首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crude preparations of Desulfotomaculum nigrificans were found to reduce bisulfite to trithionate, thiosulfate, and sulfide. The bisulfite reductase of this organism was partially purified and observed to reduce bisulfite to trithionate as the major product and with thiosulfate and sulfide as minor products. The enzyme exhibited spectral properties identical to the carbon monoxide-reacting pigment (P582) isolated from this organism. It is concluded that the bisulfite reductase of D. nigrificans is P582 and that this organism utilizes a pathway which involves trithionate during the reduction of bisulfite to sulfide.  相似文献   

2.
The bisulfite reductase (P582) from Desulfotomaculum nigrificans was purified to homogeneity as judged by polyacrylamide gel electrophoresis. By colorimetric methods of analysis, the products of bisulfite reduction by this enzyme were determined to be trithionate, thiosulfate, and sulfide. Of these, trithionate was consistently found to be the major product, whereas the latter two were formed in lesser quantities. When [(35)S]bisulfite was incorporated as substrate, no labeled sulfide was detected. Furthermore, when trithionate and thiosulfate were isolated from reaction mixtures and chemically degraded, (35)S was found in all three sulfur atoms of trithionate; however, only the inner sulfur atom of thiosulfate was radioactive. From these data we conclude that the bisulfite reductase of D. nigrificans reduces bisulfite to trithionate and that thiosulfate and sulfide are endogenous side products of the reaction.  相似文献   

3.
Thiosulfate-cytochrome c-551 reductase derived from Chlorobiumthiosulfatophilum has been highly purified. The enzyme reduces cytochrome c-551 of C. thiosulfatophilum in the presence of thiosulfate while cytochrome c-555 of the organism is not reduced by the enzyme. Cytochrome c-555 reacts with the enzyme at an appreciable rate only in the presence of cytochrome c-551. However, the reduction rate of cytochrome c-551 by the enzyme is greatly enhanced on addition of a catalytic amount of cytochrome c-555. Therefore, cytochrome c-555 seems to function as an effector on thiosulfate-cytochrome c-551 reductase as well as it acts as the electron donor to the light-excited chlorobium chlorophylls.  相似文献   

4.
Bisulfite reductase was purified from extracts of Desulfovibrio vulgaris. By colorimetric analyses trithionate was found to be the major product, being formed in quantities 5 to 10 times more than two other detectable products, thiosulfate and sulfide. When [35S]bisulfite was used as the substrate, all three products were radioactively labeled. Degradation of [35S]trithionate showed that all of its sulfur atoms were equally labeled. In contrast, [35S]thiosulfate contained virtually all of the radioactivity in the sulfonate atom while the sulfane atom was unlabeled. These results, in conjunction with the funding that the sulfide was radioactive, led to the conclusion that bisulfite reductase reduced bisulfite to trithionate as the major product and sulfide as the minor product; the reason for the unusual labeling pattern found in the thiosulfate molecule was not apparent at this time. When bisulfite reductase was incubated with [35S]bisulfite in the presence of another protein fraction, FII, the thiosulfate formed from this reaction contained both sulfur atoms having equal radioactivity. This discovery, plus the fact that trithionate was not reduced to thiosulfate under identical conditions, led to the speculation that bisulfite could be reduced to thiosulfate by another pathway not involving trithionate.  相似文献   

5.
Bisulfite was reduced to sulfide by cell extracts of Desulfotomaculum nigrificans. When trithionate was added to reaction mixtures reducing bisulfite, sulfide formation was inhibited with accumulation of thiosulfate. The thiosulfate reductase activity of cell extracts was found to be inhibited by trithionate. Trithionate alone was reduced to thiosulfate and purified bisulfite reductase (P582) was not affected by trithionate. It is concluded that the pathway for bisulfite reduction in Dt. nigrificans includes trithionate and thiosulfate as intermediate compounds.  相似文献   

