首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The electroluminescence induced by external electric fields in blebs prepared from chloroplasts consists of two kinetically different phases, rapid (R) and slow (S), which were shown to be linked to Photosystem I (PS I) and Photosystem II (PS II) activities, respectively (Symons, M., Korenstein, R. and Malkin, S. (1985) Biochim. Biophys. Acta 806, 305–310). In this report we describe conditions involving heat treatment of broken chloroplasts, which make it possible to observe R phase electroluminescence essentially devoid of any contribution by the S phase. This allowed the precise measurement of the emission spectrum of PS I electroluminescence. The emission spectrum of PS II electroluminescence was obtained using regular broken chloroplasts, which show only S-type emission. The latter emission spectrum is identical to the one obtained for ordinary prompt fluorescence, peaking at 685 nm with a bandwidth of about 25 nm. The PS I emission spectrum is symmetric around 705 nm and is much broader, about 60 nm.  相似文献   

2.
Isamu Ikegami  Sakae Katon 《BBA》1975,376(3):588-592
The reaction center chlorophyll of Photosystem I in spinach chloroplasts was highly enriched. Preparations having 5–9 chlorophylls per 1 P700 were obtained by treating the Photosystem I particles prepared by digitonin treatment of chloroplasts with wet diethyl ether. All P700 present in the extracted particles was found to be photoactive, undergoing oxidation upon illumination.  相似文献   

3.
Alan J. Bearden  Richard Malkin 《BBA》1972,283(3):456-468
Quantitative electron paramagnetic resonance studies of the primary event associated with Photosystem I in chloroplasts have been carried out at 25 °K. After illumination of either whole chloroplasts or Photosystem I subchloroplast fragments (D-144) with 715-nm actinic light at 25 °K, equal spin concentrations of oxidized P700 and reduced bound iron-sulfur protein (bound ferredoxin) have been measured. Quantitative determination of the concentration of these two carriers by EPR spectroscopy after illumination at low temperature indicates that Photosystem I fragments are enriched in P700 and the bound iron-sulfur protein as compared with unfractionated chloroplasts. These results indicate that P700 and the bound iron-sulfur protein function as the donor-acceptor complex of chloroplast Photosystem I.  相似文献   

4.
1. The recently described reaction of ATP-induced luminescence is analyzed for its relation to other ATP-induced reactions such as ATP-driven transmembrane proton gradient formation and ATP-driven reverse electron flow. 2. In the absence of phenazine methosulfate ATP-induced luminescence is optimal while the main phase of ATP-driven reverse electron flow is eliminated. 3. DCMU which by itself causes a much smaller luminescence, inhibits the ATP-induced luminescence. 4. Nigericin plus valinomycin, but not each by itself, fully inhibit the ATP-induced luminescence. 5. The observations are interpreted as indicating that ATP stimulates luminescence by a 2-fold mechanism: (a) increasing the amount of the reducing primary electron acceptor of Photosystem II, Q, and (b) creating a transmembrane electrochemical potential which serves to decrease the activation energy required for the charge recombination reaction which leads to luminescence.  相似文献   

5.
《BBA》1985,808(1):112-122
The quantum yield of P-700 triplet state formation has been found from flash-induced absorption studies in the microsecond time range to be 0.45 and 0.35 at 294 K and 6–20 K, respectively, in CP1-SDS particles which lack the secondary acceptors. From these quantum yield measurements, yields of formation of the P-700 triplet state from the primary biradical (P-700+–A0) were calculated to be around 0.6 at both temperatures, whereas double-laser flash experiments allowed us to derive upper limits for this yield (0.84 at 294 K and 0.79 at 20 K). These values agree with the high values that have been previously calculated from an earlier absorption study (Sétif, P., Hervo, G. and Mathis, P. (1981) Biochim. Biophys. Acta 638, 257–267) but appear significantly higher than the yield calculated from EPR experiments (5–10%) (Gast, P., Swarthoff, T., Ebskamp, F.C.R. and Hoff, A.J. (1983) Biochim. Biophys. Acta 722, 163–175). Possible explanations for this discrepancy are discussed. From absorption studies in the submicrosecond time range as well as from double-laser flash experiments, the lifetime of the biradical (P-700+–A0), from which the P-700 triplet state is formed by recombination, has been measured to increase from 30–50 ns at room temperature up to 120–130 ns between 10 and 110K.  相似文献   

