首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laser Raman spectroscopy is used to examine the interactions of intrinsic and extrinsic proteins with the lipid layer structure. The interactions of cytochrome c and cytochrome c oxidase with lipids have been well established by others using a variety of techniques. Cytochrome c is thought to act as an extrinsic membrane protein while cytochrome c oxidase is thought to act as an intrinsic membrane protein. The lipid-cytochrome c and lipid cytochrome c oxidase systems are used to assist in interpreting the spectral changes due to extrinsic and intrinsic protein interactions. The two types of proteins examined produced differential changes in the lipid hydrocarbon C-H stretch Raman modes for both dimyristoyl and dipalmitoyl phosphatidylcholine. The plasma proteins albumin and fibrinogen were also found to differentially affect the lipid hydrocarbon C-H stretch Raman nodes. These proteins appear to interact with lipids in an extrinsic manner different from that of cytochrome c.  相似文献   

2.
Mauro Degli Esposti 《BBA》2002,1553(3):331-340
Pro-apoptotic proteins of the Bcl-2 family are known to act on mitochondria and facilitate the release of cytochrome c, but the biochemical mechanism of this action is unknown. Association with mitochondrial membranes is likely to be important in determining the capacity of releasing cytochrome c. The present work provides new evidence suggesting that some pro-apoptotic proteins like Bid have an intrinsic capacity of binding and exchanging membrane lipids. Detailed analysis indicates a significant sequence similarity between a subset of Bcl-2 family proteins including Bid and Nix and plant lipid transfer proteins. The similar structural signatures could be related to common interactions with membrane lipids. Indeed, isolated Bid shows a lipid transfer activity that is even higher than that of plant lipid transfer proteins. To investigate the possible relevance of these structure-function correlations to the apoptotic action of Bid, cell free assays were established with isolated mitochondria, recombinant Bid and a variety of exogenous lipids. Micromolar concentrations of lysolipids such as lysophosphatidylcholine were found to change the association of Bid with mitochondria and also stimulate the release of cytochrome c promoted by Bid. The changes in mitochondrial association and cytochrome c release were enhanced by the presence of liposomes of lipid composition similar to that of mitochondrial membranes. Thus, a mixture of liposomes, mitochondria and key lysolipids could reproduce the conditions enabling Bid to transfer lipids between donor and acceptor membranes, and also change its reversible association with mitochondria. Bid was also found to enhance the incorporation of a fluorescent lysolipid, but not of a related fatty acid, into mitochondria. On the basis of the results presented here, it is hypothesised that Bid action may depend upon its capacity of exchanging lipids and lysolipids with mitochondrial membranes. The hypothesis is discussed in relation to current models for the integrated action of pro-apoptotic proteins of the Bcl-2 family.  相似文献   

3.
Electron transfer between the water-soluble cytochrome c and the integral membrane protein cytochrome c oxidase (COX) is the terminal reaction in the respiratory chain. The first step in this reaction is the diffusional association of cytochrome c toward COX, and it is still not completely clear whether cytochrome c diffuses in the bulk solution while encountering COX, or whether it prefers to diffuse laterally on the membrane surface. This is a rather crucial question, since in the latter case the association would be strongly dependent on the lipid composition and the presence of additional membrane proteins. We applied Brownian dynamics simulations to investigate the effect of an atomistically modeled dipalmitoyl phosphatidylcholine membrane on the association behavior of cytochrome c toward COX from Paracoccus denitrificans. We studied the negatively charged, physiological electron-transfer partner of COX, cytochrome c552, and the positively charged horse-heart cytochrome c. As expected, both cytochrome c species prefer diffusion in bulk solution while associating toward COX embedded in a membrane, where the partial charges of the lipids were switched off, and the corresponding optimal association pathways largely overlap with the association toward fully solvated COX. Remarkably, after switching on the lipid partial charges, both cytochrome c species were strongly attracted by the inhomogeneous charge distribution caused by the zwitterionic lipid headgroups. This effect is particularly enhanced for horse-heart cytochrome c and is stronger at lower ionic strength. We therefore conclude that in the presence of a polar or even a charged membrane, cytochrome c diffuses laterally rather than in three dimensions.  相似文献   

