首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Host shifts cause drastic consequences on fitness in cactophilic species of Drosophila. It has been argued that changes in the nutritional values accompanying host shifts may elicit these fitness responses, but they may also reflect the presence of potentially toxic secondary compounds that affect resource quality. Recent studies reported that alkaloids extracted from the columnar cactus Trichocereus terscheckii are toxic for the developing larvae of Drosophila buzzatii. In this study, we tested the effect of artificial diets including increasing doses of host alkaloids on developmental stability and wing morphology in D. buzzatii. We found that alkaloids disrupt normal wing venation patterning and affect viability, wing size and fluctuating asymmetry, suggesting the involvement of stress–response mechanisms. Theoretical implications are discussed in the context of developmental stability, stress, fitness and their relationship with robustness, canalization and phenotypic plasticity.  相似文献   

3.
Wing venation has long been used for insect identification. Lately, the characterization of venation shape using geometric morphometrics has further improved the potential of using the wing for insect identification. However, external factors inducing variation in wing shape could obscure specific differences, preventing accurate discrimination of species in heterogeneous samples. Here, we show that interspecific difference is the main source of wing shape variation within social wasps. We found that a naive clustering of wing shape data from taxonomically and geographically heterogeneous samples of workers returned groups congruent with species. We also confirmed that individuals can be reliably attributed to their genus, species and populations on the basis of their wing shape. Our results suggested that the shape variation reflects the evolutionary history with a potential influence of other factors such as body shape, climate and mimicry selective pressures. However, the high dimensionality of wing shape variation may have prevented absolute convergences between the different species. Wing venation shape is thus a taxonomically relevant marker combining the accuracy of quantitative characters with the specificity required for identification criteria. This marker may also highlight adaptive processes that could help understand the wing's influence on insect flight.  相似文献   

4.
Abstract.  Sympetrinae is the largest subfamily of the diverse dragonfly family Libellulidae. This subfamily, like most libellulid subfamilies, is defined currently by a few wing venation characters, none of which are synapomorphies for the taxon. In this study, we used DNA sequence data from the nuclear locus elongation factor-1α and the mitochondrial loci 16S and 12S rRNA, together with 38 wing venation characters, to test the monophyly of the Sympetrinae and several other libellulid subfamilies. No analysis recovered Sympetrinae as monophyletic, partly because of the position of Leucorrhinia (of the subfamily Leucorrhininae) as a strongly supported sister to Sympetrum (of Sympetrinae) in all analyses. The subfamilies Brachydiplactinae, Leucorrhininae, Trameinae and Trithemistinae were also found not to be monophyletic. Libellulinae was the only subfamily supported strongly as monophyletic. Consistency indices and retention indices of wing venation characters used to define various subfamilies were closer to zero than unity, showing that many of these characters were homoplasious, and therefore not useful for a classification scheme within Libellulidae.  相似文献   

5.
Abstract We examined the possible role of hybridization in the invasion process of the African honeybee by testing two hypotheses regarding fluctuating asymmetry (FA), a measure of developmental stability, in wing characteristics: (1) FA should be higher in hybrid versus parental genotypes of African and European races; (2) FA should be lower in African bees compared to hybrid and European workers. Parental and reciprocal hybrid worker genotypes were cross fostered in common-hive rearing environments. We did not find greater FA for wing size and shape in the hybrids compared to both parental types. However, we did find significantly lower FA of shape in the African workers compared to the European and hybrid workers, suggesting that European bees and their hybrids may have compromised fitness relative to African bees. We also found that the two hybrid genotypes significantly differed in overall wing size and shape. If these differences affect wing aerodynamics, then the paternity of hybrids may influence worker performance and could potentially contribute to the loss of European matrilines. Hybridization had few consistent effects on directional asymmetry for wing size and shape. Genotypic factors played a far greater role in determining the effect of hybridization on wing morphology than did differences in rearing environment. Thus, African bees may have lower FA for wing shape (and by inference greater developmental stability) relative to European and hybrid workers, which may contribute to the ability of African bees to displace European honeybee races in invaded regions.  相似文献   