6.
The midpoint potential of the primary electron acceptor of Photosystem I in spinach chloroplasts was titrated using the photooxidation of P700 at −196 °C as an index of the amount of primary acceptor present in the oxidized state. The redox potential of the chloroplast suspension was established by the reducing power of hydrogen gas (mediated by clostridial hydrogenase and 1,1′-trimethylene-2,2′-dipyridylium dibromide) at specific pH values at 25 °C. Samples were frozen to −196 °C and the extent of the photooxidation of P700 was determined from light-minus-dark difference spectra. This titration indicated a midpoint potential of −0.53 V for the primary electron acceptor of Photosystem I.  相似文献   

7.
W.L. Butler  M. Kitajima 《BBA》1975,396(1):72-85
A model for the photochemical apparatus of photosynthesis is presented which accounts for the fluorescence properties of Photosystem II and Photosystem I as well as energy transfer between the two photosystems. The model was tested by measuring at ?196 °C fluorescence induction curves at 690 and 730 nm in the absence and presence of 5 mM MgCl2 which presumably changes the distribution of excitation energy between the two photosystems. The equations describing the fluorescence properties involve terms for the distribution of absorbed quanta, α, being the fraction distributed to Photosystem I, and β, the fraction to Photosystem II, and a term for the rate constant for energy transfer from Photosystem II to Photosystem I,kT(II→I). The data, analyzed within the context of the model, permit a direct comparison of α andkT(II→I) in the absence (?) and presence (+) of Mg2+:α/?α+= 1.2andk/?T(II→I)k+T(II→I)= 1.9. If the criterion thatα + β = 1 is applied absolute values can be calculated: in the presence of Mg2+,a+ = 0.27 and the yield of energy transfer,φ+T(II→I) varied from 0.065 when the Photosystem II reaction centers were all open to 0.23 when they were closed. In the absence of Mg2+? = 0.32 andφT(II→I) varied from 0.12 to 0.28.The data were also analyzed assuming that two types of energy transfer could be distinguished; a transfer from the light-harvseting chlorophyll of Photosystem II to Photosystem I,kT(II→I), and a transfer from the reaction centers of Photosystem II to Photosystem I,kt(II→I). In that caseα/?α+= 1.3,k/?T(II→I)k+T(II→I)= 1.3 andk/?t(II→I)k+(tII→I)= 3.0. It was concluded, however, that both of these types of energy transfer are different manifestations of a single energy transfer process.  相似文献   

8.
《BBA》1987,893(2):320-332
The primary charge separation in Photosystem I of pea chloroplasts was measured as a photovoltage in the pico- and nanosecond time range by applying laser flashes at 532 nm of variable energy and different duration (12 ns and 30 ps, respectively). Contributions to the photovoltage from Photosystem II was eliminated by addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea and preillumination. The dependence of the photovoltage amplitude on the excitation energy could be described by an exponential saturation law when the excitation flash had a duration of 12 ns. Nearly the same dependence was found when the excitation source was the train of a mode-locked laser (approx. ten 30-ps flashes spaced by 7 ns; highest energy of a single flash, 80 μJ / cm−2). Even with single 30-ps flashes the photovoltage was only slightly smaller than the one elicited by 12-ns flashes of the same energy. These findings demonstrate that trapping of excitation energy by the reaction center of Photosystem I is much more effective than losses by annihilation and other loss processes. The photovoltage yield was nearly independent of the fraction of closed traps, thus demonstrating that the absorption cross section of Photosystem I is not altered by the closing of its reaction centers. By recording the rise time of the photovoltage with our highest time resolution we found that the trapping rate of the excitation energy in Photosystem I depended on the energy of the 30-ps flashes: at low excitation energies (less than 1014 photons / cm2 per pulse) trapping occurred within 90 ± 15 ps and at high excitation energy (1015 photons / cm2 per pulse) trapping and charge stabilization occurred within the time resolution of the apparatus, i.e., up to 50 ps. The trapping rate at low energies is in agreement with the one determined by fluorescence decay kinetics. Up to 50 ns there was no further detectable electrogenic phase (neither forward nor backward reactions). This demonstrates that all the electrogenicity, produced by the charge separation, takes place in less than 50 ps.  相似文献   

