首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selenomethionine and methionine were compared as substrates for in vitro aminoacylation, ribosome binding, and peptide bond formation with preparations from wheat germ. Selenomethionine paralleled methionine in all steps of the translation process except peptide bond formation. Peptide bond formation with the initiating species of tRNAMet demonstrated that selenomethionyl-tRNAMet was less effective as a substrate than was methionyl-tRNAfMet. Participation of selenomethionine in the initiation process of translation could be expected to reduce the overall rate of protein synthesis and might aid in explaining selenium toxicity in selenium-sensitive plants.  相似文献   

2.
A highly purified preparation of the eucaryotic initiation factor eIF-2 from calf liver which forms a ternary complex with GTP and Met-tRNAfMet also exhibits a potent GDP binding activity. The factor preparation specifically forms a binary complex with GDP, other ribonucleoside diphosphates and GTP are inactive. Evidence is presented indicating that the GTP-dependent Met-tRNAfMet binding and binary complex formation with GDP are mediated by the same protein which has an apparent molecular weight of 67,000 as judged by glycerol density gradient centrifugation.  相似文献   

3.
The interaction of E.coli initiation factor IF2 with formylmethionyl-tRNAfMet has been studied by measuring the inhibition by IF2 of the spontaneous deaminoacylation of the charged tRNA. We find that IF2 protects fMet-tRNAfMet against spontaneous deacylation. The formylation is an absolute requirement for this protection and no effect of GTP was found. The association constant for IF2 binding to fMet-tRNAfMet at 37°C and physiological ionic conditions was estimated at about 106 M?1.  相似文献   

4.
Treatment of E.coli formylmethionine tRNA with sodium bisulfite produces six C → U base changes in the tRNA structure. Four of these modifications have no effect on the ability of tRNAfMet to be aminoacylated or formylated. Prior to bisulfite treatment, Met-tRNAfMet is not able to form a ternary complex with bacterial T factor and GTP, as measured by Sephadex G-50 gel filtration. After bisulfite treatment, a large portion of the modified tRNA is bound as T-GTP-Met-tRNAfMet. Formylation of bisulfite-modified Met-tRNAfMet completely eliminates T factor binding. Unmodified tRNAfMet is unique among the tRNAs sequenced to date in having a non-hydrogen-bonded base at the 5′ terminus. Bisulfite-catalyzed conversion of this unpaired C1 to U1 results in formation of a normal U1-A73 base pair at the end of the acceptor stem. It is likely that this structural alteration is responsible for the recognition of bisulfite-modified Met-tRNAfMet by T factor.  相似文献   

5.
The 0.5M KCl wash of rabbit reticulocyte ribosomes (I fraction) catalyzes the deacylation of Met-tRNAfMet. Upon DEAE-cellulose column chromatography, the deacylase activity elutes with the 0.1M KCl wash of the column (f1) and is well-resolved from the peptide chain initiation factors (1–3). The deacylase activity is specific for Met-tRNAfMet (retic., E.coli). Other aminoacyl tRNAs tested including fMet-tRNAfMet (retic., E.coli), Phe-tRNA (E.coli), Val-tRNA (retic.), and Arg-tRNA (retic.) are completely resistant to the action of the deacylase. In the presence of the peptide chain initiation factor (IF1) and GTP, retic. Met-tRNAfMet forms the initiation complex Met-tRNAfMet:IF1:GTP (2), and in this ternary complex Met-tRNAfMet is not degraded by the deacylase. E.coli Met-tRNAfMet binds to IF1 independent of GTP, and in this complex, this Met-tRNAfMet is degraded by the deacylase.Prior incubation of f1 with Met-tRNAfMet (retic.) strongly inhibited protein synthesis initiation, presumably due to deacylation of the initiator tRNA. This inhibition by f1 was completely prevented when Met-tRNAfMet (retic.) was pre-incubated with peptide chain initiation factors.  相似文献   

