首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The creation of temporal and newly sown field margins for 6 years is a common agri-environment scheme (AES) in the Netherlands. Conservation profits resulting from AES vary over different areas and need further studying. We examined plant species richness in such field margins and adjacent ditch banks in the province of Zeeland, where these linear elements do not experience plant biomass removal after mowing as management strategy. First, during 2 years, we inventoried field margins sown with a wildflower mixture and related the species composition and richness to the age of the margins. In a second assessment, we studied plant species richness on ditch banks protected from arable fields by these margins. Major clusters in a principal component analysis (PCA) on species composition in the field margins showed a succession from sown and ruderal annual species (year 1), to sown perennial species (year 2) and ending with a dominance by tussock forming grass species and Urtica dioica (year 5–6). Total plant species richness decreased with increasing age of the margins, and this was caused by the combination of a decline in sown species and a stable number of not-sown species. The presence of field margins during several years did not result in an increase in plant species richness on adjacent ditch banks. In both the field margins and on the ditch banks, mowing management is not followed by the removal of the cuttings. For plant conservation, the results of these field margins are disappointing, probably due to the lack of a proper management. Therefore, we recommend implementing a hay-making and opening management, to increase plant richness and to reduce noxious weeds in the margins and on the ditch banks.  相似文献   

2.
Farmland bird populations are in a deep crisis across Europe. Agri-environment schemes (AES) were implemented by the European Union to stop and reverse the general decline of biodiversity in agricultural landscapes. In Germany, flower strips are one of the most common AES. Establishing high-quality perennial wildflower strips (WFS) with species-rich native forb mixtures from regional seed propagation is a recent approach, for which the effectiveness for birds has not yet been sufficiently studied. We surveyed breeding birds and vegetation on 40 arable fields with WFS (20 with single and 20 with aggregated WFS) and 20 arable fields lacking WFS as controls across Saxony-Anhalt (Germany). Additionally, vegetation composition, WFS quantity and landscape structure (e.g. distance to nearest woody element) were considered in our analyses. All WFS were established with species-rich native seed mixtures (30 forbs) in agricultural practice as AES. Arable fields with WFS had a higher species richness and territory density of birds than controls, confirming the effectiveness of this AES. A forb-rich vegetation was the main driver promoting birds. Flower strip quantity at the landscape level had positive effects only on bird densities, but also single WFS achieved benefits. A short distance from WFS to woody elements increased total bird species richness. However, the density of farmland birds, which are target species of these AES, were negatively affected by the proximity and proportion of woody elements in the vicinity. The effect of the proportion of non-intensively used open habitats and overall habitat richness was unexpectedly low in the otherwise intensively farmed landscape. Species-rich perennial WFS significantly promoted breeding birds. Successful establishment of WFS, resulting in high-quality habitats, a high flower strip quantity as well as implementation in open landscapes were shown to maximise the effectiveness for restoring declining and AES target farmland birds.  相似文献   

3.
Capsule: Farmers can influence species richness and abundance of typical farmland birds positively, even on rather small farms (20–50?ha) within intensively farmed areas.

Aims: To assess the impact of farm settings, farm characteristics and heterogeneity of habitats on bird species richness and abundance, and to indicate which actions and measures farmers can take to promote farmland birds at a farm level.

Methods: Farmland bird species richness and abundance were modelled as a function of farm settings, farm characteristics and semi-natural habitats on 133 farms. The data were analysed at the farm scale, as this is the ‘operating range’ of a farmer, but also at the territory scale, which represents the range birds (mainly passerines) use during the breeding season. Additionally, effects of the farm variables on species abundance/occurrence were investigated for nine widespread species.

Results: Farmland bird species abundance (but not richness) was elevated on organic compared to non-organic farms. Farmland bird species richness and abundance increased with decreasing mean field size. Crop diversity had positive effects on five species at the territory scale. Several semi-natural habitats, especially hedgerows, were associated with higher bird species richness and abundance at both farm and territory scales. Settlement revealed rather negative effects at the farm scale, but several positive relations at the territory scale.

Conclusion: Birds, especially passerines, are restricted to a small area during the breeding season, and so even small farms can contribute to their protection by growing diverse crops, reducing field size and managing a diversity of semi-natural, uncropped habitats. These measures should ideally be accessible within the relatively small scale of a bird territory.  相似文献   

4.
Although elevational patterns of species richness have been well documented, how the drivers of richness gradients vary across ecological guilds has rarely been reported. Here, we examined the effects of spatial factors (area and mid‐domain effect; MDE) and environmental factors, including metrics of climate, productivity, and plant species richness on the richness of breeding birds across different ecological guilds defined by diet and foraging strategy. We surveyed 12 elevation bands at intervals of 300 m between 1,800 and 5,400 m a.s.l using line‐transect methods throughout the wet season in the central Himalaya, China. Multiple regression models and hierarchical partitioning were used to assess the relative importance of spatial and environmental factors on overall bird richness and guild richness (i.e., the richness of species within each guild). Our results showed that richness for all birds and most guilds displayed hump‐shaped elevational trends, which peaked at an elevation of 3,300–3,600 m, although richness of ground‐feeding birds peaked at a higher elevation band (4,200–4,500 m). The Normalized Difference Vegetation Index (NDVI)—an index of primary productivity—and habitat heterogeneity were important factors in explaining overall bird richness as well as that of insectivores and omnivores, with geometric constraints (i.e., the MDE) of secondary importance. Granivore richness was not related to primary production but rather to open habitats (granivores were negatively influenced by habitat heterogeneity), where seeds might be abundant. Our findings provide direct evidence that the richness–environment relationship is often guild‐specific. Taken together, our study highlights the importance of considering how the effects of environmental and spatial factors on patterns of species richness may differ across ecological guilds, potentially leading to a deeper understanding of elevational diversity gradients and their implications for biodiversity conservation.  相似文献   