6.
Latitudinal clinal variation in wing size and shape has evolved in North American populations of Drosophila subobscura within about 20 years since colonization. While the size cline is consistent to that found in original European populations (and globally in other Drosophila species), different parts of the wing have evolved on the two continents. This clearly suggests that 'chance and necessity' are simultaneously playing their roles in the process of adaptation. We report here rapid and consistent thermal evolution of wing shape (but not size) that apparently is at odds with that suggestion. Three replicated populations of D. subobscura derived from an outbred stock at Puerto Montt (Chile) were kept at each of three temperatures (13, 18 and 22 degrees C) for 1 year and have diverged for 27 generations at most. We used the methods of geometric morphometrics to study wing shape variation in both females and males from the thermal stocks, and rates of genetic divergence for wing shape were found to be as fast or even faster than those previously estimated for wing size on a continental scale. These shape changes did not follow a neat linear trend with temperature, and are associated with localized shifts of particular landmarks with some differences between sexes. Wing shape variables were found to differ in response to male genetic constitution for polymorphic chromosomal inversions, which strongly suggests that changes in gene arrangement frequencies as a response to temperature underlie the correlated changes in wing shape because of gene-inversion linkage disequilibria. In fact, we also suggest that the shape cline in North America likely predated the size cline and is consistent with the quite different evolutionary rates between inversion and size clines. These findings cast strong doubts on the supposed 'unpredictability' of the geographical cline for wing traits in D. subobscura North American colonizing populations.  相似文献   

7.
Drosophila buzzatii and D. koepferae are two sibling species that breed on the necrotic tissues of several cactus species and show a certain degree of niche overlap. Also, they show differences in several life history traits, such as body size and developmental time, which probably evolved as a consequence of adaptation to different host plants. In this work we investigate the ecological and genetic factors affecting wing morphology variation both within and between species. Three wing traits were scored, distal and proximal wing length and width in isofemale lines reared in two of the most important host cacti: Opuntia sulphurea and Trichocereus terschekii. Our results revealed that differences between species and sexes in wing size and shape were significant, whereas the cactus factor was only significant for wing size. Intraspecific analyses showed that differences among isofemale lines were highly significant for both size and shape in both species, suggesting that an important fraction of variation in wing morphology has a genetic basis. Moreover, the line by cactus interaction, which can be interpreted as a genotype by environment interaction, also accounted for a significant proportion of variation. In summary, our study shows that wing size is phenotypically plastic and that populations of D. buzzatii and D. koepferae harbour substantial amounts of genetic variation for wing size and shape. Interspecific differences in wing size and shape are interpreted in terms of spatial predictability of the different host plants in nature.  相似文献   

8.
Wing morphological variations are described here for the lycaenid butterfly Tongeia fischeri. A landmark‐based geometric morphometric approach based on wing venation of 197 male and 187 female butterflies collected in Japan was used to quantify wing size and shape variations between sexes and among populations. Sexual dimorphism in wing size and shape was detected. Females had significantly larger wings than males, while males showed a relatively elongated forewing with a longer apex and narrower wing tornus in comparison to females. Intraspecific variations in wing morphology among populations were revealed for the wing shape, but not wing size. Distinct wing shape differences were found in the vein intersections area around the distal part of the discal cell where median veins originated in the forewing and around the origin of the CU1 vein in the hindwing. In addition, phenotypic relationships inferred from wing shape variations grouped T. fischeri populations into three groups, reflecting the subspecies classification of the species. The spatial variability and phenotypic relationships between conspecific populations of T. fischeri detected here are generally in agreement with the previous molecular study based on mitochondrial and nuclear sequences, suggesting the presence of a phylogenetic signal in the wing shape of T. fischeri, and thus having taxonomic implications.  相似文献   

9.
Wings are a key trait underlying the evolutionary success of birds, bats, and insects. For over a century, researchers have studied the form and function of wings to understand the determinants of flight performance. However, to understand the evolution of flight, we must comprehend not only how morphology affects performance, but also how morphology and performance affect fitness. Natural and sexual selection can either reinforce or oppose each other, but their role in flight evolution remains poorly understood. Here, we show that wing shape is under antagonistic selection with regard to sexual and natural selection in a scrambling damselfly. In a field setting, natural selection (survival) favored individuals with long and slender forewings and short and broad hindwings. In contrast, sexual selection (mating success) favored individuals with short and broad forewings and narrow‐based hindwings. Both types of selection favored individuals of intermediate size. These results suggest that individuals face a trade‐off between flight energetics and maneuverability and demonstrate how natural and sexual selection can operate in similar directions for some wing traits, that is, wing size, but antagonistically for others, that is, wing shape. Furthermore, they highlight the need to study flight evolution within the context of species’ mating systems and mating behaviors.  相似文献   