6.
Inactivation of the (Na+ + K+)-dependent ATPase by 50 μm BeCl2 occurred during brief incubations in the presence of both Mg2+ and K+. Inactivation followed, initially, a first-order time course, with rate constants sensitive to the concentration of K+ (other components held constant). From these data dissociation constants can be calculated for K+ binding to sites controlling inactivation. Comparisons of relative affinities for K+ analogs (T1+ and NH4+), and of sensitivity to reagents altering K+ activation (phlorizin and dimethylsulfoxide) indicate that the same K+ sites operate for both Be2+ inactivation and enzyme activation. With 3 mm MgCl2 the dissociation constant, KD, for K+ was 1.4 mm, but decreased 20-fold on addition of both Na+ and CTP. Alone, Na+ increased the apparent KD for K+, either by direct competition or indirectly from its own site, with a KD of 7 mm. The data suggest a model for K+ transport with K+ sites on the outer membrane surface that increase in affinity after formation of the phosphorylated enzyme intermediate, sufficiently to bind K+ in a high Na+ environment. Translocation may occur by an “oscillating pore” mechanism discharging K+ at the inner surface, while leaving demonstrable sites of moderate affinity at the outer end of the pore (which preclude attempts to document low-affinity discharge sites).  相似文献   

7.
Initiation of protein synthesis in mitochondria and chloroplasts normally uses a formylated initiator methionyl-tRNA (fMet-tRNAfMet). However, mitochondrial protein synthesis in Saccharomyces cerevisiae can initiate with nonformylated Met-tRNAfMet, as demonstrated in yeast mutants in which the nuclear gene encoding mitochondrial methionyl-tRNA formyltransferase (FMT1) has been deleted. The role of formylation of the initiator tRNA is not known, but in vitro formylation increases binding of Met-tRNAfMet to translation initiation factor 2 (IF2). We hypothesize the existence of an accessory factor that assists mitochondrial IF2 (mIF2) in utilizing unformylated Met-tRNAfMet. This accessory factor might be unnecessary when formylated Met-tRNAfMet is present but becomes essential when only the unformylated species are available. Using a synthetic petite genetic screen in yeast, we identified a mutation in the AEP3 gene that caused a synthetic respiratory-defective phenotype together with Δfmt1. The same aep3 mutation also caused a synthetic respiratory defect in cells lacking formylated Met-tRNAfMet due to loss of the MIS1 gene that encodes the mitochondrial C1-tetrahydrofolate synthase. The AEP3 gene encodes a peripheral mitochondrial inner membrane protein that stabilizes mitochondrially encoded ATP6/8 mRNA. Here we show that the AEP3 protein (Aep3p) physically interacts with yeast mIF2 both in vitro and in vivo and promotes the binding of unformylated initiator tRNA to yeast mIF2. We propose that Aep3p functions as an accessory initiation factor in mitochondrial protein synthesis.  相似文献   

8.
Binding of the Met-tRNAMetf·eIF-2 GTP complex to the 40 S ribosomal subunit is the first step in initiation of eukaryotic protein synthesis. The extent of binding and the stability of the complex are enhanced by initiation factors eIF-3 and eIF-4C, AUG and elevated magnesium concentration. The reversibility of reaction steps occurring during the assembly of the initiation complex is measured as the rate of Met-tRNAMetf exchange in the initiation complex and its intermediates. This rate progressively decreases and Met-tRNAMetf binding becomes irreversible upon binding of mRNA. The association of the 40 S Met-tRNAMetf mRNA initiation complex with the 60 S ribosomal subunit is again reversible as long as elongation does not occur.  相似文献   

