首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high-pressure liquid chromatography method utilizing desferal mesylate as a solvent additive was developed for the simultaneous separation of 2-acetylaminofluorene, N-hydroxy-2-acetylaminofluorene, 9-hydroxy-2-acetylaminofluorene, 7-hydroxy-2-acetylaminofluorene, 5-hydroxy-2-acetylaminofluorene, 3-hydroxy-2-acetylaminofluorene, 1-hydroxy-2-acetylaminofluorene, 2-aminofluorene, and 2-acetylaminofluorene-9-one. The method was used to quantitate these metabolites formed when 2-acetylaminofluorene was incubated with freshly isolated rat liver cells, with rat liver microsomes or with microsomes prepared from isolated hepatocytes.  相似文献   

2.
The metabolism and mutagenic activation of 2-acetylaminofluorene by human and rat hepatocytes and kidney cells were measured. High performance liquid chromatography was used to separate the 2-acetylaminofluorene metabolites, and a cell-mediated Salmonella typhimurium mutagenesis assay was used to detect mutagenic intermediates. Rat and human differences were observed with cells from both organs and levels of metabolism and mutagenesis were higher in human cells. Within a species, liver and kidney cell differences were also evident, with levels of hepatocyte-mediated metabolism and mutagenesis being greater than kidney cells. Human inter-individual variation was apparent with cells from both organs, but the variation observed was significantly greater in hepatocytes than kidney cells. A knowledge of such differences, including an understanding that they may vary with the chemical being studied, should be useful in the extrapolation of rodent carcinogenesis data to humans.Abbreviations AAF 2-acetylaminofluorene - AF 2-aminofluorene - DMSO dimethylsulfoxide - HPLC high performance liquid chromatography - N-OH-AAF N-hydroxy-2-acetylaminofluorene - 1-OH-AAF 1-hydroxy-2-acetylaminofluorene - 3-OH-AAF 3-hydroxy-2-acetylaminofluorene - 5/9-OH-AAF a combination of 5 and 9-hydroxy-2-acetylaminofluorene - 7-OH-AAF 7-hydroxy-2-acetylaminofluorene - 8-OH-AAF 8-hydroxy-2-acetylaminofluorene  相似文献   

3.
The metabolism and mutagenicity of 2-acetylaminofluorene were measured using freshly prepared intact bladder and liver cells from the cow, dog and rat. High pressure liquid chromatography was used to separate 2-acetylaminofluorene metabolites, andSalmonella typhimurium, strain TA98, was used to detect mutagenic intermediates. Species differences as well as animal-to-animal variation within a species were observed. Mutagenic activity with 2-acetylaminofuorene was greater with cow bladder cells than with dog or rat bladder cells. However, dog bladder cells were most active in metabolizing 2-acetylaminofluorene, and rat bladder cells were least active. Liver cells from all three species metabolized 2-acetylaminofluorene to mutagens forSalmonella, with dog and cow cells being more active than rat liver cells. However, cow liver cells were the most active in metabolizing 2-acetylaminofuorene, followed by rat and dog cells. With all cell types studied, except rat bladder cells, aminofluorene was the major metabolite detected. Carbon and N-hydroxylated products were produced by liver and bladder cells of the three species and glucuronide and sulfate conjugates of the metabolites were detected from both cell types. Correlations between mutagenic activity and the level of metabolism or any individual metabolite were not apparent. The data suggest that the relative contribution of bladder cell metabolism in aromatic amine induced bladder cancer may vary with the species.Abbreviations AAF 2-acetylaminofluorene - 4-ABP 4-aminobiphenyl - AF aminofluorene - BZ benzidine - cytochrome P-450 a collective term for all forms of the cytochrome P-450 polysubstrate mono-oxygenases - FMO flavin mono-oxygenases - HPLC high pressure liquid chromatography - MNNG N-methyl-N-nitro-N-nitrosoguani-dine - 2-NA 2-naphthylamine - N-OH-AAF N-hydroxy-2-acetylaminofluorene - 1-OH-AAF 1-hydroxy-2-acetylaminofluorene - 5-OH-AAF 5-hydroxy-2-acetylaminofluorene - 7-OH-AAF 7-hydroxy-2-acetylaminofluorene - 8OH-AAF 8-hydroxy-2-acetylaminofluorene - 9-OH-AAF 9-hydroxy-2-acetylaminofluorene - UDS unscheduled DNA synthesis  相似文献   