10.
A central issue in evolutionary biology is to understand the mechanisms promoting morphological evolution during speciation. In a previous study, we showed that the Neotropical cactophilic sibling species Drosophila gouveai and Drosophila antonietae can be reared in media prepared with their presumptive natural host plants (Pilosocereus machrisis and Cereus hildmaniannus) and that egg to adult viability is not independent of the cactus host. In the present study, we investigate the effects of ecological and genetic factors on interspecific divergence in wing morphology, in relation to the pattern of wing venation and phenotypic plasticity in D. gouveai and D. antonietae, by means of the comparative analysis of isofemale lines reared in the two cactus hosts. The species differed significantly in wing size and shape, although specific differences were mainly localized in a particular portion of the wing. We detected significant variation in form among lines, which was not independent of the breeding cactus, suggesting the presence of genetic variation for phenotypic plasticity and wing shape variation in both species. We discuss the results considering the plausible role of host plant use in the evolutionary history of cactophilic Drosophila inhabiting the arid zones of South America. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 655–665.  相似文献   

11.
Butterflies display extreme variation in wing shape associated with tremendous ecological diversity. Disentangling the role of neutral versus adaptive processes in wing shape diversification remains a challenge for evolutionary biologists. Ascertaining how natural selection influences wing shape evolution requires both functional studies linking morphology to flight performance, and ecological investigations linking performance in the wild with fitness. However, direct links between morphological variation and fitness have rarely been established. The functional morphology of butterfly flight has been investigated but selective forces acting on flight behaviour and associated wing shape have received less attention. Here, we attempt to estimate the ecological relevance of morpho‐functional links established through biomechanical studies in order to understand the evolution of butterfly wing morphology. We survey the evidence for natural and sexual selection driving wing shape evolution in butterflies, and discuss how our functional knowledge may allow identification of the selective forces involved, at both the macro‐ and micro‐evolutionary scales. Our review shows that although correlations between wing shape variation and ecological factors have been established at the macro‐evolutionary level, the underlying selective pressures often remain unclear. We identify the need to investigate flight behaviour in relevant ecological contexts to detect variation in fitness‐related traits. Identifying the selective regime then should guide experimental studies towards the relevant estimates of flight performance. Habitat, predators and sex‐specific behaviours are likely to be major selective forces acting on wing shape evolution in butterflies. Some striking cases of morphological divergence driven by contrasting ecology involve both wing and body morphology, indicating that their interactions should be included in future studies investigating co‐evolution between morphology and flight behaviour.  相似文献   

12.
We introduce a method to transform wing venation data to a numerical form so that the venation pattern can be analysed and compared regardless of wing size and displacement of the pattern. We use the method for assessing the intraspecific variation and asymmetry within the individual of relative positions of forewing veins in ten species of elachistid moths. Both the intraspecific variation and intra-individual asymmetry were found to be greater than the differences frequently used as systematic characters on various levels within Elachistidae, and to some extent in other Lepidoptera. At least in Elachistidae, major alterations to the current classification will have to be made. Wing characters subject to intraspecific variation should not be used to delimit groups unless they are based on examination of population samples and supported by other characters.  相似文献   

13.
Although male ornaments may provide benefits to individuals bearing them, such structures may also entail fitness costs. Selection should favour aspects of the phenotype that act to reduce such costs, yet such compensatory traits are often ignored in studies of sexual selection. If a male ornament increases predation risk via reduced locomotor performance, then there may be selection for changes in morphological traits to compensate for behavioural or biomechanical changes in how individuals use their morphology (or both). We took a comparative approach aiming to test whether changes in wing beat frequency are evolutionarily correlated with increases in male ornamentation across stalk‐eyed fly species. Previous studies have shown that increased male eye span is evolutionarily correlated with increased wing size; thus, we tested whether there is additional compensation via increases in size‐adjusted wing beat frequency. The results obtained revealed that relative wing beat frequency is negatively related to relative eye span in males, and sexual dimorphism in wing beat frequency is negatively related to dimorphism in eye span. These findings, in addition to our finding that eye span dimorphism is positively related to aspect ratio dimorphism, suggest that male stalk‐eyed flies compensate primarily by increasing wing size and shape, which may then have resulted in the subsequent evolutionary reduction in wing beat frequency. Thus, exaggerated ornaments can result in evolutionary modifications in wing morphology, which in turn lead to adjustments in flapping kinematics, illustrating the tight envelope of trade‐offs when compensating for exaggerated ornaments. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 670–679.  相似文献   