4.
Rapid loss of the electron spin resonance signal from a variety of spin labels is observed when ferricytochrome c or metmyogloblin are combined with lipids. Evidence is presented that this loss of signal can be used as a sensitive method to study lipid oxidation catalyzed by heme proteins. Under aerobic conditions and with lipids which bind the heme protein, the kinetics of the oxidation process as observed by the spin label method are identical to the kinetics previously observed by measurements of oxygen uptake. Use of pre-oxidized lipids under anaerobic conditions indicates that cytochrome c reacts with a product of lipid oxidation. Kinetic studies of the anaerobic reaction indicate that cytochrome c reacts rapidly with lipid oxidation products in membrane areas far larger than the area occupied by cytochrome c, implying rapid transport of reactive species within the membrane interior in directions parallel to the membrane surface. Under anaerobic conditions, reaction of cytochrome c with lipid oxidation products appears to produce a relatively long lived (hours) species located in the hydrophobic portion of the membrane, which is capable of subsequent reaction with lipid-soluble spin labels.  相似文献   

5.
Abstract

4-Hydroxynonenal (HNE) is a highly toxic product of lipid peroxidation (LPO). Its role in the inhibition of cytochrome c oxidase activity and oxidative modifications of mitochondrial lipids and proteins were investigated. The exposure of mitochondria isolated from rat heart to HNE resulted in a time- and concentration-dependent inhibition of cytochrome c oxidase activity with an IC50 value of 8.3 ± 1.0 μM. Immunoprecipitation-Western blot analysis showed the formation of HNE adducts with cytochrome c oxidase subunit I. The loss of cytochrome c oxidase activity was also accompanied by reduced thiol group content and increased HNE-lysine fluorescence. Furthermore, there was a marked increase in conjugated diene formation indicating LPO induction by HNE. Fluorescence measurements revealed the formation of bityrosines and increased surface hydrophobicity of HNE-treated mitochondrial membranes. Superoxide dismutase + catalase and the HO? radical scavenger mannitol partially prevented inhibition of cytochrome c oxidase activity and formation of bityrosines. These findings suggest that HNE induces formation of reactive oxygen species and its damaging effect on mitochondria involves both formation of HNE–protein adducts and oxidation of membrane lipids and proteins by free radicals.  相似文献   

6.
One of the functions of cytochrome c in living cells is the initiation of apoptosis by catalyzing lipid peroxidation in the inner mitochondrial membrane, which involves cytochrome c bound with acidic lipids, especially cardiolipin. In this paper the results of studies of cytochrome c-cardiolipin complex structure carried out by different authors mainly on unilamellar cardiolipin-containing phospholipid liposomes are critically analyzed. The principal conclusion from the published papers is that cytochrome c-cardiolipin complex is formed by attachment of a cytochrome c molecule to the membrane surface via electrostatic interactions and the subsequent penetration of one of the fatty-acid cardiolipin chains into the protein globule, this being associated with hydrophobic interactions that break the >Fe…S(Met80) coordinate bond and giving rise to appearance of cytochrome c peroxidase activity. Nevertheless, according to data obtained in our laboratory, cytochrome c and cardiolipin form spherical nanoparticles in which protein is surrounded by a monolayer of cardiolipin molecules. Under the action of cooperative forces, the protein in the globule expands greatly in volume, its conformation is modified, and the protein becomes a peroxidase. In extended membranes, such as giant monolayer liposomes, and very likely in biological membranes, the formation of nanospheres of cytochrome c-cardiolipin complex causes fusion of membrane sections and dramatic chaotization of the whole membrane structure. The subsequent disintegration of the outer mitochondrial membrane is accompanied by cytochrome c release from the mitochondria and triggering of a cascade of programmed cell death reactions.  相似文献   

7.
Lipid protein interactions in biological membranes differ markedly depending on whether the protein is intrinsic or extrinsic. These interactions are studied using lipid spin labels diffused into model systems consisting of phospholipid bilayers and a specific protein. Recently, an intrinsic protein complex, cytochrome oxidase, was examined and the data suggest there is a boundary layer of immobilized lipid between the hydrophobic protein surfaces and adjacent fluid bilayer regions. In the present study, a typical extrinsic protein, cytochrome c, was complexed with a cardiolipin/lecithin (1:4 by weight) mixture. The phospholipids in the presence and absence of cytochrome c exhibit typical bilayer behavior as jedged by four spin-labeling criteria: fluidity gradient, spectral anisotropy of oriented bilayers, response to hydration and the polarity profile. Any effects of cytochrome c on the ESR spectra of lipid spin labels are small, in contrast to the effects of intrinsic proteins. These data are consistent with electrostatic binding of cytochrome c to the charged groups of the phospholipids, and indicate that the presence of extrinsic proteins will not interfere with measurements of boundary lipid in intact biological membranes.  相似文献   