4.
Addition of primary organic amines, such as n-butylamine, to the mobile phase altered the capacity factors and selectivity of benzo[a]pyrene metabolites obtained with reverse-phase high pressure liquid chromatography on an ODS column. Separation of benzo[a]pyrene phenols in particular was improved with 8 of the 10 available metabolites resolved, including those known to be biologically produced. The method offers sufficiently improved resolution or convenience that it should prove useful in comparative studies of metabolism of benzo[a]-pyrene and other polynuclear aromatic hydrocarbons. Applying the method to analysis of benzo[a]pyrene metabolites produced in vitro by hepatic microsomes from the marine fish Stenotomus versicolor indicated the principal phenolic derivatives produced by this fish were 1-hydroxy-, 3-hydroxy-, 7-hydroxy-, and 9-hydroxybenzo[a]pyrene.  相似文献   

5.
Neonicotinoid pesticides have been widely applied for the production of fruits and vegetables, and occasionally detected in conventionally grown produce. Thus oral exposure to neonicotinoid pesticides may exist in the general population; however, neonicotinoid metabolites in human body fluids have not been investigated comprehensively. The purpose of this study is the qualitative profiling and quantitative analysis of neonicotinoid metabolites in the human spot urine by liquid chromatography coupled with mass spectrometry (LC/MS). Human urine samples were collected from three patients suspected of subacute exposure to neonicotinoid pesticides. A qualitative profiling of urinary metabolites was performed using liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) with a database of nominal molecular weights of 57 known metabolites of three neonicotinoid pesticides (acetamiprid, Imidacloprid, and clothianidin), as well as the parent compounds. Then a quantitative analysis of selected urinary metabolites was performed using liquid chromatography/tandem mass spectrometry (LC/MS/MS) with a standard pesticide and metabolite, which were detected by the qualitative profiling. The result of qualitative profiling showed that seven metabolites, i.e. an acetamiprid metabolite, N-desmethyl-acetamiprid; three Imidacloprid metabolites, 5-hydroxy-Imidacloprid, 4,5-dihydroxy-imidacloprid, 4,5-dehydro-Imidacloprid; a common metabolite of acetamiprid and Imidacloprid, N-(6-chloronicotinoyl)-glycine; and two clothianidin metabolites, N-desmethyl-clothianidin, N-(2-(methylsulfanyl)thiazole-5-carboxyl)-glycine, as well as acetamiprid, were detected in the urine of three cases. The result of the quantitative analysis showed N-desmethyl-acetamiprid was determined in the urine of one case, which had been collected on the first visit, at a concentration of 3.2 ng/mL. This is the first report on the qualitative and quantitative detection of N-desmethyl-acetamiprid in the human urine. The results suggest that the one case with detection of N-desmethyl-acetamiprid was exposed to acetamiprid through the consumption of contaminated foods. Urinary N-desmethyl-acetamiprid, as well as 5-hydroxy-Imidacloprid and N-desmethyl-clothianidin, may be a good biomarker for neonicotinoid exposure in humans and warrants further investigation.  相似文献   

6.
Previous studies have shown that the carcinogen N-hydroxy-2-acetylaminofluorene is converted by one-electron oxidants to a free nitroxide radical which dismutates to N-acetoxy-2-acetylaminofluorene and 2-nitrosofluorene. The present study shows that the same oxidation can be achieved with horseradish peroxidase and H2O2. The free radical intermediate was detected by its ESR signal, and the yields of N-acetoxy-2-acetylaminofluorene and of 2-nitrosofluorene were determined under a number of conditions. Addition of tRNA to the reaction mixture containing N-acetoxy-N-2-acetyl[2′-3H]aminofluorene yielded tRNA-bound radioactivity; addition of guanosine yielded a reaction product which appears to be N-guanosin-8-yl)-2-acetylaminofluorene. The latter compound has previously been identified as a reaction product of N-acetoxy-2-acetylaminofluorene and guanosine. Preliminary attempts to demonstrate the formation of a nitroxide free radical or its dismutation products with rat liver mixed function oxidase systems were not successful.  相似文献   

7.
The filamentous fungus, Cunninghamella elegans, was found to metabolize the potent carcinogen, 3-methylcholanthrene (3-MC) to 1-hydroxy-3-MC, 2-hydroxy-3-MC, 1-keto-3-MC, 2-keto-3-MC and trans-9,10-dihydrodiols of 1-hydroxy-3-MC. In addition several unidentified derivatives of 3-MC were found. The metabolites formed were separated by high pressure liquid chromatography (HPLC) and identified by comparison of retention times, absorbance, fluorescence and mass spectra with those of synthetic standards. Incubation of (±)-1-hydroxy-3-MC and (±)-2-hydroxy-3-MC with cells of C. elegans indicated that 1-hydroxy-3-MC is metabolized to form diasteromerically related trans-9,10-dihydrodiols of 1-hydroxy-3-MC. Experiments with 3-[14C]MC showed that over a 48-h period, 8.7% of the hydrocarbon was oxidized to organic solvent-soluble metabolic products. Most of the metabolites were polar products, some of which co-chromatographed with trans-9,10-dihydrodiols of 1-hydroxy-3-MC. The results show that C. elegans has the ability to oxidize 3-MC to metabolites that have been implicated as proximate carcinogenic forms of 3-MC in higher organisms.  相似文献   

