous, two-component model of human motor axons (Bostock et al. 1991), added to a complex extended cable structure of nodal, paranodal and internodal segments. The model assumes a high-resistance myelin sheath and a leakage pathway to the internodal axolemma via the paranodal seal resistance and periaxonal space. The parameter values of the model were adjusted to match the recordings of threshold electrotonus in human motor fibres from Bostock et al. (1991). Kirchoff ’s current law was used to derive a system of partial differential equations for the electrical equivalent circuit, and numerical integration was performed with a fixed time increment and non-uniform spatial step sizes, in accordance with the complex structure of the fibre. The model calculations provide estimates of the spatial and temporal distributions of action potentials and their transaxonal and transmyelin components, both in different segments of the fibre and at different moments during action potential propagation. The distribution of transaxonal and transmyelin currents along the fibre and their contributions from different ionic channels are also explored. Received: 14 July 1994/Accepted in revised form: 4 April 1995  相似文献   

14.
 The double cable model is used to investigate the electrotonic responses of the myelinated human motor nerve fibre to 100 ms depolarizing and hyperpolarizing current pulses. The model calculations provide estimates of the spatial and temporal distributions of the transaxonal and transmyelin components of the electrotonic potentials, both in different segments of the fibre and at different moments during and after the pulses. The temporal distributions of the potentials exhibit fast (rise time <1 ms) and slow (from 10 to 100 ms) components, while the discontinuous spatial distributions of the potentials reflect the heterogeneous structure of the fibre. The distributions of the transaxonal and transmyelin currents along the fibre, and their contributions from different ionic channels, are also explored. The different axolemmal channel types beneath the myelin sheath make an important contribution to the responses to the long-lasting current pulses. Received: 20 June 1995/Accepted in revised form: 16 January 1996  相似文献   

15.
16.
17.
The myelinated giant nerve fiber of the shrimp, Penaeus japonicus, is known to have the fastest velocity of saltatory impulse conduction among all nerve fibers so far studied, owing to its long distances between nodal regions and large diameter. For a better understanding of the basis of this fast conduction, a medial giant fiber of the ventral nerve cord of the shrimp was isolated, and ionic currents of its presynaptic membrane (a functional node) were examined using the sucrose-gap voltage-clamp method. Inward currents induced by depolarizing voltage pulses had a maximum value of 0.5 μA and a reversal potential of 120 mV. These currents were completely suppressed by tetrodotoxin and greatly prolonged by scorpion toxin, suggesting that they are the Na current. Both activation and inactivation kinetics of the Na current were unusually rapid in comparison with those of vertebrate nodes. According to a rough estimation of the excitable area, the density of Na current reached 500 mA/cm2. In many cases, the late outward currents were induced only by depolarizing pulses larger than 50 mV in amplitude. The slope conductance measured from late currents were mostly smaller than that measured from the Na current, suggesting a low density of K channels in the synaptic membrane. These characteristics are in good harmony with the fact that the presynaptic membrane plays a role as functional node in the fastest impulse conduction of this nerve fiber.  相似文献   

18.
The linear cable equation with uniform Poisson or white noise input current is employed as a model for the voltage across the membrane of a onedimensional nerve cylinder, which may sometimes represent the dendritic tree of a nerve cell. From the Green's function representation of the solutions, the mean, variance and covariance of the voltage are found. At large times, the voltage becomes asymptotically wide-sense stationary and we find the spectral density functions for various cable lengths and boundary conditions. For large frequencies the voltage exhibits “1/f 3/2 noise”. Using the Fourier series representation of the voltage we study the moments of the firing times for the diffusion model with numerical techniques, employing a simplified threshold criterion. We also simulate the solution of the stochastic cable equation by two different methods in order to estimate the moments and density of the firing time.  相似文献   

19.
Summary The effect of laser-induced hyperthermia on the ionic permeability of nerve membranes was studied using the nodes of Ranvier in amphibian myelinated nerve as a model. To effect a photothermal modification of nerve membrane functions, con trolled laser irradiation consisting of a 5-sec thermal pulse was applied to the nodal membrane, increasing the temperature to a maximum of 48–58°C at the node. Major electrophysiological changes observed in the nodal membrane following laser-induced hyperthermia were a differential reduction of the sodium and potassium permeability, an increase in the leakage current, and a negative shift on the potential axis of the steady-state Na inactivation. There was no significant change in the kinetics of ion channel activation and inactivation for treatments below 56°C. The results suggest that a primary photothermal damage mecha nism at temperatures below 56°C could be a reduction in the number of active Na channels in the node, rather than a change in individual channel kinetics, or in the properties of the lipid bilayer of intervening nerve membrane. A differential heat sensi tivity between the noninactivated and the inactivated Na channels is also suggested. For the treatments of 56°C and above, a signifi cant increase of membrane leakage current suggests an irrevers ible thermal damage to the lipid bilayer. This work was supported by the ONR/SDIO N00014-86-K-0188 Medical Free-Electron-Laser Program and the Columbus-Cabrini Foundation.  相似文献   

20.
Comparisons between electrotronic potentials and certain predicted curves allow the identification of the membrane potential at which the sodium and potassium currents are switched on in frog sartorius. The activation potentials (the membrane potentials at which the ionic currents are great enough to be resolved by the method) are functions of the resting potential and time but not of ionic concentration. In the normal fiber, the activation potential for sodium lies nearer the resting potential and depolarizations set off sodium currents and action potentials. Below a resting potential of 55 to 60 mv. sodium activation is lost and conduction is impossible. A tenfold increase of calcium concentration lowers (moves further from the resting potential) the sodium activation potential by 20 to 25 mv. whereas the potassium activation potential is lowered by only 15 mv. Certain consequences of this are seen in the behavior of the muscle cell when it is stimulated with long duration shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号