首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We used flow cytometry to measure the nuclear DNA content in erythrocytes of 27 salamandrid species. Across these species, diploid genome size varied more than 2 fold (51.3-104.4 pg). According to genome size and geographic distribution, 3 groups of newt species were recognized: West Palearctics with smaller amounts of nuclear DNA; Nearctic, with intermediate values; and East Asiatic, with higher genome sizes. Viviparous West Palearctic salamanders differed from most of the oviparous West Palearctic newts in possessing larger genome sizes. The nuclear DNA content strongly correlates with species range limits. At the same temperature, embryos of salamandrid species with larger genome sizes have a markedly longer developmental time than those with smaller genomes. We present an analysis of the relationships between the amount of nuclear DNA and water temperature at the breeding sites.  相似文献   

2.
3.
Bosco G  Campbell P  Leiva-Neto JT  Markow TA 《Genetics》2007,177(3):1277-1290
The size of eukaryotic genomes can vary by several orders of magnitude, yet genome size does not correlate with the number of genes nor with the size or complexity of the organism. Although "whole"-genome sequences, such as those now available for 12 Drosophila species, provide information about euchromatic DNA content, they cannot give an accurate estimate of genome sizes that include heterochromatin or repetitive DNA content. Moreover, genome sequences typically represent only one strain or isolate of a single species that does not reflect intraspecies variation. To more accurately estimate whole-genome DNA content and compare these estimates to newly assembled genomes, we used flow cytometry to measure the 2C genome values, relative to Drosophila melanogaster. We estimated genome sizes for the 12 sequenced Drosophila species as well as 91 different strains of 38 species of Drosophilidae. Significant differences in intra- and interspecific 2C genome values exist within the Drosophilidae. Furthermore, by measuring polyploid 16C ovarian follicle cell underreplication we estimated the amount of satellite DNA in each of these species. We found a strong correlation between genome size and amount of satellite underreplication. Addition and loss of heterochromatin satellite repeat elements appear to have made major contributions to the large differences in genome size observed in the Drosophilidae.  相似文献   

4.
雨生红球藻混合营养与异养培养研究   总被引:17,自引:0,他引:17  
研究雨生红球藻混合营养生长与异养生长对碳源及碳源浓度的需求,并对两种生长型进行比较。结果表明,乙酸钠较葡萄糖等碳源更能维持红球藻进行混合营养民异养生长。红球藻混合营养型生长与异养型生长的适宜乙酸钠浓度范围分别是0.5 ̄1.0g/L和1 ̄1.5g/L。混合营养型及异养型的平均速率分别是0.72d^-1和0.53d^-1,培养8d的细胞干重分别是0.65g/L和0.32g/L。与光养型(对照)相比,混  相似文献   

5.
Nostoc flagelliforme is a terrestrial cyanobacterium with high economic value. Dissociated cells separated from a natural colony of N. flagelliforme were cultivated for 7 days under either phototrophic, mixotrophic or heterotrophic culture conditions. The highest biomass, 1.67 g L−1 cell concentration, was obtained under mixotrophic culture, representing 4.98 and 2.28 times the biomass obtained in phototrophic and heterotrophic cultures, respectively. The biomass in mixotrophic culture was not the sum as that in photoautotrophic and heterotrophic cultures. During the first 4 days of culture, the cell concentration in mixotrophic culture was lower than the sum of those in photoautotrophic and heterotrophic cultures. However, from the 5th day, the cell concentration in mixotrophic culture surpassed the sum of those obtained from the other two trophic modes. Although the inhibitor of photosynthetic electron transport DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] efficiently inhibited autotrophic growth of N. flagelliforme cells, under mixotrophic culture they could grow by using glucose. The addition of glucose changed the response of N.flagelliforme cells to light. The maximal photosynthetic rate, dark respiration rate and light compensation point in mixotrophic culture were higher than those in photoautotrophic cultures. These results suggest that photoautotrophic (photosynthesis) and heterotrophic (oxidative metabolism of glucose) growth interact in mixotrophic growth of N. flagelliforme cells.  相似文献   

