首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dark Ionic Flux and the Effects of Light in Isolated Rod Outer Segments   总被引:23,自引:9,他引:14  
We have determined the permeability properties of freshly isolated frog rod outer segments by observing their osmotic behavior in a simple continuous flow apparatus. Outer segments obtained by gently shaking a retina are sensitive but nonideal osmometers; a small restoring force prevents them from shrinking or swelling quite as much as expected for ideal behavior. We find that Na+, Cl-, No3-, glycerol, acetate, and ammonium rapidly enter the outer segment, but K+, SO4=, and melezitose appear impermeable. The Na flux is rectified; for concentration gradients in the physiological range, 2 x 109 Na+ ions/sec enter the outer segment, but we detect no efflux of Na+, under our conditions, when the gradient is reversed. Illumination of the outer segment produces a specific increase in the resistance to Na+ influx, but has no effect on the flux of other solutes. This light-dependent Na+ resistance increases linearly with the number of rhodopsin molecules bleached. We find that excitation of a single rhodopsin molecule produces a transient (~1 sec) "photoresistance" which reduces the Na+ influx by about 1%, thus preventing the entry of about 107 Na+ ions. At considerably higher light levels, a stable afterimage resistance appears which reduces the Na influx by one-half when 106 rhodopsin molecules are bleached per rod. We have incorporated these findings into a model for the electrophysiological characteristics of the receptor.  相似文献   

2.
To test the “Ca2+ hypothesis of visual excitation”, we measured the total Ca2+ content of freshly isolated bullforg rod outer segments, and have compared the total Ca2+ contents of fully dark-adapted discs with discs exposed to small amounts of light. Discs were prepared by hypotonically lysing outer segments under conditions expected to remove Ca2+ from the cytoplasm but not from the discs. Ca2+ was assayed by atomic absorption spectrophotometry. We find that both discs and outer segments contain a total of about 0.1–0.2 Ca2+ per rhodopsin molecule. Thus, each frog disc retains about 2 · 105Ca2+. If most of this Ca2+ were free in the aqueous space inside the intact discs, the Ca2+ activity would be a few mM. Since the light-regulated Na+ channels have been reported to be highly sensitive to cytoplasmic Ca2+, this store of Ca2+ in the discs is far more than required by the Ca2+ hypothesis. However, despite several variations in experimental conditions, we did not observe any light-activated release of Ca2+ from discs in response to stimuli that photoactivated a small fraction of the rhodopsin, as required by the Ca2+ hypothesis. In the 26 experiments reported here we could have detected a release as small as 20–30% of the Ca2+ content of the disc.  相似文献   

3.
A fast light-induced light-scattering transient, previously found in rod outer segment suspension, the so-called P-signal (Hofmann, K.P., Uhl, R., Hoffmann, W. and Kreutz, W. (1976) Biophys. Struct. Mechanism 2, 61–77), is described in more detail.The effect has the same action spectrum as rhodopsin bleaching. It is not regenerated with 11-cis retinal.The response is not linear with light-intensity for flashes which bleach more than 2.0% of rhodopsin; it saturates at an intensity corresponding to 15% rhodopsin bleaching.The wavelength- and scattering angle dependence lead to the conclusion that the change in light-scattering reflects a shrinkage of an osmotic compartment of the rod outer segment.The only compartment which we found to be intact in our rod outer segment preparations was the disc or rod sac; therefore, the effect must be attributed to a light-induced shrinkage of the rhodopsin-containing disc organelles.The overall effect (15% of rhodopsin is bleached) is in the range of 0.5–1.5% of the original volume.A light-induced passive cation-efflux from the disc, e.g. of Ca2+, can be ruled out as a possible molecular origin of the disc-shrinkage in our preparations.  相似文献   

4.
32P-rhodopsin was partially separated by isoelectric focusing into several fractions of different phosphorylation extent. It was found that the incorporated phosphate is not uniformly distributed in a population of rhodopsin molecules. In a preparation with an average phosphorylation extent of 2.4 moles of phosphate per mole of rhodopsin, most of the 32P-phosphate was found in fractions where 4–5 phosphates are bound per rhodopsin, whereas a large fraction of the total rhodopsin was not phosphorylated at all. The maximum number of phosphate binding sites in rhodopsin appears to be at least five.Abbreviations used P/Rh moles of phosphate per mole of rhodopsin - ROS rod outer segments Presented in part at the EMBO workshop on Transduction Mechanism of Photoreceptors, held in Jülich, Germany, on 4–8 October, 1976  相似文献   