8.
R.H. Tiesjema  B.F. Van Gelder 《BBA》1974,347(2):202-214
1. CD spectra of cytochrome c oxidase have been determined both in the absence and presence of the extrinsic ligands CO, NO, cyanide and azide.2. CO and NO affect the CD spectrum of cytochrome c oxidase in a similar way.3. Cyanide and azide also affect the CD spectrum of cytochrome c oxidase in a similar way, but distinctly different from CO and NO.4. From the CD spectra of the oxidized and reduced enzyme, in the presence and absence of extrinsic ligands, CD difference spectra (reduced minus oxidized) are calculated for the so-called cytochrome a and cytochrome a3 moieties of the enzyme.5. These spectra are largely dependent on the extrinsic ligand used. It is therefore concluded that these spectra do not represent independent cytochrome a and cytochrome a3 difference spectra, but that heme-heme interactions occur within the cytochrome c oxidase molecule, in such a way that binding of a ligand to one of the heme a groups of cytochrome c oxidase affects the spectral properties of the other heme a group.6. As a consequence, ligand-binding studies cannot give information as to the pre-existence of separate cytochrome a and cytochrome a3 moieties in the absence of extrinsic ligands.  相似文献   

9.
Lysozyme, cytochrome c, poly(l-lysine), myelin basic protein and ribonuclease were used to form multilayer dispersions containing about 50% protein (by weight) with bovine brain diacyl phosphatidylserine (PS). 31P nuclear magnetic resonance shift anisotropies, spin-spin (T2) and spin-lattice (T1) relaxation times for the lipid headgroup phosphorus were measured at 36.44 MHz. At pH 7.5, lysozyme, cytochrome c, poly(l-lysine) and ribonuclease were shown to increase the chemical shift anisotropy of PS by between 12–20%. Myelin basic protein altered the shape of the phosphate resonance, suggesting the presence of two lipid components, one of which had a modified headgroup conformation. The presence of cytochrome c led to the formation of a narrow spike at the isotropic shift position of the spectrum. Of the various proteins or peptides we have studied, only poly(l-lysine) and cytochrome c had any effect on the T1 of PS (1050 ms). Both caused a 20–30% decrease in T1 of the lamellar-phase phosphate peak. The narrow peak in the presence of cytochrome c had a very short T1 of 156 ms. The possibility is considered that the cytochrome Fe3+ contributes to the phosphate relaxation in this case. The effect of all proteins on the T2 of the phosphorus resonance was to cause an increase from the value for pure PS (1.6 ms) to between 2 and 5 ms. The results obtained with proteins are compared with the effects of small ions and intrinsic membrane proteins on the order and motion of the headgroups of lipids in bilayers.  相似文献   

10.
Yu Liu 《BBA》2007,1767(1):45-55
Formamide is a slow-onset inhibitor of mitochondrial cytochrome c oxidase that is proposed to act by blocking water movement through the protein. In the presence of formamide the redox level of mitochondrial cytochrome c oxidase evolves over the steady state as the apparent electron transfer rate from cytochrome a to cytochrome a3 slows. At maximal inhibition cytochrome a and cytochrome c are fully reduced, whereas cytochrome a3 and CuB remain fully oxidized consistent with the idea that formamide interferes with electron transfer between cytochrome a and the oxygen reaction site. However, transient kinetic studies show that intrinsic rates of electron transfer are unchanged in the formamide-inhibited enzyme. Formamide inhibition is demonstrated for another member of the heme-oxidase family, cytochrome c oxidase from Bacillus subtilis, but the onset of inhibition is much quicker than for mitochondrial oxidase. If formamide inhibition arises from a steric blockade of water exchange during catalysis then water exchange in the smaller bacterial oxidase is more open. Subunit III removal from the mitochondrial oxidase hastens the onset of formamide inhibition suggesting a role for subunit III in controlling water exchange during the cytochrome c oxidase reaction.  相似文献   