6.
Genic DNA functions are commonplace: coding for proteins and specifying non-messenger RNA structure. Yet most DNA in the biosphere is non-genic, existing in nuclei as non-coding or secondary DNA. Why so much secondary DNA exists and why its amount per genome varies over orders of magnitude (correlating positively with cell volume) are central biological problems. A novel perspective on secondary DNA function comes from natural eukaryote eukaryote chimaeras (cryptomonads and chlorarachneans) where two phylogenetically distinct nuclei have coevolved within one cell for hundreds of millions of years. By comparing cryptomonad species differing 13-fold in cell volume, we show that nuclear and nucleomorph genome sizes obey fundamentally different scaling laws. Following a more than 125-fold reduction in DNA content, nucleomorph genomes exhibit little variation in size. Furthermore, the present lack of significant amounts of nucleomorph secondary DNA confirms that selection can readily eliminate functionless nuclear DNA, refuting 'selfish' and 'junk' theories of secondary DNA. Cryptomonad nuclear DNA content varied 12-fold: as in other eukaryotes, larger cells have extra DNA, which is almost certainly secondary DNA positively selected for a volume-related function. The skeletal DNA theory explains why nuclear genome size increases with cell volume and, using new evidence on nucleomorph gene functions, why nucleomorph genomes do not.  相似文献   

7.
Genome sizes of six different Wolbachia strains from insect and nematode hosts have been determined by pulsed-field gel electrophoresis of purified DNA both before and after digestion with rare-cutting restriction endonucleases. Enzymes SmaI, ApaI, AscI, and FseI cleaved the studied Wolbachia strains at a small number of sites and were used for the determination of the genome sizes of wMelPop, wMel, and wMelCS (each 1.36 Mb), wRi (1.66 Mb), wBma (1.1 Mb), and wDim (0.95 Mb). The Wolbachia genomes studied were all much smaller than the genomes of free-living bacteria such as Escherichia coli (4.7 Mb), as is typical for obligate intracellular bacteria. There was considerable genome size variability among Wolbachia strains, especially between the more parasitic A group Wolbachia infections of insects and the mutualistic C and D group infections of nematodes. The studies described here found no evidence for extrachromosomal plasmid DNA in any of the strains examined. They also indicated that the Wolbachia genome is circular.  相似文献   

8.
Centromeres are defined by the location of Centromeric Histone H3 (CENP-A/CENH3) which interacts with DNA to define the locations and sizes of functional centromeres. An analysis of 26 maize genomes including 110 fully assembled centromeric regions revealed positive relationships between centromere size and genome size. These effects are independent of variation in the amounts of the major centromeric satellite sequence CentC. We also backcrossed known centromeres into two different lines with larger genomes and observed consistent increases in functional centromere sizes for multiple centromeres. Although changes in centromere size involve changes in bound CENH3, we could not mimic the effect by overexpressing CENH3 by threefold. Literature from other fields demonstrate that changes in genome size affect protein levels, organelle size and cell size. Our data demonstrate that centromere size is among these scalable features, and that multiple limiting factors together contribute to a stable centromere size equilibrium.  相似文献   

9.
One of the intriguing issues concerning the dynamics of plant genomes is the occurrence of intraspecific variation in nuclear DNA amount. The aim of this work was to assess the ranges of intraspecific, interspecific, and intergeneric variation in nuclear DNA content of diploid species of the tribe Triticeae (Poaceae) and to examine the relation between life form or habitat and genome size. Altogether, 438 plants representing 272 lines that belong to 22 species were analyzed. Nuclear DNA content was estimated by flow cytometry. Very small intraspecific variation in DNA amount was found between lines of Triticeae diploid species collected from different habitats or between different morphs. In contrast to the constancy in nuclear DNA amount at the intraspecific level, there are significant differences in genome size between the various diploid species. Within the genus Aegilops, the 1C DNA amount ranged from 4.84 pg in A. caudata to 7.52 pg in A. sharonensis; among genera, the 1C DNA amount ranged from 4.18 pg in Heteranthelium piliferum to 9.45 pg in Secale montanum. No evidence was found for a smaller genome size in annual, self-pollinating species relative to perennial, cross-pollinating ones. Diploids that grow in the southern part of the group's distribution have larger genomes than those growing in other parts of the distribution. The contrast between the low variation at the intraspecific level and the high variation at the interspecific one suggests that changes in genome size originated in close temporal proximity to the speciation event, i.e., before, during, or immediately after it. The possible effects of sudden changes in genome size on speciation processes are discussed.  相似文献   