14.
The precise identification of the digits of the avian wing is of importance in evolutionary studies. If the digits are numbered two, three and four, this has been taken to suggest that birds are not descended directly from dinosaurs. If the digits are numbered one, two and three, dinosaur origins become more plausible. Studies of the development of the avian wing have failed to resolve this dilemma. However, in some instances, it is possible to deduce information about evolutionary morphologies by manipulating development experimentally. We grafted beads loaded with fibroblast growth factor 4 into the distal tip of chick wing buds at times when the apical ectodermal ridge is regressing. The consequence was that the cartilage structure conventionally labelled ''element 5'' increased dramatically in size and acquired a digit-like morphology in some instances. Corresponding changes in soft tissue morphology were also observed. We conclude that it may be possible to resolve the issue of avian digit homology by the induction of experimental atavisms of this kind.  相似文献   

15.
The proximate and ultimate mechanisms underlying scaling relationships as well as their evolutionary consequences remain an enigmatic issue in evolutionary biology. Here, I investigate the evolution of wing allometries in the Schizophora, a group of higher Diptera that radiated about 65 million years ago, by studying static allometries in five species using multivariate approaches. Despite the vast ecological diversity observed in contemporary members of the Schizophora and independent evolutionary histories throughout most of the Cenozoic, size‐related changes represent a major contributor to overall variation in wing shape, both within and among species. Static allometries differ between species and sexes, yet multivariate allometries are correlated across species, suggesting a shared developmental programme underlying size‐dependent phenotypic plasticity. Static allometries within species also correlate with evolutionary divergence across 33 different families (belonging to 11 of 13 superfamilies) of the Schizophora. This again points towards a general developmental, genetic or evolutionary mechanism that canalizes or maintains the covariation between shape and size in spite of rapid ecological and morphological diversification during the Cenozoic. I discuss the putative roles of developmental constraints and natural selection in the evolution of wing allometry in the Schizophora.  相似文献   

16.
SUMMARY We have taken advantage of parallel instances of natural selection on body size in Drosophila melanogaster to investigate constraints and adaptation affecting wing shape. Using recently developed techniques for statistical shape analysis, we have examined variation in wing shape in similar body size clines on three continents. Gender-related shape differences were constant among all populations, suggesting that gender differences represent a developmental constraint on wing shape. In contrast, the underlying shape varied significantly between continents and shape change within each cline (i.e., between small and large body size populations) also varied between continents. Therefore, variation at these two levels presumably results from either drift or natural selection. Functional considerations suggest that shape variation between the continents is unlikely to be adaptive. However, cline-related shape change, which we show has a significant allometric component, may be adaptive. The overall range of wing shape variation, across a large range of wing size, is extremely small, and the possibility that wing shape is subject to stabilizing selection (or canalization) is discussed.  相似文献   

17.
A change in the system of wing venation of Drosophila melanogaster appeared in response to heat shock and positive selection pressure directed to restoring the normal formation of wing radial vein, L2, that had been violated earlier by the recessive mutation of radius incompletes. Positive selection was effective, L2 having been formed correctly and completely to 35 generation. Besides, (+)-selection was accompanied by appearance of a small fragment of an additional vein at the wing tip. Selection directed to increase of size of this fragment resulted in the sufficient changes in the system of wing venation as a whole. It is suggested that, during evolution, transformation of wing venation of Drosophila was effected by the change of the way of prepattern realization, whereas the cells of wing plate continued to allow the formation of veins practically over a whole area.  相似文献   