11.
We have investigated the structure of cytochrome c oxidase vesicle crystals by analysis at 20 Å resolution of electron micrographs of negatively stained specimens. The map clearly shows the shape of the part of the cytochrome c oxidase molecule which protrudes from the lipid bilayer. On the side of the membrane corresponding to the cytoplasmic face of the mitochondrial inner membrane, the molecule projects over 50 Å into solution. About half of the mass of the protein is in this domain, which contains the cytochrome c binding site. On the side of the membrane corresponding to the matrix face, no features are observed, which at this resolution means the protein protrudes less than 20 Å. In vesicle crystals, and probably in the mitochondrion, cytochrome c oxidase monomers are closely paired as dimers, with a clear cleft showing the boundary between monomers.  相似文献   

12.
A variety of proteins have been studied for their ability to interact and alter the thermotropic properties of phospholipid bilayer membranes as detected by differential scanning calorimeter. The proteins studied included: basic myelin protein (A1 protein), cytochrome c, major apoprotein of myelin proteolipid (N-2 apoprotein), gramicidin A, polylysine, ribonuclease and hemoglobin. The lipids used for the interactions were dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol. The interactions were grouped in three categories each having very different effects on the phospholipid phase transition from solid to liquid crystalline. The calorimetric studies were also correlated with data from vesicle permeability and monolayer expansion.Ribonuclease and polylysine which exemplify group 1 interactions, show strong dependence on electrostatic binding. Their effects on lipid bilayers include an increase in the enthalpy of transition (ΔH) accompanied by either an increase or no change in the temperature of transition (Tc). In addition, they show minimal effects on vesicle permeability and monolayer expansion. It was concluded that these interactions represent simple surface binding of the protein on the lipid bilayer without penetration into the hydrocarbon region.Cytochrome c and Al protein, which exemplify group 2 interactions, also show a strong dependence on the presence of net negative charges on the lipid bilayers for their binding. In contrast to the first group, however, they induce a drastic decrease in both Tc and ΔH of the lipid phase transition. Furthermore, they induce a large increase in the permeability of vesicles and a substantial expansion in area of closely packed monolayers at the air-water interface. It was concluded that group 2 interactions represent surface binding followed by partial penetration and/or deformation of the bilayer.Group 3 interactions, shown by proteolipid apoprotein and gramicidin A, were primarily non-polar in character, not requiring electrostatic charges and not inhibited by salt and pH changes. They had no appreciable effect on the Tc but did induce a linear decrease in the magnitude of the ΔH, proportional to the percentage of protein by weight. Membranes containing 50% proteolipid protein still exhibited a thermotropic transition with a ΔH one half that of the pure lipid, and only a small diminution of the size of the cooperative unit. It was concluded that in this case the protein was embedded within the bilayer, associating with a limited number of molecules via non-polar interactions, while the rest of the bilayer was largely unperturbed.  相似文献   

13.
Bovine heart cytochrome c oxidase and rat liver mitochondria were crosslinked in the presence and absence of cytochrome c. Biimidate treatment of purified cytochrome oxidase, which results in the crosslinkage of all of the oxidase protomers except subunit I when ? 20% of the free amines are modified, inhibits ascorbate-N,N,N′,N′-tetramethyl-p-phenylene diamine oxidase activity. Intermolecular crosslinking of cytochrome oxidase molecules, which results in the formation of large enzyme aggregates displaying rotational correlation times ? 1 ms, does not affect oxidase activity. Crosslinking of mitochondria covalently binds the cytochrome bc1 and aa3 complexes to cytochrome c, and inhibits steady-state oxidase activity. Addition of cytochrome c to purified cytochrome oxidase or to cytochrome c-depleted mitoplasts increases this inhibition slightly. Cytochrome c oligomers act as competitive inhibitors of native cytochrome c; however, crosslinking of cytochrome c to cytochrome c-depleted mitoplasts or purified cytochrome oxidase results in a catalytically inactive complex. These experiments indicate that cytochrome c oxidase subunit interactions are required for activity, and that cytochrome c mobility may be essential for electron transport between cytochrome c reductase and oxidase.  相似文献   