9.
Magnesium-dependent adenosine triphosphatase, purified from sheep kidney medulla using digitonin, has been characterized in a series of kinetic and magnetic resonance studies. Kinetic studies of divalent metal activation using either Mg2+ or Mn2+ indicate a biphasic response to divalent cations. Apparent Km values of 23 μm for free Mg2+ and 3.3 μm for free Mn2+ are obtained at low levels of added metal, while Km values of 0.50 mm for free Mg2+ and 0.43 mm for free Mn2+ are obtained at much higher levels of divalent cations. In all cases the kinetic data indicate that the binding of divalent metals is independent of the substrate, ATP. Kinetic studies of the substrate requirements of the Mg2+-ATPase also yield biphasic Lineweaver-Burk plots. At low ATP concentrations, kinetic studies yield apparent Km values for free ATP of 6.0 and 1.4 μm with Mg2+ and Mn2+, respectively, as the activating divalent metals. At much higher levels of ATP the response of the enzyme to ATP changes so that Km values for free ATP of 8.0 and 2.0 mm are obtained for Mg2+ and Mn2+, respectively. In both cases, however, the binding of ATP is independent of added metal. ADP inhibits the Mg2+-ATPase and the kinetic data indicate that ADP competes with ATP at both the high and low affinity sites. Dixon plots of the data are consistent with competitive inhibition at both ATP sites, with Ki values of 10.5 μm and 4.5 mm. Electron paramagnetic resonance and water proton relaxation rate studies show that the enzyme binds 1 g ion of Mn2+ per 469,000 g of protein. The Mn2+ binding studies yield a KD for Mn2+ at the single high affinity site of 2 μm, in good agreement with the kinetically determined activator constant for Mn2+ at low Mn2+ levels. Moreover, the EPR binding studies also indicate the existence of 34 weak sites for Mn2+ per single high affinity Mn2+ site. The KD for Mn2+ at these sites is 0.55 mm, in good agreement with the kinetic activator constant for Mn2+ of 0.43 mm, consistent with additional activation of the enzyme by the large number of weaker metal binding sites. The enhancement of water proton relaxation by Mn2+ in the presence of the enzyme is also consistent with the tight binding of a single Mn2+ ion per 469,000 Mr protein and the weaker binding of a large number of divalent metal ions. Analysis of the data yields a value for the enhancement for bound Mn2+ at the single tight site, ?b, of 5 and an enhancement at the 34 weak sites of 11. The frequency dependence of water proton relaxation by Mn2+ at the single tight site yields a dipolar correlation time (constant from 8–60 MHz) of 3.18 × 10?9 s. The kinetics and metal binding studies, together with the effect of temperature on ATPase activity at high and low levels of ATP, are consistent with the existence in this preparation of a single Mg2+-ATPase, with high and low affinity sites for divalent metals and for ATP. Observations of both high and low affinities for ATP have been made with two other purified ATPases. The similarities of these systems to the Mg2+-ATPase described here are discussed.  相似文献   

10.
Diacylglycerol:ATP kinase(EC 2.3.1.-) was highly purified (more than 2000-fold) from rat liver cytosol. The specific activity of the obtained enzyme was about 1.5 μmol phosphatidate formed/mg of protein/min. The purification procedures included ammonium sulfate fractionation, DEAE-cellulose chromatography, gel filtration on Sephadex G-200, and finally affinity chromatography on ATP-agarose. The activities of diacylglycerol:GTP kinase and monoacylglycerol:ATP kinase were copurified throughout the procedures, forming a single peak together with diacylglycerol: ATP kinase. Furthermore, these kinase activities showed a single peak when the highly purified enzyme was analyzed by a sucrose density gradient centrifugation and polyacrylamide gel electrophoresis. The three kinase activities are, therefore, most likely catalyzed by a single enzyme. The kinase showed an apparent molecular weight of 121,000 on gel filtration and sedimented at 5.1 S in a sucrose gradient centrifugation. The apparent Km values were 170 μm for ATP, 540 μm for GTP, and 3.0 μm for diacylglycerol. A number of nucleoside triphosphates and diphosphates competitively inhibited the kinase, in particular the activity utilizing GTP. Among the nucleotides tested, ADP was the most potent inhibitor (the apparent Ki:50 μm for diacylglycerol:ATP kinase and 42 μm for diacylglycerol:GTP kinase). The kinase required Mg2+ and deoxycholate for its activity, and the optimal pH was 8.0–8.5. No dependence on added phospholipids was observed.  相似文献   