18.
Abstract.  Complexes of sibling and cryptic species are encountered frequently in parasitic Hymenoptera. Geometric morphometrics is a useful tool to detect minimal morphological variations, which often are undetectable by traditional morphological studies and even by classical morphometric approaches. We applied geometric morphometrics to wing venation to assess a complex case of sibling species in the genus Eubazus (Hymenoptera, Braconidae), parasitoids of conifer bark weevils of the genus Pissodes (Coleoptera, Curculionidae). The results and methods were compared with previous taxonomic studies on the same species, involving classical multivariate morphometrics, isoenzyme analyses, cross-mating experiments and biological observations. Geometric morphometrics confirmed the previous division into four distinct species. However, this approach enabled the four species to be separated simultaneously, with a reliability of 98.6% for well-classified females and 93.1% for males. A similar result in previous studies was obtained only by combining isoenzyme analyses and several canonical variate analyses, including many morphometric characters. Furthermore, measurements of wing venation were less time-consuming, more reliable and required less prior knowledge of braconid taxonomy than the measurements needed for the classical morphometrics methods. Geometric morphometrics was used also to test the effect of host species on wing shape. Several female populations of Eubazus semirugosus originating from three different Pissodes spp. were compared. Significant differences were found in wing shape between conspecific Eubazus from different host species. The results are discussed in relation to reproductive isolation and genetic flow between the four species.  相似文献   

19.
We examine several aerodynamic and thermoregulatory hypotheses about possible adaptive factors in the evolution of wings from small winglets in insects. Using physical models of Paleozoic insects in a wind tunnel, we explore the potential effects of wings for increasing gliding distance, increasing dispersal distance during parachuting, improving attitude control or stability, and elevating body temperatures during thermoregulation. The effects of body size and shape, wing length, number, and venation, and meteorological conditions are considered. Hypotheses consistent with both fixed and moveable wing articulations are examined. Short wings have no significant effects on any of the aerodynamic characteristics, relative to wingless models, while large wings do have significant effects. In contrast, short wings have large thermoregulatory effects relative to wingless models, but further increases in wing length do not significantly affect thermoregulatory performance. At any body size, there is a wing length below which there are significant thermoregulatory effects of increasing wing length, and above which there are significant aerodynamic effects of increasing wing length. The relative wing length at which this transition occurs decreases with increasing body size. These results suggest that there could be no effective selection for increasing wing length in wingless or short-winged insects in relation to increased aerodynamic capacity. Our results are consistent with the hypothesis that insect wings initially served a thermoregulatory function and were used for aerodynamic functions only at larger wing lengths and/or body sizes. Thus, we propose that thermoregulation was the primary adaptive factor in the early evolution of wings that preadapted them for the subsequent evolution of flight. Our results illustrate an evolutionary mechanism in which a purely isometric change in body size may produce a qualitative change in the function of a given structure. We propose a hypothesis in which the transition from thermoregulatory to aerodynamic function for wings involved only isometric changes in body size and argue that changes in body form were not a prerequisite for this major evolutionary change in function.  相似文献   

20.
Bai M  McCullough E  Song KQ  Liu WG  Yang XK 《PloS one》2011,6(6):e21600
This study examines the evolution hindwing shape in Chinese dung beetle species using morphometric and phylogenetic analyses. Previous studies have analyzed the evolution of wing shape within a single or very few species, or by comparing only a few wing traits. No study has analyzed wing shape evolution of a large number of species, or quantitatively compared morphological variation of wings with proposed phylogenetic relationships. This study examines the morphological variation of hindwings based on 19 landmarks, 119 morphological characters, and 81 beetle species. Only one most parsimonious tree (MPT) was found based on 119 wing and body characters. To better understand the possible role of the hindwing in the evolution of Scarabaeinae, additional phylogenetic analyses were proposed based on the only body features (106 characters, wing characters excluded). Two MPT were found based on 106 body characters, and five nodes were collapsed in a strict consensus. There was a strong correlation between the morphometric tree and all phylogenetic trees (r>0.5). Reconstructions of the ancestral wing forms suggest that Scarabaeinae hindwing morphology has not changed substantially over time, but the morphological changes that do occur are focused at the base of the wing. These results suggest that flight has been important since the origin of Scarabaeinae, and that variation in hindwing morphology has been limited by functional constraints. Comparison of metric disparity values and relative evolutionary sequences among Scarabaeinae tribes suggest that the primitive dung beetles had relatively diverse hindwing morphologies, while advanced dung beetles have relatively similar wing morphologies. The strong correlation between the morphometric tree and phylogenetic trees suggest that hindwing features reflect the evolution of whole body morphology and that wing characters are suitable for the phylogenetic analyses. By integrating morphometric and cladistic approaches, this paper sheds new light on the evolution of dung beetle hind wings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号