5.
《Molecular membrane biology》2013,30(1-2):107-130
Reactions of the sulfhydryl groups of bovine rhodopsin in rod outer segment membranes have been investigated using 4,4′-dithiopyridine. This reagent is uncharged at neutral pH and rapidly equilibrates across phospholipid bilayers. Membrane-bound rhodopsin has two kinetically distinguishable sulfhydryl groups reactive to the reagent, this stoichiometry being unchanged by bleaching provided the sulfhydryl reactions themselves are carried out in the dark. The rates of the reactions, however, are substantially increased by bleaching. Irradiation of bleached membranes, either with white light or wavelengths in the neighborhood of 475 nm, results in an increase in the number of reactive sulfhydryls relative to that found for bleached membranes in the dark. A component of the light-driven reaction is dependent on the Ca2+ content of the medium.  相似文献   

6.
Light detection by vertebrate rod photoreceptor outer segments results in the destruction of the visual pigment, rhodopsin, as its retinyl moiety is photoisomerized from 11-cis to all-trans. The regeneration of rhodopsin is necessary for vision and begins with the release of the all-trans retinal and its reduction to all-trans retinol. Retinol is then transported out of the rod outer segment for further processing. We used fluorescence imaging to monitor retinol fluorescence and quantify the kinetics of its formation and clearance after rhodopsin bleaching in the outer segments of living isolated frog (Rana pipiens) rod photoreceptors. We independently measured the release of all-trans retinal from bleached rhodopsin in frog rod outer segment membranes and the rate of all-trans retinol removal by the lipophilic carriers interphotoreceptor retinoid binding protein (IRBP) and serum albumin. We find that the kinetics of all-trans retinol formation in frog rod outer segments after rhodopsin bleaching are to a good first approximation determined by the kinetics of all-trans retinal release from the bleached pigment. For the physiological concentrations of carriers, the rate of retinol removal from the outer segment is determined by IRBP concentration, whereas the effect of serum albumin is negligible. The results indicate the presence of a specific interaction between IRBP and the rod outer segment, probably mediated by a receptor. The effect of different concentrations of IRBP on the rate of retinol removal shows no cooperativity and has an EC50 of 40 micromol/L.  相似文献   

7.
8.
Suspensions of isolated rod outer segments are shown to have a high calcium content of up to 11 moles calcium per mole rhodopsin. Osmotic lysis of the outer segments demonstrates the presence of two calcium fractions, a soluble one and a particulate one. The particulate fraction apparently coincides with the rod disks or with disk fragments. Illumination of intact rod outer segments in calcium-free ATP-containing Ringer solution has no measurable effect upon their total caclium content, but causes a significant shift of calcium from the particulate to the soluble fraction. This light effect is retained in lysed outer segments resuspended in calcium-free ATP-containing Ringer. These results support a function of calcium as a transmitter in light transduction in rod outer segments.  相似文献   

9.
A collagenolytic enzyme specific for native collagen and gelatin was isolated from Pseudomonas marinoglutinosa by DEAE-cellulose column chromatography, Sephadex G–150 gel filtration and by disc electrophoresis on polyacrylamide gel.

The molecular weight of the enzyme was approximately 74,000 and its isoelectric point was found to be around 4.5. The optimum pH and temperature for Z–GPLGP hydrolysis were around 7.6 and 38°C, respectively. The enzyme was rather stable up to 50°C and in the range between pH 5.0 and 10.0, and was stabilized by Ca2+ to some extent. Some chelating agents and metal ions such as Hg2+, Pb2+, Zn2+, Ni2+ and Fe2+ inactivated the enzyme, but diisopropyl phosphofluoridate, sulfhydryl agents and some trypsin inhibitors did not affect the activity.

The EDTA-inactivated enzyme was restored its activity by added Ca-salt to almost completely and very slightly by Co-, Mn- and Sr-salt.