8.
The extent of the hepatotoxic action of N-hydroxy-2-acetylaminofluorene in the rat was determined by following changes in histochemistry, and the activities of glutamate-oxaloacetate transaminase (EC 2.6.1.1) and glutamate-pyruvate transaminase (EC 2.6.1.2) in serum. Administration of N-hydroxy-2-acetylaminofluorene (120 μmol/kg i.v.) cased a periportal (zone I) necrosis which was accompanied by a large increase in glutamate-oxaloacetate transaminase and glutamate-pyruvate transaminase activity in serum. Treatment of rats with pentachlorophenol and 2, 6-dichloro-4-nitrophenol, known inhibitors of NO-sulfation, 45 min before the administration of N-hydroxy-2-acetylaminofluorene, completely prevented the hepatotoxic effects of this carcinogenic hydroxamic acid. Therefore, it is concluded that NO-sulfation is responsible for the hepatotoxic action of N-hydroxy-2-acetylaminofluorene.  相似文献   

9.
The biotransformation of [2-14C](±)9, 10-dihydrojasmonic acid (DJA) was studied in excised shoots of 6-day-old barley seedlings after 72 h. From the ethyl acetate extract, some minor metabolites were isolated and purified by DEAE-Sephadex A-25 chromatography, thin-layer chromatography (TLC), C18-cartridges, and high-performance liquid chromatography (HPLC). The structural identification of these metabolites was performed by gas chromatography-mass spectrometry (GC-MS), circular dichroism (CD), and amino acid analysis, and the following amino acid conjugates were found:N-[(?)9,10-dihydrojasmonoyl]valine,N-[(?)9,10-dihydrojasmonoyl]isoleucine,N-[9,10-dihydrojasmonoyl]leucine,N-[11-hydroxy-9,10-dihydrojasmonoyl]valine,N-[11-hydroxy-9,10-dihydrojasmonoyl]isoleucine,N-[12-hydroxy-9,10-dihydrojasmonoyl]isoleucine; and the cucurbic acid-related compoundsN-{[3-hydroxy-2(4-hydroxypentyl)-cyclopent-1-yl]-acetyl}isoleucine andN-{[3-hydroxy-2(5-hydroxypentyl)-cyclopent-1-yl]-acetyl}isoleucine. The results suggest conjugation with isoleucine and valine, as well as preferential hydroxylation at position C-11 or hydrogenation at position C-6, as being important steps in the metabolism of (±)DJA in barley shoots.  相似文献   

10.
A very sensitive method, using electron-capture gas chromatography, has been developed for the quantitative estimation of N-hydroxy-2-fluorenylacetamide, the proximal carcinogenic metabolite of N-2-fluorenylacetamide. After incubation of the carcinogenic parent arylamide with rat liver microsomes, the N-hydroxy derivative produced is converted into N-chloro-2-fluorenylamine by treatment with hydrochloric acid; the amine is extracted with cyclohexane and transformed into N-chloro-2-fluorenyltrifluoroacetamide with trifluoroacetic anhydride. As little as 0.06 ng of the latter compound can be readily detected by gas-liquid chromatography using an electron-capture detector.  相似文献   

11.
The biosynthesis of cytokinins was examined in pea (Pisum sativum L.) plant organs and carrot (Daucus carota L.) root tissues. When pea roots, stems, and leaves were grown separately for three weeks on a culture medium containing [8-14C]adenine without an exogenous supply of cytokinin and auxin, radioactive cytokinins were synthesized by each of these organs. Incubation of carrot root cambium and noncambium tissues for three days in a liquid culture medium containing [8-14C]adenine without cytokinin demonstrates that radioactive cytokinins were synthesized in the cambium but not in the noncambium tissue preparation. The radioactive cytokinins extracted from each of these tissues were analyzed by Sephadex LH-20 columns, reverse phase high pressure liquid chromatography, paper chromatography in various solvent systems, and paper electrophoresis. The main species of cytokinins detectable by these methods are N6-(Δ2-isopentyl_adenine-5′-monophosphate, 6-(4-hydroxy-3-methyl-2-butenyl-amino)-9-β-ribofuranosylpurine-5′- monophosphate, N6-(Δ2-isopentenyl)adenosine, 6-(4-hydroxy-3-methyl-2-butenylamino)-9-β-ribofuranosylpurine, N6-(Δ2-isopentenyl)adenine, and 6-(4-hydroxy-3-methyl-2-butenylamino)purine. On the basis of the amounts of cytokinin synthesized per gram fresh tissues, these results indicate that the root is the major site, but not the only site, of cytokinin biosynthesis. Furthermore, cambium and possibly all actively dividing tissues are responsible for the synthesis of this group of plant hormones.  相似文献   

