首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Extended spectrum ß-lactamases (ESBLs) represent a major group of lactamases responsible for resistance, mostly produced by gram-negative bacteria, to newer generations of ß-lactam drugs currently being identified in large numbers worldwide. The present study was undertaken to see the frequency of ESBL producing Pseudomonas spp. isolated from six hundred clinical specimens (wound, pus, aural, urine, sputum, throat and other swabs) collected over a period of three years from two tertiary care hospitals in Bangladesh.

Findings

Aerobic bacterial culture was performed on aseptically collected swabs and only growth of Pseudomonas was considered for further species identification and ESBL production along with serotyping of Pseudomonas aeruginosa. Antimicrobial susceptibility testing was carried out using the Kirby-Bauer agar diffusion method and ESBL production was detected on Mueller Hinton agar by double-disk synergy technique using Amoxicillin-Clavulanic acid with Ceftazidime, Cefotaxime, Ceftriaxone and Aztreonam. Culture yielded 120 Pseudomonas spp. and 82 of them were biochemically characterized for species. Pseudomonas aeruginosa was found to be the predominant (90.2%) species. Of 82 isolates tested for ESBL, 31 (37.8%) were ESBL positive with 29 (93.5%) as Pseudomonas aeruginosa, the remaining 2 (6.5%) were Stenotrophomonas maltophilia and Ralstonia pickettii. Antibiogram revealed Imipenem as the most effective drug (93.3%) among all antimicrobials used against Pseudomonas spp. followed by Aminoglycosides (63.7%).

Conclusion

ESBL producing Pseudomonas spp. was found to be a frequent isolate from two tertiary care hospitals in Bangladesh, showing limited susceptibility to antimicrobials and decreased susceptibility to Imipenem in particular, which is a matter of great concern.  相似文献   

2.
3.

Introduction

Systemic sclerosis (SSc) complicated by pulmonary arterial hypertension (PAH) carries a poor prognosis, despite pulmonary vascular dilating therapy. Platelet-derived growth factor receptor-β (PDGFR-β) and epidermal growth factor receptor (EGFR) are potential therapeutic targets for PAH because of their proliferative effects on vessel remodelling. To explore their role in SScPAH, we compared PDGFR- and EGFR-mmunoreactivity in lung tissue specimens from SScPAH. We compared staining patterns with idiopathic PAH (IPAH) and pulmonary veno-occlusive disease (PVOD), as SScPAH vasculopathy differs from IPAH and sometimes displays features of PVOD. Immunoreactivity patterns of phosphorylated PDGFR-β (pPDGFR-β) and the ligand PDGF-B were evaluated to provide more insight into the patterns of PDGFR-b activation.

Methods

Lung tissue specimens from five SScPAH, nine IPAH, six PVOD patients and five controls were examined. Immunoreactivity was scored for presence, distribution and intensity.

Results

All SScPAH and three of nine IPAH cases (P = 0.03) showed PDGFR-β-immunoreactivity in small vessels (arterioles/venules); of five SScPAH vs. two of nine IPAH cases (P = 0.02) showed venous immunoreactivity. In small vessels, intensity was stronger in SScPAH vs. IPAH. No differences were found between SScPAH and PVOD. One of five normal controls demonstrated focally mild immunoreactivity. There were no differences in PDGF-ligand and pPDGFR-b-immunoreactivity between patient groups; however, pPDGFR-b-immunoreactivity tended to be more prevalent in SScPAH small vasculature compared to IPAH. Vascular EGFR-immunoreactivity was limited to arterial and arteriolar walls, without differences between groups. No immunoreactivity was observed in vasculature of normals.

Conclusions

PDGFR-β-immunoreactivity in SScPAH is more common and intense in small- and post-capillary vessels than in IPAH and does not differ from PVOD, fitting in with histomorphological distribution of vasculopathy. PDGFR-β immunoreactivity pattern is not paralleled by pPDGFR-β or PDGF-B patterns. PDGFR-β- and EGFR-immunoreactivity of pulmonary vessels distinguishes PAH patients from controls.  相似文献   