Metal analysis showed the enzyme contained 1 g atom of zinc and 4 g atoms of calcium per mole.  相似文献   

10.
Summary The permeability properties of the plasma membrane of intact rod outer segments purified from bovine retinas (ROS) were studied with the aid of the optical probe neutral red as described in the companion paper. The following observations were made: (1) Electrical shunting of ROS membranes greatly stimulated Na+ and K+ transport, suggesting that this transport reflects Na+ and K+ currents, respectively. The dissipation of a Na+ gradient across the plasma membrane occurred with a half-time of 30 sec at 25°C. (2) The Na+ permeability was progressively inhibited when the external Ca2+ concentration was raised from 1 m to 20mm. A similar Ca2+ dependence was observed for H+ and Li+ transport. The Na+ permeability was not affected when the total internal Ca2+ content of ROS was varied between 0.1 mol Ca2+/mol rhodopsin and 7 mol Ca2+/mol rhodopsin, or when the free internal Ca2+ concentration was varied between 0.1 and 50 m. (3) The K+ permeability was progressively stimulated when the external Ca2+ concentration was raised from 0.001 to 1 m, whereas a further increase to 20mm was without effect. A similar Ca2+ dependence was observed for Rb+ and Cs+ transport. (4) At an external Ca2+ concentration in the micromolar range the rate of transport decreased in the order: Na+>K+=H+>Cs+>Li+. (5) Na+ fluxes depended in a sigmoidal way on the external Na+ concentration, suggesting that sodium ions move in pairs. The concentration dependence of uniport Na+ transport and that of Na+-stimulated Ca2+ efflux (exchange or antiport transport) were very similar.  相似文献   

11.
R N Frank  S M Buzney 《Biochemistry》1975,14(23):5110-5117
Partial separation of protein kinase activity from rhodopsin in isolated bovine retinal photoreceptor outer segments was accomplished by mild ultrasonic treatment followed by ultracentrifugation. Residual kinase activity in the rhodopsin-rich sediment was destroyed by chemical denaturation which did not affect the spectral properties of the rhodopsin. The retinal outer segment kinase was found to be specific for rhodopsin, since in these preparations it alone of several bovine protein kinases was capable of phosphorylating rhodopsin in the light. The phosphorylation reaction apparently requires a specific conformation of the rhodopsin molecule since it is abolished by heat denaturation of rhodopsin, and it is greatly reduced or abolished by treatment of the visual pigment protein with potassium alum after the rhodopsin has been "bleached" by light. When kinase and rhodopsin or opsin fractions were prepared from dark-adapted and bleached outer segments and the resultant fractions were mixed in various combinations of bleached and unbleached preparations, the observed pattern of light-activated phosphorylation was consistent only with the interpretation that a conformational change in the rhodopsin molecule in the light exposes a site on the visual pigment protein to the kinase and ATP. These results rule out the possibility of a direct or indirect (rhodopsin-mediated) light activation of the kinase. Finally, phosphorylation of retinal outer segment protein in monochromatic lights of various wavelengths followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that both rhodopsin and the higher molecular weight visual pigment protein reported by several laboratories have the same action spectrum for phosphorylation. This result is consistent with the suggestion that the higher molecular weight species is a rhodopsin dimer.  相似文献   

12.
Affinity chromatography on calmodulin Sepharose showed that transducin, the G protein of bovine retinal rod outer segments, interacts with the Ca2+-calmodulin complex. This may mean that in the dark, rod outer segment calmodulin is largely in the bound state. It was assumed that photoactivation of rods induces a change in the calmodulin concentration in the cytoplasm of rod outer segments and this may be one of the processes leading to light adaptation of the photoreceptor.  相似文献   

13.
cGMP phosphodiesterase extracted from rod outer segments can be activated by GTP in the presence of phospholipid vesicles containing bleached rhodopsin. I have separated the phosphodiesterase from a phosphodiesterase inhibitory protein and a GTPase also present in the crude extracts from rods. The GTPase can be activated by bleached rhodopsin. However, in the absence of the GTPase and inhibitor, the phosphodiesterase was not activated by GTP in the presence of bleached rhodopsin. Recombination with these proteins partially restored the activation by GTP and bleached rhodopsin.  相似文献   

