首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The receptor protein for bacteriophage λ was purified to homogeneity from a mutant strain of Escherichia coli K-12 producing reduced amounts of porin. In the reconstituted vesicle membranes the λ-receptor formed permeability channels that allowed the diffusion of maltose, lactose, sucrose, raffinose, amino acids, and nucleosides, but essentially not of stachyose. The permeability channels made of λ-receptor thus had a relatively low specificity for solute molecules. The active form of the protein seemed to be an oligomer of λ-receptor proteins.  相似文献   

2.
3.
4.
5.
The assembly of newly induced LamB protein (phage lambda receptor) was investigated in an operon fusion strain of Escherichia coli, in which the lamB gene is expressed under lac promoter control. The induction kinetics both for total cellular and for cell surface-exposed LamB protein were studied by immunochemical detection methods, using two distinct antisera directed against detergent-solubilized LamB trimers and completely denatured LamB monomers, respectively. Anti-trimer antibodies recognized both monomers and trimers, whereas anti-monomer antibodies only reacted with monomers. Provided appropriate solubilization conditions were used, both antisera were able to immunoprecipitate intracellular mature LamB protein quantitatively. Following induction, the first LamB antigenic determinants were detected after 60 to 80 seconds; detection of the newly synthesized protein by anti-monomer antibodies slightly preceded that by anti-trimer antibodies, a finding that could be partly explained by the observation that anti-monomer antibodies recognized a larger fraction of nascent LamB than did anti-trimer antibodies. Exposure of antigenic determinants at the cell surface was delayed for 30 to 50 seconds with respect to their synthesis. Therefore, either translocation or conformational changes must be rate-limiting in the series of processes that eventually convert the newly synthesized protein into its mature outer membrane state. LamB protein was found to occur in at least three clearly distinguishable states. State I is the LamB monomer, state II corresponds to a metastable trimer that dissociates in sodium dodecyl sulphate above 60 degrees C, and state III is the state LamB trimer that dissociates in sodium dodecyl sulphate only at temperatures above 90 degrees C. The chase kinetics of these states showed that conversion of newly synthesized LamB monomers to stable LamB trimers occurred in two stages: state I monomers were chased into metastable state II trimers rapidly (t 1/2 = 20 s), whereas stabilization of state II trimers to state III trimers was a relatively slow (t 1/2 = 5.7 min) process. Based on our results, a timing sequence in the assembly of outer membrane LamB protein is proposed.  相似文献   

6.
The structural changes in the cell membrane of λ-lysogenic Escherichia coli induced by colicin E2 were examined. The addition of colicin E2 made the cells susceptible to various detergents and the transport rate of o-nitrophenyl-β-D-galactoside into the colicin-treated cells was stimulated markedly by adding a low concentration of sodium dodecyl sulfate. The fluorescence intensity of 8-anilino-1-naphthalenesulfonate bound to the cells was markedly increased by adding colicin E2. Colicin E2 stimulated the incorporation of 32P from prelabeled phosphatidylglycerol to cardiolipin. All these changes probably suggesting the structural alteration of the cell membrane were dependent on the presence of the rex gene of λ prophage in the cells.  相似文献   

7.
The separation of membrane fragments was investigated in extracts of phototropically grown Rhodopseudomonas sphaeroides to determine if the plasma membrane contains discrete regions. A highly purified fraction of bacteriochlorophyll a-deficient membrane fragments was isolated by differential centrifugation, chromatography on Sepharose 2B, reaggregation, and isopycnic sedimentation on sucrose gradients. Significant levels of b- and c-type cytochromes and succinate dehydrogenase were demonstrated in the isolated membrane fragments and their appearance in electron micrographs, their polypeptide profile in dodecyl sulfate-polyacrylamide gel electrophoresis, and overall chemical composition were essentially identical to a similar fraction isolated from aerobically grown cells. Their polypeptide profiles were distinct from those of the intracytoplasmic chromatophore and outer membranes, and on the basis of bacteriochlorophyll content the phototrophic fraction was contaminated with chromatophores by <9%. The membrane fragments contained no diaminopimelic acid or glucosamine. It is concluded that the membrane fragments isolated from phototrophically growing Rp. sphaeroides have arisen from photosynthetic pigment-depleted regions of the plasma membrane structurally and functionally differentiated from the intracytoplasmic chromatophore membrane. These regions represent conserved chemotrophic cytoplasmic membrane whose synthesis continues under photoheterotrophic conditions.  相似文献   