11.
The fluorescent probe l-anilinonaphthalene-8-sulfonate (ANS) has been used to investigate the properties of plasma membranes derived from normal hepatocytes and from hepatoma tissue culture (HTC) cells as well as used to study the effects of Ca2+ and procaine on these membrane systems. The interaction of ANS with hepatocyte plasma membranes (50 nmol/mg protein; KD = 120,μM) resulted in a marked enhancement of fluorescence and a 20-nm blue shift. Both Ca2+ and procaine further increased the fluorescence intensity. Binding studies showed no alteration in the number of ANS binding sites but a significant decrease in KD (40–50 μm). Procaine was also shown to completely displace Ca2+ from the membrane. The interaction of ANS with HTC cell plasma membranes again resulted in an enhancement in fluorescence intensity but with different binding properties (102 nmol/mg protein; KD = 74 μM) from the hepatocyte system. The addition of Ca+2 resulted in the formation of high and low affinity ANS binding sites as shown by Scatchard plot analysis with KD values of 15 μm and 50 μm. The effect of procaine on ANS fluorescence in the normal and transformed cell membranes was indistinguishable; however, in the latter system procaine only displaced 60% of the bound Ca2+. These studies suggest several structural and binding alterations between plasma membranes derived from hepatocytes and HTC cells.  相似文献   

12.
Cytosolic free magnesium (Mgf) is considered relatively constant. To test this concept, Mgf was estimated during hyperkalemic ventricular akinesis, normal and maximum adrenergic stimulation, and sulfate loading of the normoxic perfused guinea-pig heart. The Mgf estimates utilized a new sliding scale derived from the Mg2+-dependence of glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase (GAPDH/PGK). The pseudo constant KGAPDH′·KPGK′ was measured as ([creatine phosphate][3-phosphoglycerate][lactate]KLDH/([creatine][Pi[glyceraldehyde 3-phosphate][pyruvate]KCK), which varied with magnesium due to KCK (CK, LDH = creatine kinase, lactate dehydrogenase). However, the correct magnesium dependencies of the true constants KGAPDH·KPGK and KCK were taken from the literature. The [Mg2+] at which pseudo KGAPDH′·KPGK′ equalled true KGAPDH·KPGK was the best estimate of Mgf. Mgf fell to ≈0.13 mM in hyperkalemic arrest from a control of ≈0.6 mM, rising to ≈0.85 mM only during maximum adrenergic stress. Mgf increased further to ≈1.3 mM during sulfate loading which induced ATP catabolism. Mgf and ATP were reciprocally related. Thus; (1) myocardial free [Mg2+] judged from GAPDH/PGK mass-action relations changed appreciably only under extreme physiological states; (2) ATP was a major chelator of Mg2+ in perfused myocardium, i.e., acute ATP pool size reduction may be associated with increments in Mgf.  相似文献   

13.
The peptide chain initiation factor EIF-1 forms a ternary complex, Met-tRNAf·EIF-1·GTP in the absence of Mg++ and the preformed complex is stable to Mg++. However, with homogeneous preparations of EIF-1, addition of Mg++ during the initial formation of the ternary complex strongly inhibits the complex formation.A heat stable dialyzable factor (EIF-11) which mostly remains associated with the high molecular weight protein complex, EIF-2 (TDF) during purification of the peptide chain initiation factors, has been purified using a phenol extraction procedure. EIF-11 restores the Met-tRNAf binding activity of EIF-1 in the presence of 1 mM Mg++; in the presence of EIF-11, Met-tRNAf binding by EIF-1 shows a sharp Mg++ optimum around 1 mM. EIF-11 is heat stable, alkali stable, dialyzable and pronase sensitive. The same EIF-11 preparation also strongly inhibits Met-tRNAf binding to EIF-1 in the absence of Mg++ and stimulates protein synthesis in a mRNA-dependent rabbit reticulocyte lysate system.  相似文献   

14.
The properties of cyclic AMP-dependent protein kinase I isolated from rabbit reticulocytes were further investigated. The enzyme catalyzes the phosphorylation of histone in the presence of ATP and Mg2+ and this reaction is stimulated by cyclic AMP. The pH optimum of the reaction was between 8.5 and 9.0, when assayed in the presence of cyclic AMP. No distinct pH optimum was observed in the absence of the cyclic nucleotide. The Km values for ATP appeared to be very similar whether it was determined in the presence (Km = 1.7 × 10−4m) or absence (Km = 2.5 × 10−4m) of cyclic AMP. The rate of heat inactivation of the catalytic activity and the cyclic AMP binding activity of kinase I were found to be dependent on the presence of Mg2+, ATP, and/or cyclic AMP. In the presence of cyclic AMP, the rate of inactivation of the catalytic activity of kinase I at 53 ° was accelerated. On the other hand, the cyclic AMP binding activity appeared to be protected from heat inactivation by the cyclic nucleotide. When both ATP and Mg2+ were present in the heating mixture, no loss of catalytic and binding activities of kinase I were observed even up to 8 min of heating at 53 °. The cyclic AMP binding activity of kinase I was almost completely inhibited by mercuric acetate at a concentration of 1 mm, while the loss in catalytic activity was only 50%. These results substantiate our previous observation that kinase I contains two nonidentical subunits, a catalytic subunit and a cyclic AMP binding subunit.  相似文献   