9.
The ratio of Photosystem (PS) II to PS I electron-transport capacity in spinach chloroplasts was compared from reaction-center and steady-state rate measurements. The reaction-center electron-transport capacity was based upon both the relative concentrations of the PS IIα, PS IIβ and PS I centers, and the number of chlorophyll molecules associated with each type of center. The reaction-center ratio of total PS II to PS I electron-transport capacity was about 1.8:1. Steady-state electron-transport capacity data were obtained from the rate of light-induced absorbance-change measurements in the presence of ferredoxin-NADP+, potassium ferricyanide and 2,5-dimethylbenzoquinone (DMQ). A new method was developed for determining the partition of reduced DMQ between the thylakoid membrane and the surrounding aqueous phase. The ratio of membrane-bound to aqueous DMQH2 was experimentally determined to be 1.3:1. When used at low concentrations (200 μM), potassium ferricyanide is shown to be strictly a PS I electron acceptor. At concentrations higher than 200 μM, ferricyanide intercepted electrons from the reducing side of PS II as well. The experimental rates of electron flow through PS II and PS I defined a PS II/PS I electron-transport capacity ratio of 1.6:1.  相似文献   

10.
Circular polarization of luminescence (CPL; Steinberg IZ (1978) Annu Rev Biophys Bioeng 7: 113–137) was applied to study pea chloroplasts in different structural states. The structural changes of chloroplasts were induced by variation of osmotic pressure, concentration of magnesium-ions or photoinhibition. Both large CPL and psi-type circular dichroism (psi, polymerization and salt induced) signals appeared in the presence of granal macrostructure and were sensitive to structural changes of the grana. The relation was studied between the amount of CPL expressed as an emission anisotropy factor g em and amplitudes of the red psi-type CD bands. The positive psi-type CD band was not directly correlated with g em possibly due to a large contribution of circular intensity differential scattering to the measured CD spectra. However, a linear correlation between the amplitude of the negative psi-type CD band and g em was found. The CPL signal of pea chloroplasts was attributed to a psi-type origin, which is observed in macroaggregates with densely packed chromophores with a long-range chiral order, and directly depends on the level of macroorganization. With the use of CPL-based microscopy, the long-range packing of LHC II particles can be studied in individual chloroplasts in future. In addition, the CPL method in general allows the study of the macro-organization of grana in green leaves, where conventional light-transmission methods fail. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
The light-induced chlorophyll (Chl) fluorescence decline at 77 K was investigated in segments of leaves, isolated thylakoids or Photosystem (PS) II particles. The intensity of chlorophyll fluorescence declines by about 40% upon 16 min of irradiation with 1000 μmol m−2 s−1 of white light. The decline follows biphasic kinetics, which can be fitted by two exponentials with amplitudes of approximately 20 and 22% and decay times of 0.42 and 4.6 min, respectively. The decline is stable at 77 K, however, it is reversed by warming of samples up to 270 K. This proves that the decline is caused by quenching of fluorescence and not by pigment photodegradation. The quantum yield for the induction of the fluorescence decline is by four to five orders lower than the quantum yield of QA reduction. Fluorescence quenching is only slightly affected by addition of ferricyanide or dithionite which are known to prevent or stimulate the light-induced accumulation of reduced pheophytin (Pheo). The normalised spectrum of the fluorescence quenching has two maxima at 685 and 695 nm for PS II emission and a plateau for PS I emission showing that the major quenching occurs within PS II. ‘Light-minus-dark’ difference absorbance spectra in the blue spectral region show an electrochromic shift for all samples. No absorbance change indicating Chl oxidation or Pheo reduction is observed in the blue (410–600 nm) and near infrared (730–900 nm) spectral regions. Absorbance change in the red spectral region shows a broad-band decrease at approximately 680 nm for thylakoids or two narrow bands at 677 and 670–672 nm for PS II particles, likely resulting also from electrochromism. These absorbance changes follow the slow component of the fluorescence decline. No absorbance changes corresponding to the fast component are found between 410 and 900 nm. This proves that the two components of the fluorescence decline reflect the formation of two different quenchers. The slow component of the light-induced fluorescence decline at 77 K is related to charge accumulation on a non-pigment molecule of the PS II complex. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Persistent photochemical hole burned profiles are reported for the primary electron donor state P700 of the reaction center of PS I. The hole profiles at 1.6 K for a wide range of burn wavelengths (B) are broad (FWHM310 cm-1) and for the 45:1 enriched particles studied exhibit no sharp zero-phonon hole feature coincident with B. The B hole profiles are analyzed using the theory of Hayes et al. [J Phys Chem 1986, 90: 4928] for hole burning in the presence of arbitrarily strong linear electron-phonon coupling. A Huang-Rhys factor S in the range 4–6 and a corresponding mean phonon frequency in the range 35–50 cm-1 together with an inhomogeneous line broadening of100 cm-1 are found to provide good agreement with experiment. The zero-point level of P700* is predicted to lie at710 nm at 1.6K with an absorption maximum at702 nm. The hole spectra are discussed in the context of the hole spectra for the primary electron donor states of PS II and purple bacteria.Abbreviations NPHB nonphotochemical hole burning - O.D. optical density - PSBH phonon sideband hole - PS I Photosystem I P680 - P700, P870, P960 the primary electron donors of Photosystem II, Photosystem I, Rhodobacter sphaeroides, Rhodopseudomonas viridis - PED primary electron donor - RC reaction center - ZPH zero-phonon holes  相似文献   