6.
A method has been devised for measuring the abundance of sulfur-34 in the hydrogen sulfide released upon the acidification of Escherichiacoli cells. Evidence is presented, based on the rate at which the hydrogen sulfide is released from the cells as well as the total amount released, that this hydrogen sulfide originates from the iron-sulfur proteins present in the cells. The sulfur-34 abundance in this hydrogen sulfide which was isolated from cells grown with [sulfane-34S]thiocystine, a compound which can differentially label invivo the sulfur-34 abundance of cysteine and hydrogen sulfide, shows cysteine sulfur and not hydrogen sulfide to be the origin of the sulfide sulfur of iron-sulfur proteins in aerobically grown E.coli  相似文献   

7.
Dissimilatory reduction of bisulfite by Desulfovibrio vulgaris.   总被引:2,自引:2,他引:0       下载免费PDF全文
The reduction of bisulfite by Desulfovibrio vulgaris was investigated. Crude extracts reduced bisulfite to sulfide without the formation (detection) of any intermediates such as trithionate or thiosulfate. When the particulate fractions was removed from crude extracts by high-speed centrifugation, the soluble supernatant fraction reduced bisulfite sequentially to trithionate, thiosulfate, and sulfide. Addition of particles or purified membranes to the soluble fraction restored the original activity demonstrated by crude extracts, i.e., reduction of bisulfite to sulfide without the formation of trithionate and/or thiosulfate. By using antiserum directed against bisulfite reductase, the reduction of bisulfite by crude extracts was inhibited. This finding, in addition to several recycling studies of thiosulfate reduction, provided evidence that bisulfite reduction by D. vulgaris operated through the pathway involving trithionate and thiosulfate as intermediates. The role of membranes in this process is discussed.  相似文献   

8.
Nitrite reductase (cytochrome cd) from T. denitrificans has been crystallized in high yield in three simple and rapid steps. The spectral absorption ratio at 408 to 280 nm was 1.52. Light absorption spectra in the oxidized and reduced states were virtually identical to those of nitrite reductase from P. aeruginosa. EPR spectroscopy of nitrite reductase at 12° showed a low-spin ferric heme resonance with g-values at 2.52, 2.45 and 1.73 assigned to the d-heme. Reaction of nitrite reductase with nitrite in the presence of the reducing systems [(ascorbate + PMS) or sulfide] resulted in the formation of nitric oxide (confirmed by gas chromatography) which reacted with both c- and d-hemes of nitrite reductase yielding an EPR-detectable enzyme-NO complex with g-values at 2.07, 2.04 and 1.99 and a 14N hyperfine splitting constant of 22.5 gauss. The amount of nitric oxide produced enzymatically with sulfide as electron donor was only 5% of that found when ascorbate plus PMS served as reductant.To our knowledge the detection of the unique enzyme-NO complex is the first definitive EPR evidence for the mandatory liganding of nitric oxide with pure nitrite reductase during nitrite reduction.  相似文献   

9.
A ribonucleoside diphosphate reductase is demonstrated in the algae, Scenedesmusobliquus and Chlorellapyrenoidosa. In synchronized cultures an activity maximum at the 12th hour of the cell cycle coincides with maximum DNA production. Induction of reductase activity is prevented by cycloheximide. The enzyme requires dithiols for reduction of CDP invitro; it is not significantly stimulated by iron or magnesium ions nor dependent upon deoxyadenosylcobalamin. ATP stimulates the reaction but dATP or dTTP act as inhibitors. The ribonucleotide reductase of green algae differs from the B12-requiring enzyme characterized in Euglenagracilis.  相似文献   

10.
Uracil-DNA glycosylase of Bacillussubtilis is involved in repair of deaminated cytosine residues of DNA. Survivals of SPO2 phage after treatment with bisulfite and weak alkali are considerably higher in wild type strains than in urg mutants, which are deficient in the enzyme activity, whereas survivals of bisulfite/alkali-treated PBS1 phage in the two types of cells are essentially the same. The spontaneous mutation frequency of a urg mutant is three fold higher than is that of a wild type strain.  相似文献   