10.
Nucleotype and cell size in vertebrates: a review   总被引:6,自引:0,他引:6  
The relationships between genome size and various cell morphometric parameters have been assayed in 357 species of Vertebrates, in order to verify the existence and significance of the so-called "nucleotypic effect" in this subphylum. The results obtained clearly manifest a significant relationship between the increase in genome size and that in nuclear volume, nuclear surface, cell volume and cell surface. A precise correlation is also observed between the increase in DNA content and the decrease in the surface/volume ratios of the nucleus and the cell. Other parameters, such as the nucleoplasmic index and DNA concentration, though showing a slight increase with increasing genome size, have values rather homogeneous in each Vertebrate group. These results have allowed some interesting speculations on various problems; for example, the mechanisms through which genome size can influence the cell size; the influence of the DNA content and cell morphometric parameters on functional level of the cell and the organism; the importance of the nucleotypic effect in the adaptation to the environment of the various Vertebrate groups. From this study it seems possible to make the following conclusions: 1) in Vertebrates, genome size would exert a real nucleotypic influence on cell size; 2) genome sizes and cell morphometric parameters seem to be involved in the regulation of cell metabolism; 3) the regulation of some morphometric parameters depends strictly and automatically on the DNA amount or on other morphometric parameters. The regulation of others, instead, depends on the interaction of different factors, which do not always act synergically; 4) the nucleotypic effect seems to have different distribution and importance in Anamniotes and Amniotes.  相似文献   

11.
We examine what circumstances allow the coexistence of microorganisms following different nutritional strategies, using a mathematical model. This model incorporates four nutritional types commonly found in planktonic ecosystems: (1) heterotrophic bacteria that consume dissolved organic matter and are prey to some of the other organisms; (2) heterotrophic zooflagellates that depend entirely on bacterial prey; (3) phototrophic algae that depend only on light and inorganic nutrients, and (4) mixotrophs that photosynthesize, take up inorganic nutrients, and consume bacterial prey. Mixotrophs are characterized by a parameter representing proportional mixing of phototrophic and heterotrophic nutritional strategies. Varying this parameter, a range of mixotrophic strategies was examined in hypothetical habitats differing in supplies of light, dissolved organic carbon, and dissolved inorganic phosphorous. Mixotrophs expressing a wide range of mixotrophic strategies persisted in model habitats with low phosphorus supply, but only those with a strategy that is mostly autotrophic persisted with high nutrient supply, and then only when light supply was also high. Organisms representing all four nutritional strategies were predicted to coexist in habitats with high phosphorus and light supplies. Coexistence involves predation by zooflagellates and mixotrophs balancing the high competitive ability of bacteria for phosphorus, the partitioning of partially overlapping resources between all populations, and possibly nonequlibrium dynamics. In most habitats, the strategy predicted to maximize the abundance of mixotrophs is to be mostly photosynthetic and supplement nutritional needs by consuming bacteria.  相似文献   

12.
We show the negative link between genome size and metabolic intensity in tetrapods, using the heart index (relative heart mass) as a unified indicator of metabolic intensity in poikilothermal and homeothermal animals. We found two separate regression lines of heart index on genome size for reptiles-birds and amphibians-mammals (the slope of regression is steeper in reptiles-birds). We also show a negative correlation between GC content and nucleosome formation potential in vertebrate DNA, and, consistent with this relationship, a positive correlation between genome GC content and nuclear size (independent of genome size). It is known that there are two separate regression lines of genome GC content on genome size for reptiles-birds and amphibians-mammals: reptiles-birds have the relatively higher GC content (for their genome sizes) compared to amphibians-mammals. Our results suggest uniting all these data into one concept. The slope of negative regression between GC content and nucleosome formation potential is steeper in exons than in non-coding DNA (where nucleosome formation potential is generally higher), which indicates a special role of non-coding DNA for orderly chromatin organization. The chromatin condensation and nuclear size are supposed to be key parameters that accommodate the effects of both genome size and GC content and connect them with metabolic intensity. Our data suggest that the reptilian-birds clade evolved special relationships among these parameters, whereas mammals preserved the amphibian-like relationships. Surprisingly, mammals, although acquiring a more complex general organization, seem to retain certain genome-related properties that are similar to amphibians. At the same time, the slope of regression between nucleosome formation potential and GC content is steeper in poikilothermal than in homeothermal genomes, which suggests that mammals and birds acquired certain common features of genomic organization.  相似文献   

13.