15.
Met-tRNAfMet binding factor (EIF-1) has been purified more than 100 fold over crude high salt (0.5 M KCl) ribosomal wash. The purified factor binds 2 nmoles Met-tRNAfMet per mg protein and shows very little poly r(A) binding activity. Crude ribosomal high salt wash possesses significant amounts of poly r(A) binding activity and also binds to other RNAs. The bulk of this unspecific RNA binding protein is separated from EIF-1 by DEAE-cellulose chromatography.  相似文献   

16.
The β-subunit of the voltage-sensitive K+ channels shares 15–30% amino acid identity with the sequences of aldo–keto reductases (AKR) genes. However, the AKR properties of the protein remain unknown. To begin to understand its oxidoreductase properties, we examine the pyridine coenzyme binding activity of the protein in vitro. The cDNA of Kvβ2.1 from rat brain was subcloned into a prokaryotic expression vector and overexpressed in Escherichia coli. The purified protein was tetrameric in solution as determined by size exclusion chromatography. The protein displayed high affinity binding to NADPH as determined by fluorometric titration. The KD values for NADPH of the full-length wild-type protein and the N-terminus deleted protein were 0.1±0.007 and 0.05±0.006 M, respectively — indicating that the cofactor binding domain is restricted to the C-terminus, and is not drastically affected by the absence of the N-terminus amino acids, which form the ball and chain regulating voltage-dependent inactivation of the α-subunit. The protein displayed poor affinity for other coenzymes and the corresponding values of the KD for NADH and NAD were between 1–3 μM whereas the KD for FAD was >10 μM. However, relatively high affinity binding was observed with 3-acetyl pyridine NADP, indicating selective recognition of the 2′ phosphate at the binding site. The selectivity of Kvβ2.1 for NADPH over NADP may be significant in regulating the K+ channels as a function of the cellular redox state.  相似文献   

17.
The vast majority of serine/threonine protein kinases have a strong preference for ATP over GTP as a phosphate donor. CK2 (Casein kinase 2) is an exception to this rule and in this study we investigate whether calcium/calmodulin-dependent protein kinase II (CaMKII) has the same extended nucleotide range. Using the Drosophila enzyme, we have shown that CaMKII uses Mg2+GTP with a higher Km and Vmax compared to Mg2+ATP. Substitution of Mn2+ for Mg2+ resulted in a much lower Km for GTP, while nearly abolishing the ability of CaMKII to use ATP. These similar results were obtained with rat αCaMKII, showing the ability to use GTP to be a general property of CaMKII. The Vmax difference between Mg2+ATP and Mg2+GTP was found to be due to the fact that ADP is a potent inhibitor of phosphorylation, while GDP has modest effects. There were no differences found between sites autophosphorylated by ATP and GTP, either by partial proteolysis or mass spectrometry. Phosphorylation of fly head extract revealed that similar proteins are substrates for CaMKII whether using Mg2+ATP or Mg2+GTP. This new information confirms that CaMKII can use both ATP and GTP, and opens new avenues for the study of regulation of this kinase.  相似文献   