8.
Topography of outer membrane growth in E. coli   总被引:7,自引:0,他引:7  
  相似文献   

9.
R Koebnik 《The EMBO journal》1996,15(14):3529-3537
The two-domain, 325 residue outer membrane protein OmpA of Escherichia coli is a well-established model for the study of membrane assembly. The N-terminal domain, consisting of approximately 170 amino acid residues, is embedded in the membrane, presumably in the form of a beta-barrel consisting of eight antiparallel transmembrane beta-strands. A set of 16 gene variants carrying deletions in the membrane-embedded domain of OmpA was constructed. When pairs of these mutant genes were co-expressed in E.coli, it was found that a functional OmpA protein could be assembled efficiently from two complementary protein fragments. Assembly was found when the polypeptide chain was split at the second or third periplasmic turn. All four protein termini were located in the periplasmic space. Interestingly, duplication of transmembrane strands five and six led to a variant with an unusual topology: the N-terminus of one fragment and the C-terminus of the other fragment were exposed at the cell surface. This is the first demonstration of correct membrane assembly of split beta-structured membrane proteins. These findings are important for a better understanding of their folding/assembly pathway and may have implications for the development of artificial outer membrane proteins and for the cell surface display of heterologous peptides or proteins.  相似文献   

10.
11.
The proteolytic activity of E.coli measured using 125I-labelled αS1 casein as substrate, is mainly localised in the outer membrane and is due to an intrinsic outer membrane protein which can be solubilized by deoxycholate. This enzyme exhibits maximum activity at pH 7,5 in Tris-HCl buffer, is resistant to thermal denaturation with a half-life of 28 min. at 90°C in deoxycholate-NaCl buffer and is inhibited by ethylene-diamine tetraacetate, high concentrations of p-aminobenzamidine, tosyl-L-lysine chloromethyl ketone, tosyl-L-phenylalaninechloromethyl ketone and by two inhibitors of the processing of the secreted protein precursors, procaine and phenehylalcohol. Whole cells do not exhibit proteolytic activity, nevertheless, some is unmasked when the outer membrane is permeabilized by Tris or ethylenediamine tetraacetate or when vesicles are sonicated. This suggests that the protease is on the inner side of the outer membrane. Because the protease is different from the soluble proteases described in E.coli, and especially from proteases I,II and III, it has been called protease IV.  相似文献   

12.
Escherichia coli lipoproteins are anchored to the periplasmic surface of the inner or outer membrane depending on the sorting signal. An ATP-binding cassette (ABC) transporter, LolCDE, releases outer membrane-specific lipoproteins from the inner membrane, causing the formation of a complex between the released lipoproteins and the periplasmic molecular chaperone LolA. When this complex interacts with outer membrane receptor LolB, the lipoproteins are transferred from LolA to LolB and then localized to the outer membrane. The structures of LolA and LolB are remarkably similar to each other. Both have a hydrophobic cavity consisting of an unclosed beta-barrel and an alpha-helical lid. Structural differences between the two proteins reveal the molecular mechanisms underlying the energy-independent transfer of lipoproteins from LolA to LolB. Strong inner membrane retention of lipoproteins occurs with Asp at position 2 and a few limited residues at position 3. The inner membrane retention signal functions as a Lol avoidance signal and inhibits the recognition of lipoproteins by LolCDE, thereby causing their retention in the inner membrane. The positive charge of phosphatidylethanolamine and the negative charge of Asp at position 2 are essential for Lol avoidance. The Lol avoidance signal is speculated to cause the formation of a tight lipoprotein-phosphatidylethanolamine complex that has five acyl chains and therefore cannot be recognized by LolCDE.  相似文献   

13.
Porin from Escherichia coli outer membranes has been analysed by high angle diffuse X-ray diffraction, and by attenuated total reflection infrared spectroscopy. These methods demonstrate independently that the majority of the polypeptide backbone is arranged in anti-parallel beta-pleated sheet structure. The average length of the beta-strands, which are oriented nearly normal to the membrane plane, is estimated to be 10-12 residues, independent of the method used. Although the details of strand arrangement (beta-barrels or stacked sheets) are not as yet known, porin represents the first transmembrane protein for which beta-structure has been established unequivocally.  相似文献   