Background and Aims

It is well known that genome size differs among species. However, information on the variation and dynamics of genome size in wild populations and on the early phase of genome size divergence between taxa is currently lacking. Genome size dynamics, heritability and phenotype effects are analysed here in a wild population of Festuca pallens (Poaceae).

Methods

Genome size was measured using flow cytometry with DAPI dye in 562 seedlings from 17 maternal plants varying in genome size. The repeatability of genome size measurements was verified at different seasons through the use of different standards and with propidium iodide dye; the range of variation observed was tested via analysis of double-peaks. Additionally, chromosome counts were made in selected seedlings.

Key Results and Conclusions

Analysis of double-peaks showed that genome size varied up to 1·188-fold within all 562 seedlings, 1·119-fold within the progeny of a single maternal plant and 1·117-fold in seedlings from grains of a single inflorescence. Generally, genome sizes of seedlings and their mothers were highly correlated. However, in maternal plants with both larger and smaller genomes, genome sizes of seedlings were shifted towards the population median. This was probably due to the frequency of available paternal genomes (pollen grains) in the population. There was a stabilizing selection on genome size during the development of seedlings into adults, which may be important for stabilizing genome size within species. Furthermore, a positive correlation was found between genome size and the development rate of seedlings. A larger genome may therefore provide a competitive advantage, perhaps explaining the higher proportion of plants with larger genomes in the population studied. The reason for the observed variation may be the recent induction of genome size variation, e.g. by activity of retrotransposons, which may be preserved in the long term by the segregation of homeologous chromosomes of different sizes during gametogenesis.Key words: Nuclear DNA content, intraspecific variation, genome size evolution, heritability, stabilizing selection, grasses, flow cytometry  相似文献   

14.
Recent studies investigating the evolution of genome size diversity in ferns have shown that they have a distinctive genome profile compared with other land plants. Ferns are typically characterized by possessing medium‐sized genomes, although a few lineages have evolved very large genomes. Ferns are different from other vascular plant lineages as they are the only group to show evidence for a correlation between genome size and chromosome number. In this study, we aim to explore whether the evolution of fern genome sizes is not only shaped by chromosome number changes arising from polyploidy but also by constraints on the average amount of DNA per chromosome. We selected the genus Asplenium L. as a model genus to study the question because of the unique combination of a highly conserved base chromosome number and a high frequency of polyploidy. New genome size data for Asplenium taxa were combined with existing data and analyzed within a phylogenetic framework. Genome size varied substantially between diploid species, resulting in overlapping genome sizes among diploid and tetraploid spleenworts. The observed additive pattern indicates the absence of genome downsizing following polyploidy. The genome size of diploids varied non‐randomly and we found evidence for clade‐specific trends towards larger or smaller genomes. The 578‐fold range of fern genome sizes have arisen not only from repeated cycles of polyploidy but also through clade‐specific constraints governing accumulation and/or elimination of DNA.  相似文献   

15.
Size frequency distributions of different phototrophic and heterotrophic microorganisms were determined by means of scanning and transmission electron microscopy and electronic particle sizing. Statistically significant differences existed among the three techniques used in this study. Cells processed for electron microscopy showed lower mean cellular volumes than those processed for electronic particle sizing, reflecting a shrinkage by factors ranging from 1.1 to 6.2 (mean, 2.3). Processing of cells for scanning electron microscopy caused higher shrinkage than processing for transmission electron microscopy. Shrinkage was dependent neither on the size nor on the cell wall type of the microorganism. When processed for scanning electron microscopy, phototrophic bacteria were strongly shrunken, whereas heterotrophic microorganisms were less affected. A direct relationship existed among phototrophic bacteria between percentage of shrinkage and specific pigment content. This was probably a consequence of the pigment extraction by organic solvents during the dehydration process, previous to the critical point drying, necessary to examine the specimens under the scanning electron microscope.  相似文献   