14.
Bernhard Kadenbach 《BBA》2003,1604(2):77-94
This article reviews parameters of extrinsic uncoupling of oxidative phosphorylation (OxPhos) in mitochondria, based on induction of a proton leak across the inner membrane. The effects of classical uncouplers, fatty acids, uncoupling proteins (UCP1-UCP5) and thyroid hormones on the efficiency of OxPhos are described. Furthermore, the present knowledge on intrinsic uncoupling of cytochrome c oxidase (decrease of H+/e stoichiometry=slip) is reviewed. Among the three proton pumps of the respiratory chain of mitochondria and bacteria, only cytochrome c oxidase is known to exhibit a slip of proton pumping. Intrinsic uncoupling was shown after chemical modification, by site-directed mutagenesis of the bacterial enzyme, at high membrane potential ΔΨ, and in a tissue-specific manner to increase thermogenesis in heart and skeletal muscle by high ATP/ADP ratios, and in non-skeletal muscle tissues by palmitate. In addition, two mechanisms of respiratory control are described. The first occurs through the membrane potential ΔΨ and maintains high ΔΨ values (150-200 mV). The second occurs only in mitochondria, is suggested to keep ΔΨ at low levels (100-150 mV) through the potential dependence of the ATP synthase and the allosteric ATP inhibition of cytochrome c oxidase at high ATP/ADP ratios, and is reversibly switched on by cAMP-dependent phosphorylation. Finally, the regulation of ΔΨ and the production of reactive oxygen species (ROS) in mitochondria at high ΔΨ values (150-200 mV) are discussed.  相似文献   

15.
The cellular process of intrinsic apoptosis relies on the peroxidation of mitochondrial lipids as a critical molecular signal. Lipid peroxidation is connected to increases in mitochondrial reactive oxygen species, but there is also a required role for mitochondrial cytochrome c (cyt-c). In apoptotic mitochondria, cyt-c gains a new function as a lipid peroxidase that catalyzes the reactive oxygen species-mediated chemical modification of the mitochondrial lipid cardiolipin (CL). This peroxidase activity is caused by a conformational change in the protein, resulting from interactions between cyt-c and CL. The nature of the conformational change and how it causes this gain-of-function remain uncertain. Via a combination of functional, structural, and biophysical experiments we investigate the structure and peroxidase activity of cyt-c in its membrane-bound state. We reconstituted cyt-c with CL-containing lipid vesicles, and determined the increase in peroxidase activity resulting from membrane binding. We combined these assays of CL-induced proapoptotic activity with structural and dynamic studies of the membrane-bound protein via solid-state NMR and optical spectroscopy. Multidimensional magic angle spinning (MAS) solid-state NMR of uniformly 13C,15N-labeled protein was used to detect site-specific conformational changes in oxidized and reduced horse heart cyt-c bound to CL-containing lipid bilayers. MAS NMR and Fourier transform infrared measurements show that the peripherally membrane-bound cyt-c experiences significant dynamics, but also retains most or all of its secondary structure. Moreover, in two-dimensional and three-dimensional MAS NMR spectra the CL-bound cyt-c displays a spectral resolution, and thus structural homogeneity, that is inconsistent with extensive membrane-induced unfolding. Cyt-c is found to interact primarily with the membrane interface, without significantly disrupting the lipid bilayer. Thus, membrane binding results in cyt-c gaining the increased peroxidase activity that represents its pivotal proapoptotic function, but we do not observe evidence for large-scale unfolding or penetration into the membrane core.  相似文献   

16.
Freya A. Bundschuh  Klaus Hoffmeier 《BBA》2008,1777(10):1336-1343
Biogenesis of cytochrome c oxidase (COX) relies on a large number of assembly proteins, one of them being Surf1. In humans, the loss of Surf1 function is associated with Leigh syndrome, a fatal neurodegenerative disorder. In the soil bacterium Paracoccus denitrificans, homologous genes specifying Surf1 have been identified and located in two operons of terminal oxidases: surf1q is the last gene of the qox operon (coding for a ba3-type ubiquinol oxidase), and surf1c is found at the end of the cta operon (encoding subunits of the aa3-type cytochrome c oxidase). We introduced chromosomal single and double deletions for both surf1 genes, leading to significantly reduced oxidase activities in membrane. Our experiments on P. denitrificans surf1 single deletion strains show that both Surf1c and Surf1q are functional and act independently for the aa3-type cytochrome c oxidase and the ba3-type quinol oxidase, respectively. This is the first direct experimental evidence for the involvement of a Surf1 protein in the assembly of a quinol oxidase. Analyzing the heme content of purified cytochrome c oxidase, we conclude that Surf1, though not indispensable for oxidase assembly, is involved in an early step of cofactor insertion into subunit I.  相似文献   