12.
The biotransformation of [2-14C](±)9, 10-dihydrojasmonic acid (DJA) was studied in excised shoots of 6-day-old barley seedlings after 72 h. From the ethyl acetate extract, some minor metabolites were isolated and purified by DEAE-Sephadex A-25 chromatography, thin-layer chromatography (TLC), C18-cartridges, and high-performance liquid chromatography (HPLC). The structural identification of these metabolites was performed by gas chromatography-mass spectrometry (GC-MS), circular dichroism (CD), and amino acid analysis, and the following amino acid conjugates were found:N-[(–)9,10-dihydrojasmonoyl]valine,N-[(–)9,10-dihydrojasmonoyl]isoleucine,N-[9,10-dihydrojasmonoyl]leucine,N-[11-hydroxy-9,10-dihydrojasmonoyl]valine,N-[11-hydroxy-9,10-dihydrojasmonoyl]isoleucine,N-[12-hydroxy-9,10-dihydrojasmonoyl]isoleucine; and the cucurbic acid-related compoundsN-{[3-hydroxy-2(4-hydroxypentyl)-cyclopent-1-yl]-acetyl}isoleucine andN-{[3-hydroxy-2(5-hydroxypentyl)-cyclopent-1-yl]-acetyl}isoleucine. The results suggest conjugation with isoleucine and valine, as well as preferential hydroxylation at position C-11 or hydrogenation at position C-6, as being important steps in the metabolism of (±)DJA in barley shoots.  相似文献   

13.
A rapid, sensitive method using liquid chromatography–electrospray mass spectrometry (LC–ES-MS) was developed and evaluated for the simultaneous quantitative determination of caffeine metabolites 1U, 1X and AAMU in human urine. This method involved a simple dilution of urine samples. The chromatographic separation was achieved on a C18 reversed-phase column using a gradient of acetonitrile in 2 mM, pH 3.0 ammonium formate as mobile phase. After ionisation in an electrospray source, mass spectrometric detection was performed in the negative ion, selected ion monitoring mode. This method yielded acceptable accuracy and precision within the range 0.25–50 μg/ml. This analytical method was applied to investigate the N-acetylator phenotype of HIV-infected patients and compared with high-performance liquid chromatography with UV detection. Its specificity was better, which appeared to be absolutely necessary to prevent errors in metabolic ratios and phenotype interpretation.  相似文献   

14.
A commercial high pressure liquid chromatographic system is used for the rapid analysis of 2′-O-methylnucleosides and pyrophosphate-linked methylated termini of nuclear RNAs and mRNAs. Oligonucleotides or RNA samples were enzymatically hydrolyzed to nucleosides and analyzed automatically by cationexchange chromatography in less than 1 hr using a 0.4 m ammonium formate buffer system at 55° c. This method is sufficiently sensitive to detect the N7-methylguanosine residue in 0.1 mg of Novikoff ascites hepatoma mRNA and may be used for qualitative or quantitative studies on RNA methylation in vivo or in vitro.  相似文献   

15.
We have demonstrated that the nitroxyl free radical form of the carcinogen N-hydroxy-2-acetylaminofluorene (OH-AAF) is an obligatory intermediate in the cumene hydroperoxide-hematin-induced oxidative activation of this carcinogen into 2-nitrosofluorene and N-acetoxy-2-acetylaminofluorene. Both the rate of N-OH-2-acetylaminofluorene oxidation and the amount of its nitroxyl free radical were experimently observed as a function of reaction time. Rate equations were derived for a model in which the nitroxyl free radical form of OH-AAF was an obligatory intermediate in the reaction. Using this theory it was possible to compute one experimental variable, the rate of OH-AAF oxidation, utilizing the other experimental variable, the amount of nitroxyl free radical present at any time during the reaction. The theory also predicts a linear relationship between the rate of OH-AAF oxidation and the square of the free radical content; and this was found to be true experimentally. The dismutation rate of constant of the nitroxyl free radical of OH-AAF was found to be 2.7 · 105 M?1 · s?1.  相似文献   