16.
Genome size variation in parrots: longevity and flying ability   总被引:1,自引:0,他引:1  
Several hypotheses have been proposed to explain genome size variation in birds. However, no general consensus has been reached thus far. In this study, we analysed the inter- and intraspecific variation of genome size in some parrot species, and we tested the hypotheses that (1) weaker fliers have larger genomes, and (2) long-living species have lower DNA content. In general, parrots have a mean genome size (2.93 pg/nucleus) comparable to that of other avian orders. Amazona ochrocephala tresmariae has the highest genome size (4.30 pg/nucleus) among parrots. As expected, weaker flyers have larger genomes than better ones. In contrast to our prediction, we found a positive correlation between genome size and longevity. Finally, the species-group Amazona has a higher DNA content than the two groups Ara and Cacatua . Since oxidative stress is causally related to longevity, we suggest that DNA oxidative damage could have acted to some extent as a constraint on GS variation in parrots and perhaps also in other avian orders.  相似文献   

17.
Soil bacterial DNA and biovolume profiles measured by flow-cytometry   总被引:1,自引:0,他引:1  
Abstract Flow-cytometry was used to measure cell volumes and DNA contents of single cells in cultures of soil bacteria during exponential growth and starvation conditions. DNA was measured after staining with mitramycin/ethidium bromide. The measurement of DNA was calibrated with rifampicin-treated cells of E. coli containing even numbers of genomes per cell. Cell volumes were assessed by scatter light measurements. Constant DNA to biovolume relations over a range of cell sizes were found for each of the bacteria at exponential growth, and DNA contents per cell varied over a range equivalent to 1–4 genomes per cell. At generation times of 1.0–1.5 h, two genomes were registered as a mean. After starvation of washed cells in a salt solution (24 hrs), a fraction of the cells in each culture had DNA contents equivalent to 1 genome, but significant fractions retained DNA contents equivalent to 2–4 genomes. Attempts to create cells with even numbers of genomes per cell by treatment with rifampicin was successful on an Acinetobacter sp. In contrast, the response to rifampicin was less clear for Pseudomonas fluorescens and P. chlororaphis , and unclear for the gram positive bacteria isolated from soil. The mean decrease in biovolume upon starvation was 4.1 times (range 1.3–8.1 times) and larger than the mean decrease in DNA content of 1.8 (range 1.3–2.7 times). Cell volume determinations by measurements of scatter light was compared with volume determinations by fluorescence microscopy. The amounts of scatter light per volumes was variable, not only did we find large differences between bacterial types, but also between starving and exponentially growing cells of the same isolate. In order to use light scatter as a measure of biovolume, internal standards has to be chosen of comparable size and surface properties as to soil bacteria.  相似文献   

18.
植物基因组大小进化的研究进展   总被引:4,自引:0,他引:4  
陈建军  王瑛 《遗传》2009,31(5):464
不同的真核生物之间基因组大小差异很大, 并与生物体复杂性不相关, 在基因组中存在大量的非编码DNA序列是造成这种差异的主要原因, 特别是转座子序列。文章综述了植物基因组大小差异以及引起这种差异的主要进化动力的最新研究进展。植物基因组多倍化和转座子积累是导致基因组增大的主要动力, 而同源不平等重组和非正规重组则是驱动基因组DNA丢失的潜在动力, 以制约基因组无限制地增大。文中还讨论了植物基因组大小进化方向, 即总体趋势是朝着增大的方向进化, 某些删除机制主要是削弱这种增大作用但不能逆转。  相似文献   

19.
We investigated the retention of dimethylsulfoniopropionate (DMSP) in phototrophic dinoflagellates arising from mixotrophy by estimating the cellular content of DMSP in Karlodinium veneficum (mixotrophic growth) fed for 7-10 days on either DMSP-rich Amphidinium carterae (phototrophic growth only) or DMSP-poor Teleaulax sp. (phototrophic growth only). In K. veneficum fed on DMSP-poor prey, the cellular content of DMSP remained almost unchanged regardless of the rate of feeding, whereas the cellular content of DMSP in cells of K. veneficum fed on DMSP-rich prey increased by as much as 21 times the cellular concentration derived exclusively from phototrophic growth. In both cases, significant fractions (10-32% in the former case and 55-65% in the latter) of the total DMSP ingested by K. veneficum were transformed into dimethylsulfide and other biochemical compounds. The results may indicate that the DMSP content of prey species affects temporal variations in the cellular DMSP content of mixotrophic dinoflagellates, and that mixotrophic dinoflagellates produce DMS through grazing on DMSP-rich preys. Additional studies should be performed to examine the universality of our finding in other mixotrophic dinoflagellates feeding on diverse prey species.  相似文献   

20.
Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However; for some organisms, it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. A minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号