17.
Raman studies of conformational changes in model membrane systems   总被引:2,自引:0,他引:2  
Laser Raman spectra of concentrated samples of phosphatidyl choline and phosphatidyl ethanolamine were taken at approximately 10° intervals over a temperature range of 90°–19°C. The spectral region from 30 to 3300 cm?1 was investigated. Several new spectral features were discovered which are correlated to phospholipid liquid crystalline structure. It is shown that 1) frequency shifts occur in the PO2? symmetric stretch band which suggest a change in exposure of the PO2 group to the solvent upon melting, 2) the frequency of the translational hydrocarbon mode around 150 cm?1 appears to indicate the degree to which the hydrocarbon chain is extended, 3) the methyl and methylene stretch bands at 2890 and 2850 cm?1 very clearly demonstrate hydrocarbon chain melting, and 4) the 720 cm?1 band, previously assigned to the symmetric OPO diester stretch, appears to be due instead to the symmetric CN stretch of choline.  相似文献   

18.
Bioelectronic coupling of multi-redox-site membrane proteins was accomplished with cytochrome c oxidase (CcO) as an example. A biomimetic membrane system was used for the oriented immobilization of the CcO oxidase on a metal electrode. When the protein is immobilized with the CcO binding side directed toward the electrode and reconstituted in situ into a lipid bilayer, it is addressable by direct electron transfer to the redox centers. Electron transfer to the enzyme via the spacer, referred to as electronic wiring, shows an exceptionally high rate constant. This allows a kinetic analysis of all four consecutive electron transfer steps within the enzyme to be carried out. Electron transfer followed by rapid scan cyclic voltametry in combination with surface-enhanced resonance Raman spectroscopy provides mechanistic and structural information about the heme centers. Probing the enzyme under turnover conditions showed mechanistic insights into proton translocation coupled to electron transfer. This bioelectronic approach opens a new field of activity to investigate complex processes in a wide variety of membrane proteins.  相似文献   

19.
Biological processes in living cells are compartmentalized between lipid membranes. Integral membrane proteins often confer specific functions to these compartments and as such have a critical role in cellular metabolism and function. Cytochrome c oxidase is a macromolecular metalloprotein complex essential for the respiratory function of the cell. Elucidating the mechanisms of assembly of cytochrome c oxidase within the inner mitochondrial membrane represents a unique challenge for understanding metalloprotein biosynthesis. Elegant genetic experiments in yeast have defined several proteins required for copper delivery to cytochrome c oxidase. While the precise role of each of these proteins in copper incorporation remains unclear, recent studies have revealed that inherited mutations in two of these proteins can result in severe pathology in human infants in association with cytochrome c oxidase deficiency. Characterization of the molecular pathogenesis of these disorders offers new insights into the mechanisms of cellular copper metabolism and the role of these cytochrome c oxidase copper chaperones in human disease.  相似文献   

20.
Reconstituted membrane systems of synthetic phosphatidylcholines and the integral membrane enzyme cytochrome c oxidase were prepared in order to conduct nuclear magnetic resonance studies of lipid-protein interactions. These lipids, labeled with a geminate difluoro group on the 1-position hydrocarbon chain, were combined with the enzyme to give active lipid-protein particles with a well-defined ratio of lipid to protein. The fluorine magnetic resonance spectra of a series of preparations with different lipid/protein ratios suggest that the hydrocarbon chain mobility of the lipid is substantially reduced with increasing amounts of protein. The fluorine spectra of a single lipid-protein preparation show a dramatic increase in the number of the more mobile lipid chains with increasing temperature. The results suggest that the enzyme orders the lipid bilayer well beyond those lipids in direct contact with the protein surface, and that the amount of the lipid restricted by the enzyme is dependent upon temperature. The exchange of lipid between the restricted and the more mobile lipid environments most probably does not occur over the time scale measurable by the magnetic resonance techniques, about 10(-3) s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号