13.
Electron transport from Photosystem II to Photosystem I of spinach chloroplasts can be stimulated by bicarbonate and various carbonyl or carboxyl compounds. Monovalent or divalent cations, which have hitherto been implicated in the energy distribution between the two photosystems, i.e., spillover phenomena at low light intensities, show a similar effect under high light conditions employed in this study. A mechanism for this stimulation of forward electron transport from Photosystem II to Photosystem I could involve inhibition of two types of Photosystem II partial reactions, which may involve cycling of electrons around Photosystem II. One of these is the DCMU-insensitive silicomolybdate reduction, and the other is ferricyanide reduction by Photosystem II at pH 8 in the presence of dibromothymoquinone. Greater stimulation of forward electron transport reactions is observed when both types of Photosystem II cyclic reactions are inhibited by bicarbonate, carbonyl and carboxyl-type compounds, or by certain mono- or divalent cations.Abbreviations used: DCMU, 3-(3,4-dichlorophenyl)-1, 1-dimethylurea; DCIP, 2,6-dichloroindophenol; DBMIB, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone; FeCN, potassium ferricyanide; MV, methylviologen; PS I, photosystem I; PS II, photosystem II; SM, silicomolybdic acid.  相似文献   

14.
Photoinhibition of the light-induced Photosystem I (PS I) electron transfer activity from the reduced dichlorophenol indophenol to methyl viologen was studied. PS I preparations with Chl/P700 ratios of about 180 (PS I-180), 100 (PS I-100) and 40 (PS I(HA)-40) were isolated from spinach thylakoid membranes by the treatments with Triton X-100, followed by sucrose density gradient centrifugation and hydroxylapatite column chromatography. White light irradiation (1.1 × 104E m–2 s–1) of PS I-180 for 2 hours bleached 50% of the chlorophyll and caused a 58% decrease in the electron transfer activity with virtually no loss of the primary donor, P700. The flash-induced absorbance change showed the decay phase with a half time of about 10 s that was attributed to the P700 triplet, suggesting that the photoinhibitory light treatment caused the destruction of the PS I acceptor(s), Fx and possibly A1. PS I-100 was similarly photobleached by the irradiation and the electron transfer activity decreased. There was, however, no apparent photoinhibition of the electron transport activity in PS I(HA)-40. Photoinhibition similar to that seen in PS I-180 also occurred in membrane fragments that were isolated without any detergent from a PS II-deficient mutant strain of the cyanobacterium Synechocystis sp. PCC 6803. PS I-180 was not photoinhibited under anaerobic conditions. The production of superoxide and fatty acid hydroperoxide during white light irradiation was significantly greater in PS I-180 than in PS I(HA)-40. The mechanism of photoinhibition in PS I preparations is discussed in relation to the formation of toxic oxygen molecules.Abbreviations A0,A1 primary and secondary electron acceptors of PS I - CD circular dichroism - DCPIP 2,6-dichlorophenol indophenol - FA, FB, FX iron-sulfur centers A, B, X - HA hydroxylapatite - LHCI lightharvesting complex of PS I - MDA malondialdehyde - MV methyl viologen - Na-Asc sodium L-ascorbate - P700 primary electron donor of PS I - PFD photon flux density - PS I-A and PS I-B psaA and psaB gene products - TBA thiobarbituric acid  相似文献   