11.
Treatment of a partially purified nitrate reductase preparation from the aerobic bacterium Azotobacter chroococcum with a variety of oxidizing agents, such as glutathione, ferricyanide and illuminated flavins, results in inactivation of the enzyme. Independently of the mode of inactivation, incubation in the presence of dithioerythritol causes almost full recovery of nitrate reductase activity. Our data suggest that Azotobacter nitrate reductase might be regulated through an interconversion process between an oxidized inactive form and a reduced active one.  相似文献   

12.
Synthesis of D-cysteine from 3-chloro-D-alanine and hydrogen sulfide is catalyzed by highly purified 3-chloro-D-alanine hydrogen chloride-lyase from Pseudomonasputida. The synthetic reaction proceeds optimally at pH 8.5, as a function of enzyme concentration and incubation time. The enzymatically synthesized D-cysteine was isolated from the large scale reaction mixture and identified by physicochemical means.  相似文献   

13.
A single subcutaneous injection of folate, homofolate or MTX resulted in the inhibition of the activity of dihydrofolate reductase in homogenates prepared from the kidneys of normal mice. Stimulation of 3H-thymidine uptake occurred in the kidneys of treated animals approximately 30 hr after administration of either folate or homofolate, and reached a peak 72 hr after administration. The effects of folate and MTX on dihydrofolate reductase activity invivo were also determined. One hr after administration of 15 mg/kg methotrexate (MTX) or 300 mg/kg folate, enzyme activity invivo was inhibited by 90%.3H-deoxyuridine uptake was neither stimulated nor depressed after treatment with MTX. After administration of folate, uptake of 3H-deoxyuridine was stimulated at approximately 30 hr after drug-treatment and reached a peak at 72 hr after folate administration. Treatment with xanthopterin had no effect on the activity of dihydrofolate reductase invitro. Xanthopterin stimulated uptake of both deoxyuridine and thymidine in an identical manner.The increased DNA synthesis that occurs in animals after treatment with agents that cause renal damage is distinct from the effect these agents have upon dihydrofolate reductase. Nucleoside incorporation after treatment with folate, homofolate, MTX or xanthopterin cannot be predicted on the basis of enzyme inhibition. Treatment with MTX, folate or homofolate results in enzyme inhibition which is not correlated with the uptake of deoxyuridine into DNA.  相似文献   

14.
The enzymatic pathways of elemental sulfur and thiosulfate disproportionation were investigated using cell-free extract of Desulfocapsa sulfoexigens. Sulfite was observed to be an intermediate in the metabolism of both compounds. Two distinct pathways for the oxidation of sulfite have been identified. One pathway involves APS reductase and ATP sulfurylase and can be described as the reversion of the initial steps of the dissimilatory sulfate reduction pathway. The second pathway is the direct oxidation of sulfite to sulfate by sulfite oxidoreductase. This enzyme has not been reported from sulfate reducers before. Thiosulfate reductase, which cleaves thiosulfate into sulfite and sulfide, was only present in cell-free extract from thiosulfate disproportionating cultures. We propose that this enzyme catalyzes the first step in thiosulfate disproportionation. The initial step in sulfur disproportionation was not identified. Dissimilatory sulfite reductase was present in sulfur and thiosulfate disproportionating cultures. The metabolic function of this enzyme in relation to elemental sulfur or thiosulfate disproportionation was not identified. The presence of the uncouplers HQNO and CCCP in growing cultures had negative effects on both thiosulfate and sulfur disproportionation. CCCP totally inhibited sulfur disproportionation and reduced thiosulfate disproportionation by 80% compared to an unamended control. HQNO reduced thiosulfate disproportionation by 80% and sulfur disproportionation by 90%.  相似文献   

15.
The effect of the C-serum (the cytosol) on the activity of 3-hydroxy-3-methylglutaryl CoA reductase in the latex of Heveabrasiliensis was investigated. Depending on the clone from which the latex was obtained, the C-serum was found to depress or activate or have little effect on the enzyme activity. Boiling the C-serum however, resulted in a consistent activation effect in all the clones examined. Optimal activation was obtained with 20 μl boiled C-serum. Dialysis or EDTA (40 mM) treatment of the boiled C-serum did not diminish the activation effect. Although not essential, dithiothreitol complemented the activation effect of the boiled C-serum and the optimal concentration was 10 mM. Trypsin digestion of the boiled C-serum resulted in the complete loss of the activation effect. The activator in the boiled C-serum was salted out by ammonium sulphate at 25 – 100% saturation. Hevein had no effect on reductase activity.  相似文献   