4.
Pulmonary hypertension (PH) is associated with profound vascular remodeling and alterations in Ca(2+) homeostasis in pulmonary arterial smooth muscle cells (PASMCs). Previous studies show that canonical transient receptor potential (TRPC) genes are upregulated and store-operated Ca(2+) entry (SOCE) is augmented in PASMCs of chronic hypoxic rats and patients of pulmonary arterial hypertension (PAH). Here we further examine the involvement of TRPC and SOCE in PH with a widely used rat model of monocrotaline (MCT)-induced PAH. Rats developed severe PAH, right ventricular hypertrophy, and significant increase in store-operated TRPC1 and TRPC4 mRNA and protein in endothelium-denuded pulmonary arteries (PAs) 3 wk after MCT injection. Contraction of PA and Ca(2+) influx in PASMC evoked by store depletion using cyclopiazonic acid (CPA) were enhanced dramatically, consistent with augmented SOCE in the MCT-treated group. The time course of increase in CPA-induced contraction corresponded to that of TRPC1 expression. Endothelin-1 (ET-1)-induced vasoconstriction was also potentiated in PAs of MCT-treated rats. The response was partially inhibited by SOCE blockers, including Gd(3+), La(3+), and SKF-96365, as well as the general TRPC inhibitor BTP-2, suggesting that TRPC-dependent SOCE was involved. Moreover, the ET-1-induced contraction and Ca(2+) response in the MCT group were more susceptible to the inhibition caused by the various SOCE blockers. Hence, our study shows that MCT-induced PAH is associated with increased TRPC expression and SOCE, which are involved in the enhanced vascular reactivity to ET-1, and support the hypothesis that TRPC-dependent SOCE is an important pathway for the development of PH.  相似文献   

5.
6.
Elevated levels of serum glucose have deleterious effects on the walls of blood vessels, leading to microangiopathy. Such a destructive process involves also pulmonary circulation, where it is referred to as diabetic pulmonary microangiopathy. This hypothesis has been confirmed in histopathologic examinations of pulmonary parenchyma, as well as in pulmonary function tests. However, so far there have been no clinical implications of these findings. Another phenomenon requiring further discussion involves diabetics with clinically silent respiratory dysfunction. That may result from significant vascular and ventilation reserves that compensate for partial loss of pulmonary parenchyma in the course of diabetes. In this review, we present an overview of the available publications on pulmonary microangiopathy and its influence on the functioning of the respiratory system.  相似文献   

7.
8.
9.
10.
11.
12.
Found in inflammatory zone (FIZZ) 2, also known as resistin-like molecule (RELM)-β, belongs to a novel cysteine-rich secreted protein family named FIZZ/RELM. Its function is unclear, but a closely related family member, FIZZ1, has profibrotic activities. The human ortholog of rodent FIZZ1 has not been identified, but human FIZZ2 has significant sequence homology to both rodent FIZZ2 (59%) and FIZZ1 (50%). Given the greater homology to rodent FIZZ2, analyzing the role of FIZZ2 in a rodent model of bleomycin-induced pulmonary fibrosis would be of greater potential relevance to human fibrotic lung disease. The results showed that FIZZ2 was highly induced in lungs of rodents with bleomycin-induced pulmonary fibrosis and of human patients with idiopathic pulmonary fibrosis. FIZZ2 expression was induced in rodent and human lung epithelial cells by Th2 cytokines, which was mediated via STAT6 signaling. The FIZZ2 induction in murine lungs was found to be essential for pulmonary fibrosis, as FIZZ2 deficiency significantly suppressed pulmonary fibrosis and associated enhanced extracellular matrix and cytokine gene expression. In vitro analysis indicated that FIZZ2 could stimulate type I collagen and α-smooth muscle actin expression in lung fibroblasts. Furthermore, FIZZ2 was shown to have chemoattractant activity for bone marrow (BM) cells, especially BM-derived CD11c(+) dendritic cells. Notably, lung recruitment of BM-derived cells was impaired in FIZZ2 knockout mice. These findings suggest that FIZZ2 is a Th2-associated multifunctional mediator with potentially important roles in the pathogenesis of fibrotic lung diseases.  相似文献   

13.
There have been many encouraging studies on medical treatment of pulmonary hydatid disease due to Echinococcus granulosus infection. Our aims were to demonstrate the safety and efficacy of medical treatment in pulmonary hydatid disease and to describe a pediatric population who would benefit from medical treatment, especially in respect to the diameter of the hydatid cyst. All patients were treated with mebendazole or albendazole. Treatment outcome was defined as cure, improvement or failure. Among 82 patients, 34.1% were cured, 34.1% improved and 31.8% failed. When 102 cysts were individually evaluated, 36.31% were cured, 32.4% improved and 31.3% failed. The cure and the failure rates were statistically insignificant in cysts treated with mebendazole and albendazole; however statistically significantly more cysts were improved with albendazole. The results were statistically insignificant between continuous and cyclic albendazole treatment. The mean size of successfully treated cysts was 5.3+/-3.4 cm, but "failed" for cyst with a mean size of 7.3+/-4.3 cm. There was a positive, weak and statistically significant correlation between the cyst size and treatment results. The major complication was infection. We suggest that selected pediatric patients with uncomplicated pulmonary hydatid cysts sized less than 5 cm should have a trial of medical treatment with a very close follow up.  相似文献   