16.
Transformation of arachidonic acid in the rat anterior pituitary   总被引:1,自引:0,他引:1  
Rat anterior pituitaries were incubated with [1-14C]-arachidonic acid. The metabolites were purified by reversed-phase high pressure liquid chromatography. Conclusive identification of the compounds was performed by gas chromatography-mass spectrometry. The major metabolite of arachidonic acid was the 12-hydroxy-5,8,10,14-icosatetraenoic acid (0.1% of added radioactivity). Smaller amounts of 12-hydroxy-5,8,10-heptadecatrienoic acid and of 15-hydroxy-5,8,11,13-icosatetraenoic acid (0.01% of added radio-activity) were also isolated. Trace amounts of prostaglandins E2, D2 and F2α were detected.  相似文献   

17.
The 105 000 × g supernatant fractions of various rat tissues catalyze the transfer of the N-acetyl group of certain carcinogenic aromatic acethydroxamic acids to the O atom of aromatic hydroxylamines. The resulting N-acetoxyhydroxylamines are strongly electrophilic and have been detected and analyzed through their reaction with N-acetylmethionine to yield methylmercaptoaminoarenes.Of the rat tissues studied the liver had the highest activity; kidney and small intestinal mucosa were about 15–20% as active. The transacetylase activities of these tissues were similar with respect to their ability to use either N-hydroxy-2-acetylaminofluorene (N-hydroxy-AAF or N-hydroxy-4-acetylaminobiphenyl (N-hydroxy-AABP) as acetyl donors, their stability on storage at 2–3°C, and their elution patterns from Sephadex G-100 columns. Low transacetylase activity was found in spleen and muscle.Mammary tissue from 16–21 day pregnant rats had 20% of the transacetylase activity of rat liver when N-hydroxy-AABP was used as acetyl donor and N-hydroxy-4-aminobiphenyl (N-hydroxy-ABP) was the acetyl acceptor. This enzyme system from mammary tissue did not utilize the fluorene derivatives as either acetyl donor or acetyl acceptor, was much more labile than the liver, kidney, or intestinal mucosa systems, and had a pH optimum at 7.5, as compared to pH 6.8 for liver. The mammary tissue system was similar to the hepatic system in being inhibited by sulfhydryl reagents; it required a source of reduced pyridine nucleotides for maximum activity.  相似文献   

18.
Analysis of metabolome samples by gas chromatography/mass spectrometry requires a comprehensive derivatization method to afford quantitative and qualitative information of a complex biological sample. Here we describe an extremely time-effective microwave-assisted protocol for the commonly used methoxyamine and N-methyl-N-trimethylsilylfluoracetamide silylation method of primary metabolites. Our studies show that microwave irradiation can decrease the sample preparation time from approximately 120 min to 6 min without loss of either qualitative or quantitative information for the tested synthetic metabolite mixtures and microbial-derived metabolome samples collected from Bacillus subtilis and Staphylococcus aureus. Comparisons of metabolic fingerprints and selected metabolites show no noticeable differences compared with the commonly used heating block methods.  相似文献   

19.
A new assay method using high pressure liquid chromatography has been developed which permits the simultaneous isolation, determination, and quantitation of lauric acid and its hydroxylated products after methylation of extracts from kidney or liver microsomal incubation mixtures. The small differences in polarity between the lauric acid, 11-hydroxy- and 12-hydroxy-lauric acid after methylation permit their separation on reverse phase columns packed with octadecyltrichlorosilane bonded to silicone polymers. The total time required for the chromatography is less than 1 hr. Using this method, the formation of hydroxylated products was shown to have a linear dependence on protein concentration and time. The Km for lauric acid and NADPH were determined to be 8 μm and 54 μm in kidney microsomes, respectively.  相似文献   

20.
A method has been developed for the quantitative isolation of glucosinolates by ion-exchange chromatography and high voltage electrophoresis avoiding strongly alkaline and acidic conditions. The compounds were identified by 1H and 13C NMR spectroscopy and through the products arising from enzymatic, acid and alkaline hydrolysis. The method is well suited for the isolation and identification of glucosinolates containing aglucone parts which produce non-volatile compounds on enzymatic hydrolysis. The method has been used in the isolation and identification of 2-hydroxy-2-methylpropylglucosinolate from Reseda alba, 2-hydroxy-2-phenylethylglucosinolate from R. luteola and a new glucosinolate, o-(α-l-rhamnopyranosyloxy)benzylglucosinolate, occurring in R. odorata. The glucosinolate content in different parts of this plant has been determined and the metabolism of glucosinolates is briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号