16.
Exposure of Limulus amebocytes to bacterial endotoxins (lipopolysaccharides, LPS) results in the activation of the coagulation system, which consists of several protein components. During the separation of these components, a potent anticoagulant, named tentatively anti-LPS factor, which inhibits the endotoxin-mediated coagulation reaction, was found in both amebocytes from the hemolymphs of Tachypleustridentatus and Limuluspolyphemus. The principle purified partially from Tachypleus amebocyte lysate had a molecular weight less than 10,000, as judged with the ordinary gelfiltration experiment. It inhibited specifically the activation of factor B, which has recently been characterized to be a coagulation factor highly sensitive to LPS, but it did not inhibit the activities of the active factor B and the active clotting enzyme separated from the lysate. The inhibitory activity of anti-LPS factor disappeared almost completely by the treatments with pronase-P and subtilisin, suggesting its polypeptide-like substance, but it resisted to a boiling treatment. A possible site of the anticoagulant action on the Limulus coagulation system was discussed.  相似文献   

17.
Microsomal NADH-cytochrome b5 reductase has been purified from bovine liver by an improved procedure which employs affinity chromatography on ADP-agarose in combination with anion exchange chromatography. The reductase was extracted from a 105,000 × g microsomal pellet with Triton X-100. The overall purification from isolated microsomes was 98-fold and the yield was 10%. The preparation was nearly homogeneous on SDS-PAGE. This procedure requires less time and effort than previously described procedures. Partially purified cytochrome b5 is also obtained.  相似文献   

18.
NADH-cytochrome b5 reductase activities in hemolysates of young and old human erythrocytes, and in hemolysates of rabbit reticulocytes and erythrocytes were measured after the separation of the enzyme from the bulk of hemoglobin only by isoelectric focusing. In any cases, a single main peak of the enzyme activity was detected after the electrophoresis in the fraction with pH 6.8 and 8.3 for human and rabbit red cells, respectively. The rabbit enzyme showed more than 30 times higher enzyme activity than that of human erythrocytes under the standard assay conditions. Significant differences of Micahelis constants for cytochrome b5 of the enzyme were found between young and old human erythrocytes, and also between human and rabbit red cells.  相似文献   

19.
Three phosphorylated dinucleosides designated HS1, HS2, and HS3, isolated from the water-mould Achlya, were shown to significantly inhibit ribonucleotide reductase activity from Achlya. All three compounds decreased CDP reduction in fungal extracts by 50% at concentrations of 0.1mM. At the same concentration HS3 also inhibited partially purified CDP reductase from Chinese hamster ovary cells by at least 80% but showed only 10% inhibition with enzyme from E.coli. ADP reductase activity from Achlya was inhibited 50% by both HS1 and HS3 at 0.1mM. HS2 however, showed no inhibitory effect on purine reduction. The levels of ribonucleotide reductase during the asexual growth cycle of Achlya correlated with thymidine uptake into DNA and with the synthesis of HS compounds.  相似文献   

20.
The requirement of a suitable energy source during the induced synthesis of nitrate reductase in Candidautilis was investigated. The levels of nitrate reductase induced were shown to be energy-dependent, and to vary in response to the type of carbon source provided. Glycerol, fructose, ethanol, glucose, and sucrose served as efficient energy sources. Growth rate of the yeast and the induced level of nitrate reductase were dependent on the ratio of carbon to nitrogen in the induction medium, and ratio of 2 being optimal. Induction of nitrate reductase was inhibited by uncouplers, 2,4-dinitrophenol (DNP), dicumarol and carbonyl cyanide p-trifluoromethoxy phenyl hydrazone (CCCP), and by cyanide and azide, indicating an absolute energy-dependency. The facilitation of induction of a high level of nitrate reductase by exogenously added ATP as sole source of energy confirmed the obligate requirement of ATP for the synthesis of nitrate reductase in Candidautilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号