14.
The fraction of proteins capable of binding to photoreceptor membranes in a Ca2+-dependent manner was isolated from bovine rod outer segments. One of these proteins with apparent molecular mass of 32 kD (p32) was purified to homogeneity and identified as annexin IV (endonexin) by MALDI-TOF mass-spectrometry. In immunoblot, annexin IV purified from bovine rod outer segments cross-reacted with antibodies against annexin IV from bovine liver. This is the first detection of annexin IV in vertebrate retina.  相似文献   

15.
The concentration of guanosine 3',5'-cyclic monophosphate (cyclic GMP) has been examined in suspensions of freshly isolated frog rod outer segments using conditions which previously have been shown to maintain the ability of outer segments to perform a light-induced permeability change (presence of calf serum, anti-oxidant, and low calcium concentration). Illumination causes a rapid decrease in cyclic GMP levels which has a half-time approximately 125 ms. With light exposures that bleach less than 100 rhodopsin molecules in each rod outer segment, at least 10(4)-10(5) molecules of cyclic GMP are hydrolyzed for each rhodopsin molecule bleached. Half of the total cyclic GMP in each outer segment, approximately 2 X 10(7) molecules, is contained in the light-sensitive pool. If outer segments are exposed to continuous illumination, using intensities which bleach between 5.0 X 10(1) and 5.0 X 10(4) rhodopsin molecules/outer segment per second, cyclic GMP levels fall to a value characteristic for the intensity used. This suggests that a balance between synthesis and degradation of cyclic GMP is established. This constant level appears to be regulated by the rate of bleaching rhodopsin molecules (by the intensity of illumination), not the absolute number of rhodopsin molecules bleached...  相似文献   

16.
Summary. Calcium ion (Ca2+) uptake was measured in rod outer segments (ROS) isolated from rat retina in the presence of varying concentrations of CaCl2 in the incubation buffer (1.0–2.5 mM). It is known that taurine increases Ca2+ uptake in rat ROS in the presence of ATP and at low concentrations of CaCl2 (Lombardini, 1985a); taurine produces no significant effects when CaCl2 concentrations are increased to 1.0 and 2.5 mM. With the removal of both taurine and ATP, Ca2+ uptake in rat ROS increased significantly in the presence of 2.5 mM CaCl2. Taurine treatment in the absence of ATP was effective in decreasing Ca2+ uptake at the higher levels of CaCl2 (2.0 and 2.5 mM). Similar effects were observed with ATP treatment. The data suggest that taurine and ATP, alone or in combination, limit the capacity of the rat ROS to take up Ca2+ to the extent that a stable uptake level is achieved under conditions of increasing extracellular Ca2+, indicating a protective role for both agents against calcium toxicity. Received January 25, 2000/Accepted January 31, 2000  相似文献   

17.
The permeability of the bleached disk membrane of retinal rod outer segments to univalent and divalent ions is studied by light scattering. The membranes are isolated from frozen dark-adapted bovine retinae, swollen into spherical vesicles in a hypotonic medium and bleached in dilute suspension and their size is determined by elastic and quasi-elastic light scatterings. Various electrolytes are then added to the suspending medium in order to examine their osmotic activity relative to the vesicles deformation characteristics. By following the deformation behavior of the membrane vesicles by elastic light scattering in terms of the oblate ellipsoidal shell model, the osmotic activity of a given electrolyte is qualitatively deduced and thereby the permeability of the membrane to the electrolyte is ranked in reference to a chosen standard, i.e., sucrose. By this method, we show that the permeabilities to Na+, K+, Mg2+ and Ca2+ are all alike, and those to halides (F?, Cl?, Br?, I?), nitrate and phosphates (HPO42?/H2PO4?) are similar. Acetate, however, is about 3-times more permeative, while sulfate is less permeative than the other anions by about the same factor. The viability of our method is checked with use of an ionophore, lasolocid (X-537A), by establishing partial recovery from the osmotic deformation through the suppression of the cation osmotic effect. Ion-induced aggregation and pH-dependent size and shape changes are both found to be insignificant.  相似文献   