14.
Escherichia coli lipoproteins are anchored to the periplasmic surface of the inner or outer membrane depending on the sorting signal. An ATP-binding cassette (ABC) transporter, LolCDE, releases outer membrane-specific lipoproteins from the inner membrane, causing the formation of a complex between the released lipoproteins and the periplasmic molecular chaperone LolA. When this complex interacts with outer membrane receptor LolB, the lipoproteins are transferred from LolA to LolB and then localized to the outer membrane. The structures of LolA and LolB are remarkably similar to each other. Both have a hydrophobic cavity consisting of an unclosed beta-barrel and an alpha-helical lid. Structural differences between the two proteins reveal the molecular mechanisms underlying the energy-independent transfer of lipoproteins from LolA to LolB. Strong inner membrane retention of lipoproteins occurs with Asp at position 2 and a few limited residues at position 3. The inner membrane retention signal functions as a Lol avoidance signal and inhibits the recognition of lipoproteins by LolCDE, thereby causing their retention in the inner membrane. The positive charge of phosphatidylethanolamine and the negative charge of Asp at position 2 are essential for Lol avoidance. The Lol avoidance signal is speculated to cause the formation of a tight lipoprotein-phosphatidylethanolamine complex that has five acyl chains and therefore cannot be recognized by LolCDE.  相似文献   

15.
Cell wall LPS of Escherichia coli are organized as particles which are visible in the electron microscope, after treatment of the wall with alkali. We now describe alkali treated walls of three E. coli strains with differences in susceptibility to the T4 phage infection. Strain CR63, a usual host for the T4 phage, shows the LPS particles on the murein layer. These particles are absent in alkali treated cell walls of the strain W. Walls of this strain are broken during T4 infection and phages can be seen bearing pieces of membrane attached to their long as well as their short tail fibers. Strain AS19 which is hypersensitive to the lysis from without caused by T4 shows murein layers with no LPS particles on their surface, and networks of LPS particles with bacterial shape. This suggested that LPS are organized in a network of particles which may serve as the skeleton of the cell wall.  相似文献   

16.
The consequences of limiting the rate of elongation of protein synthesis in vitro have been examined. The concentration of Trp-tRNATrp was manipulated by varying the amount of exogenously added tryptophan in extracts from an Escherichia coli mutant in which the tryptophanyl-tRNA-synthetase has a higher KM for tryptophan. The evidence presented supports the hypothesis that variation of the rate of elongation can be a means of regulating gene expression, both directly, by slowing or accelerating the rate of protein synthesis and indirectly, by leading to varying three-dimensional structures of the messenger RNA when progress of the ribosomes is perturbed. The data can be described by assuming that if a specific transfer RNA is limiting, to a first approximation the overall rate of protein synthesis is determined by the relative rate of reading past an individual codon requiring that tRNA raised to the power of how many times that codon appears in the message. This could be explained by a model in which, with a significant probability, the ribosome stops protein synthesis prematurely at these codons, falls off the messenger RNA and is available for further rounds of protein synthesis. In agreement with other work, evidence is also presented that suggests that under the most drastic available limitation of the elongation rate, that is, starvation for a given amino acid, reading through the corresponding “hungry codon” occurs in vitro at a surprisingly high rate, possibly due to mistranslation.  相似文献   

17.
18.
The major outer membrane protein of molecular weight 40,000 (the 40K protein) of a virulent isolate of Bordetella pertussis was purified to apparent homogeneity. The purified protein formed an oligomer band (of apparent molecular weight 90,000) on sodium dodecyl sulfate-polyacrylamide gels after solubilization at low temperatures. The porin function of this protein was characterized by the black lipid bilayer method. The 40K protein formed channels smaller than all other constitutive major outer membrane porins studied to date. The average single-channel conductance in 1 M KCl was 0.56 nS. This was less than a third of the conductance previously observed for Escherichia coli porins. Zero-current potential measurements made of the porin to determine its ion selectivity revealed the porin to be more than 100-fold selective for anions over cations. The single-channel conductance was measured as a function of salt concentration. The data could be fitted to a Lineweaver-Burk plot suggesting an anion binding site with a Kd of 1.17 M Cl- and a maximum possible conductance through the channel of 1.28 nS.  相似文献   

19.
20.
We used the cloned tolC gene to identify, locate, and purify its gene product. Strains carrying pPR13 or pPR42 overproduced a cell envelope protein (molecular weight, 52,000). A protein of the same molecular weight was identified in radioactively labeled minicells carrying pPR13; this protein was absent in pPR11-carrying minicells. This protein was the tolC gene product, since pPR11 differed from pPR13 in having a Tn10 insertion in the tolC gene. The protein seen in cell envelopes of whole cells (TolC protein) was found to exist in an aggregated state in the outer membrane; under conditions in which OmpC and OmpF were peptidoglycan associated, TolC protein was not likewise associated. Using these properties, we purified the TolC protein and determined the sequence of twelve amino acids from the amino-terminal end. The location of the TolC protein in the outer membrane was consistent with the proposed function for the tolC gene product as a processing protein in the outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号