15.
Stable light-induced absorbance changes in chloroplasts at −196 °C were measured across the visible spectrum from 370 to 730 nm in an effort to find previously undiscovered absorbance changes that could be related to the primary photochemical activity of Photosystem I or Photosystem II. A Photosystem I mediated absorbance increase of a band at 690 nm and a Photosystem II mediated absorbance increase of a band at 683 nm were found. The 690-nm change accompanied the oxidation of P700 and the 683-nm increase accompanied the reduction of C-550. No Soret band was detected for P700.

A specific effort was made to measure the difference spectrum for the photooxidation of P680 under conditions (chloroplasts frozen to −196 °C in the presence of ferricyanide) where a stable, Photosystem II mediated EPR signal, attributed to P680+ has been reported. The difference spectra, however, did not show that P680+ was stable at −196 °C under any conditions tested. Absorbance measurements induced by saturating flashes at −196 °C (in the presence or absence of ferricyanide) indicated that all of the P680+ formed by the flash was reduced in the dark either by a secondary electron donor or by a backreaction with the primary electron acceptor. We conclude that P680+ is not stable in the dark at −196 °C: if the normal secondary donor at −196 °C is oxidized by ferricyanide prior to freezing, P680+ will oxidize other substances.  相似文献   


16.
17.
18.
The analysis of FDMR spectra, recorded at multiple emission wavelengths, by a global decomposition technique, has allowed us to characterise the triplet populations associated with Photosystem I and Photosystem II of thylakoids in the green alga Chlamydomonas reinhardtii. Three triplet populations are observed at fluorescence emissions characteristic of Photosystem II, and their zero field splitting parameters have been determined. These are similar to the zero field parameters for the three Photosystem II triplets previously reported for spinach thylakoids, suggesting that they have a widespread occurrence in nature. None of these triplets have the zero field splitting parameters characteristic of the Photosystem II recombination triplet observed only under reducing conditions. Because these triplets are generated under non-reducing redox conditions, when the recombination triplet is undetectable, it is suggested that they may be involved in the photoinhibition of Photosystem II. At emission wavelengths characteristic of Photosystem I, three triplet populations are observed, two of which are attributed to the P(700) recombination triplet frozen in two different conformations, based on the microwave-induced fluorescence emission spectra and the triplet minus singlet difference spectra. The third triplet population detected at Photosystem I emission wavelengths, which was previously unresolved, is proposed to originate from the antenna chlorophyll of the core or the unusually blue-shifted outer antenna complexes of this organism.  相似文献   

19.
The presence of a bound electron transport component in spinach chloroplasts with an EPR spectrum characteristic of a ferredoxin has been confirmed. The ferredoxin is photoreduced at 77 °K or at room temperature, it is not reduced in the dark by Na2S2O4. The distribution of the ferredoxin in subchloroplast particles has been investigated. The ferredoxin is enriched in Photosystem I particles and it is proposed that it functions as primary electron acceptor for Photosystem I.

The EPR spectra indicate the presence of two components which are photoreduced sequentially. It is proposed that they may represent two active centres of a single protein.  相似文献   


20.
The low-temperature (77 K) phosphorescence of chlorophyll (Chl) in the reaction centres (D1D2-cyt b559-particles) and the core complexes of photosystem II isolated from higher plants was studied. Two phosphorescence spectral bands with the emission maxima at 950 and 977 nm, excitation maxima at 666 and 675-680 nm, and the lifetimes equal to 2 and 1.5 ms, respectively, were registered. The data indicate that the phosphorescence corresponds to the triplet Chl a molecules spatially separated from carotenoids. In samples treated by potassium ferricyanide and frozen under illumination by red light, the intensities of both bands were reduced, but the decrease of the short-wavelength 950-nm band was much more pronounced. This allows an assumption that the short-wavelength phosphorescence belongs to Chl a molecules, which are more accessible for ferricyanide because they are located on the surface of the chlorophyll-protein complexes, whereas the long-wavelength phosphorescence is emitted by the Chl molecules located inside the D1D2 heterodimer and therefore, is more protected by protein macromolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号