18.
Adenylate cyclase from rabbit ventricle was solubilized in 30 to 50% yield by the nonionic detergent Lubrol PX. The detergent, when present in the assay at concentrations above 0.05%, rapidly inactivated the enzyme in assays conducted above 26 °C; assays were valid only when conducted below this temperature. The solubilized enzyme was eluted from diethylaminoethyl (DEAE)-Bio-Gel A (DEAE-agarose) with 100 mm NaCl in a yield of 25% and was free of detergent. Several properties of the solubilized detergent-free enzyme were similar to properties of the native membrane-bound species. The Km for substrate was 0.1 mm, the Ka for Mg2+ was 2.5 mm, and ATP in excess of Mg2+ was inhibitory. The enzyme was activated by F? and guanyl-5′-yl imidodiphosphate [Gpp(NH)p] in a time- and temperature-dependent manner, and activation by the latter was persistent. Activation by F? and Gpp(NH)p reduced the Ka for Mg2+. Activation by Gpp(NH)p was increased by Mg2+; the apparent Ka for activation was 0.1 μm. Multiple binding sites for Gpp(NH)p were present: one class with a Kd value of 0.11 μm was probably associated with activation of the enzyme. The soluble enzyme was insensitive to catecholamines, in both the presence and the absence of Gpp(NH)p. Sensitivity to catecholamines was not restored by the addition of phospholipids, particularly phosphatidyl inositol, in either the presence or the absence of Gpp(NH)p, and this phospholipid did not increase the sensitivity of the membrane-bound enzyme to epinephrine. Catecholamine binding sites were present, and their association with adenylate cyclase was seemingly not affected by phospholipids.  相似文献   

19.
《BBA》1986,849(1):121-130
The binding of 3′-O-(1-naphthoyl)adenosinetriphosphate (1-naphthoyl-ATP), ATP and ADP to TF1 and to the isolated α and β subunits was investigated by measuring changes of intrinsic protein fluorescence and of fluorescence anisotropy of 1-naphthoyl-ATP upon binding. The following results were obtained. (1) The isolated α and β subunits bind 1 mol 1-naphthoyl-ATP with a dissociation constant (KD(1-naphthoyl-ATP)) of 4.6 μM and 1.9 μM, respectively. (2) The KD(ATP) for α and β subunits is 8 μM and 11 μM, respectively. (3) The KD(ADP) for α and β subunits is 38 μM μM and 7 μM, respectively. (4) TF1 binds 2 mol 1-naphthoyl-ATP per mol enzyme with KD = 170 nM. (5) The rate constant for 1-naphthoyl-ATP binding to α and β subunit is more than 5 · 104 M−1s−1. (6) The rate constant for 1-naphthoyl-ATP binding to TF1 is 6.6 · 103 M−1 · s−1 (monophasic reaction); the rate constant for its dissociation in the presence of ATP is biphasic with a fast first phase (kA−1 = 3 · 10−3s−1) and a slower second phase (kA−2 < 0.2 · 10−3s−1). From the appearance of a second peak in the fluorescence emission spectrum of 1-naphthoyl-ATP upon binding it is concluded that the binding sites in TF1 are located in an environment more hydrophobic than the binding sites on isolated α and β subunits. The differences in kinetic and thermodynamic parameters for ligand binding to isolated versus integrated α and β subunits, respectively, are explained by interactions between these subunits in the enzyme complex.  相似文献   

20.
We have separated and purified two forms of Met-tRNAf deacylase (or two separate enzymes), an activity that mediates in part the suppression of polypeptide chain initiation that occurs in heme deficiency or with double-stranded RNA, 1000-fold from the 0.5 M KCl wash of rabbit reticulocyte ribosomes. Deacylase I is a minor activity with an S20,w of 5.9, D20,w of 4.9 and Mr of 110 000, while deacylase II is the major activity with an S20,w of 3.3, D20,w of 7.1 and Mr of 43 000. Both convert crude reticulocyte or pure yeast, wheat germ, and E. coli [35S]Met-tRNAf to [35S]methionine and tRNAMetf and have no effect on reticulocyte [35S]fMet-tRNAf, [3H]Ala-tRNA or [3H]Lys-tRNA. However, while deacylase I has similar activity throughout the pH range of 6.1–8.1, deacylase II has a sharp pH optimum at 7.9 and is almost completely inactive at 6.1. In addition, deacylase II shows a much greater affinity for pure Met-tRNAf than deacylase I (Km of 1.5–3 nM vs. 100 nM), and, while deacylase II is selectively inhibited by tRNAMetf, deacylase I is inhibited similarly by any added tRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号