18.
Recoverin belongs to the family of intracellular Ca2+-binding proteins containing EF-hand domains, neuronal calcium sensors (NCS). In photoreceptor outer segments, recoverin is involved into the recovery of visual cycle via Ca2+-dependent interaction with disk membranes and inhibition of rhodopsin kinase. The function of a conservative within NCS family Cys residue in the inactive EF-loop 1 remains unclear, but previous study has shown its vulnerability to oxidation under mild oxidizing conditions. To elucidate the influence of oxidation of the conservative Cys39 in recoverin the properties of its C39D mutant, mimicking oxidative conversion of Cys39 into sulfenic, sulfinic or sulfonic acids have been studied using intrinsic fluorescence, circular dichroism, and equilibrium centrifugation methods. The C39D substitution results in essential changes in structural, physico-chemical and physiological properties of the protein: it reduces α-helical content, decreases thermal stability and suppresses protein affinity for photoreceptor membranes. The latter effect precludes proper functioning of the Ca2+-myristoyl switch in recoverin. The revealed significance of oxidation state of Cys39 for maintaining the protein functional status shows that it may serve as redox sensor in vision and suggests an explanation of the available data on localization and light-dependent translocation of recoverin in rod photoreceptors.  相似文献   

19.
Cholesterol-rich membranes or detergent-resistant membranes (DRMs) have recently been isolated from bovine rod outer segments and were shown to contain several signaling proteins such as, for example, transducin and its effector, cGMP-phosphodiesterase PDE6. Here we report the presence of rhodopsin kinase and recoverin in DRMs that were isolated in either light or dark conditions at high and low Ca2+ concentrations. Inhibition of rhodopsin kinase activity by recoverin was more effective in DRMs than in the initial rod outer segment membranes. Furthermore, the Ca2+ sensitivity of rhodopsin kinase inhibition in DRMs was shifted to lower free Ca2+ concentration in comparison with the initial rod outer segment membranes (IC50=0.76 microm in DRMs and 1.91 microm in rod outer segments). We relate this effect to the high cholesterol content of DRMs because manipulating the cholesterol content of rod outer segment membranes by methyl-beta-cyclodextrin yielded a similar shift of the Ca2+-dependent dose-response curve of rhodopsin kinase inhibition. Furthermore, a high cholesterol content in the membranes also increased the ratio of the membrane-bound form of recoverin to its cytoplasmic free form. These data suggest that the Ca2+-dependent feedback loop that involves recoverin is spatially heterogeneous in the rod cell.  相似文献   

20.
Rod cell membranes contain cholesterol-rich detergent-resistant membrane (DRM) rafts, which accumulate visual cascade proteins as well as proteins involved in regulation of phototransduction such as rhodopsin kinase and guanylate cyclases. Caveolin-1 is the major integral component of DRMs, possessing scaffolding and regulatory activities towards various signaling proteins. In this study, photoreceptor Ca2+-binding proteins recoverin, NCS1, GCAP1, and GCAP2, belonging to neuronal calcium sensor (NCS) family, were recognized as novel caveolin-1 interacting partners. All four NCS proteins co-fractionate with caveolin-1 in DRMs, isolated from illuminated bovine rod outer segments. According to pull-down assay, surface plasmon resonance spectroscopy and isothermal titration calorimetry data, they are capable of high-affinity binding to either N-terminal fragment of caveolin-1 (1–101), or its short scaffolding domain (81–101) via a novel structural site. In recoverin this site is localized in C-terminal domain in proximity to the third EF-hand motif and composed of aromatic amino acids conserved among NCS proteins. Remarkably, the binding of NCS proteins to caveolin-1 occurs only in the absence of calcium, which is in agreement with higher accessibility of the caveolin-1 binding site in their Ca2+-free forms. Consistently, the presence of caveolin-1 produces no effect on regulatory activity of Ca2+-saturated recoverin or NCS1 towards rhodopsin kinase, but upregulates GCAP2, which potentiates guanylate cyclase activity being in Ca2+-free conformation. In addition, the interaction with caveolin-1 decreases cooperativity and augments affinity of Ca2 + binding to recoverin apparently by facilitating exposure of its myristoyl group. We suggest that at low calcium NCS proteins are compartmentalized in photoreceptor rafts via binding to caveolin-1, which may enhance their activity or ensure their faster responses on Ca2+-signals thereby maintaining efficient phototransduction recovery and light adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号