14.
15.
16.
17.
18.
TNF-α is a proinflammatory cytokine that is involved in numerous pathological processes including chronic obstructive pulmonary disease (COPD). In the present study, we used a transgenic mouse model that overexpresses TNF-α in the lung (Tg(+)) to test the hypothesis that chronic exposure to TNF-α (as seen in COPD) reduces skeletal muscle force production and fatigue resistance, particularly under low Po(2) conditions. At 7-12 mo, body and muscle weight of both extensor digitorum longus (EDL) and soleus were significantly smaller in Tg(+) compared with littermate wild-type (WT) mice; however, the body-to-muscle weight ratio was not different between groups. EDL and soleus muscles were subjected to in vitro fatiguing contractile periods under high (~550 Torr) and low Po(2) (~40 Torr). Although all muscles were less fatigue-resistant during low Po(2) compared with high Po(2), only the soleus fatigued more rapidly in Tg(+) mice (~12%) compared with WT at high Po(2). The maximal tension of EDL was equally reduced in Tg(+) mice (28-34% decrease from WT under both Po(2) conditions); but for soleus this parameter was smaller only under low Po(2) in Tg(+) mice (~31% decrease from WT). The peak rate of relaxation and the peak rate of contraction were both significantly reduced in Tg(+) EDL muscles compared with WT EDL under low Po(2) conditions, but not in soleus. These results demonstrate that TNF-α upregulation in the lung impairs peripheral skeletal muscle function but affects fast- and slow-twitch muscles differentially at high and low Po(2).  相似文献   

19.
epithelial–mesenchymal transition (EMT) has been considered to be involved in organ fibrogenesis. However, there is few direct evidence of this process in the pathophysiology of pulmonary fibrosis in vivo. Therefore, we tried to verify the involvement of this process in the development of pulmonary fibrosis. Since the co-expressions of epithelial and mesenchymal markers are thought to be a marker of EMT, we performed dual-immuunohistochemistry to assess the co-expressions of these proteins in lung tissues from bleomycin-induced pulmonary fibrosis in mice, and from patients with idiopathic pulmonary fibrosis, and nonspecific interstitial pneumonia. Double positive cells for epithelial markers including E-cadherin, T1α, or aquaporin 5, and a mesenchymal markers α-smooth muscle actin or vimentin were not found in bleomycin-induced pulmonary fibrosis in mice. Double positive cells for E-cadherin, ICAM-1, LEA, CD44v9, or SP-A and α-smooth muscle actin or vimentin were not found in lung tissues from normal lung parenchyma, idiopathic pulmonary fibrosis and nonspecific interstitial pneumonia. These results offer at least two possibilities. One is that EMT does not occur in IPF or bleomycin-induced pulmonary fibrosis in mice. Another is that EMT may occur in pulmonary fibrosis but the time during this transition in which cells express detectable levels of epithelial and mesenchymal markers is too small to be detected by double immunohistochemistry.  相似文献   

20.
Pulmonary fibrosis encompasses several respiratory diseases characterized by epithelial cell injury, inflammation and fibrosis. Transforming growth factor (TGF)-β1 is one of the main profibrogenic cytokines involved in the pathogenesis of lung fibrosis. It induces fibroblast differentiation into myofibroblasts, which produce high levels of collagen and concomitantly loss of lung elasticity and reduction of the respiratory function. In the present study, we have investigated the effects of P17 (a TGF-β inhibitor peptide) on IMR-90 lung fibroblast differentiation in vitro, as well as on the inhibition of the development of bleomycin-induced pulmonary fibrosis in mice. It was found that in IMR-90 cells, P17 inhibited TGF-β1-induced expression of connective tissue growth factor and α-smooth muscle actin. In vivo, treatment of mice with P17 2days after bleomycin administration decreased lung fibrosis, areas of myofibroblast-like cells and lymphocyte infiltrate. P17 also reduced mRNA expression of collagen type I, fibronectin and the fibronectin splice isoform EDA in the lung, and increased the expression of IFN-γ mRNA. Finally, therapeutic treatment with P17 in mice with already established fibrosis was able to significantly attenuate the progression of lung fibrosis. These results suggest that P17 may be useful in the treatment of pulmonary fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号