5.
To combat global warming and biodiversity loss, we require effective forest restoration that encourages recovery of species diversity and ecosystem function to deliver essential ecosystem services, such as biomass accumulation. Further, understanding how and where to undertake restoration to achieve carbon sequestration and biodiversity conservation would provide an opportunity to finance ecosystem restoration under carbon markets. We surveyed 30 native mixed‐species plantings in subtropical forests and woodlands in Australia and used structural equation modeling to determine vegetation, soil, and climate variables most likely driving aboveground biomass accrual and bird richness and investigate the relationships between plant diversity, aboveground biomass accrual, and bird diversity. We focussed on woodland and forest‐dependent birds, and functional groups at risk of decline (insectivorous, understorey‐nesting, and small‐bodied birds). We found that mean moisture availability strongly limits aboveground biomass accrual and bird richness in restoration plantings, indicating potential synergies in choosing sites for carbon and biodiversity purposes. Counter to theory, woody plant richness was a poor direct predictor of aboveground biomass accrual, but was indirectly related via significant, positive effects of stand density. We also found no direct relationship between aboveground biomass accrual and bird richness, likely because of the strong effects of moisture availability on both variables. Instead, moisture availability and patch size strongly and positively influenced the richness of woodland and forest‐dependent birds. For understorey‐nesting birds, however, shrub cover and patch size predicted richness. Stand age or area of native vegetation surrounding the patch did not influence bird richness. Our results suggest that in subtropical biomes, planting larger patches to higher densities, ideally using a diversity of trees and shrubs (characteristics of ecological plantings) in more mesic locations will enhance the provision of carbon and biodiversity cobenefits. Further, ecological plantings will aid the rapid recovery of woodland and forest bird richness, with comparable aboveground biomass accrual to less diverse forestry plantations.  相似文献   

6.
Over the last six decades, populations of wader species like the Black-tailed Godwit (Limosa limosa) have sharply decreased in the Netherlands. Agricultural intensification has led to reduced habitat quality for meadow birds. As a consequence, reproductive success has declined. One of the main drivers of this decline in reproductive success is reduced food availability for meadow bird chicks. Agri-environment schemes (AES), designed to halt this decline, have so far been insufficient. Most of these AES focus on entire fields, but recent research suggests that differences in suitability exist within fields. Grass field margins may be more suitable for meadow bird chicks than the center of intensively managed grass lands. To improve existing meadow bird AES it could be beneficial to implement additional management in field margins of intensively managed grass fields. An already existing type of field margin AES with additional management is the botanical field margin. Here, we evaluate four different types of field margin management, including botanical field margins, focusing on aerial insects (an important part of the diet of Black-tailed Godwit chicks and Redshank chicks) in field centers and margins. Grass field margins contained more large aerial insects than field centers and, more importantly, additional management of the grass field margin increased the number of aerial insects in the margin. We conclude that combining meadow bird AES and botanical field margin management may enhance meadow bird food availability and improve the efficacy of AES.  相似文献   

7.
8.
Severe declines in biodiversity have been well documented for many taxonomic groups due to intensification of agricultural practices. Establishment and appropriate management of arable field margins can improve the diversity and abundance of invertebrate groups; however, there is much less research on field margins within grassland systems. Three grassland field margin treatments (fencing off the existing vegetation “fenced”; fencing with rotavation and natural regeneration “rotavated” and; fencing with rotavation and seeding “seeded”) were compared to a grazed control in the adjacent intensively managed pasture. Invertebrates were sampled using emergence traps to investigate species breeding and overwintering within the margins. Using a manipulation experiment, we tested whether the removal of grazing pressure and nutrient inputs would increase the abundance and richness of breeding invertebrates within grassland field margins. We also tested whether field margin establishment treatments, with their different vegetation communities, would change the abundance and richness of breeding invertebrates in the field margins. Exclusion of grazing and nutrient inputs led to increased abundance and richness in nearly all invertebrate groups that we sampled. However, there were more complex effects of field margin establishment treatment on the abundance and richness of invertebrate taxa. Each of the three establishment treatments supported a distinct invertebrate community. The removal of grazing from grassland field margins provided a greater range of overwintering/breeding habitat for invertebrates. We demonstrate the capacity of field margin establishment to increase the abundance and richness in nearly all invertebrate groups in study plots that were located on previously more depauperate areas of intensively managed grassland. These results from grassland field margins provide evidence to support practical actions that can inform Greening (Pillar 1) and agri‐environment measures (Pillar 2) of the Common Agricultural Policy (CAP). Before implementing specific management regimes, the conservation aims of agri‐environment measures should be clarified by defining the target species or taxonomic groups.  相似文献   

9.
Filter strips are strips of herbaceous vegetation planted along agricultural field margins adjacent to streams or wetlands and are designed to intercept sediment, nutrients, and agrichemicals. Roughly 16,000 ha of filter strips have been established in Maryland through the United States Department of Agriculture's Conservation Reserve Enhancement Program. Filter strips often represent the only uncultivated herbaceous areas on farmland in Maryland and therefore may be important habitat for early-successional bird species. Most filter strips in Maryland are planted to either native warm-season grasses or cool-season grasses and range in width from 10.7 m to 91.4 m. From 2004 to 2007 we studied the breeding and wintering bird communities in filter strips adjacent to wooded edges and non-buffered field edges and the effect that grass type and width of filter strips had on bird community composition. We used 5 bird community metrics (total bird density, species richness, scrub-shrub bird density, grassland bird density, and total avian conservation value), species-specific densities, nest densities, and nest survival estimates to assess the habitat value of filter strips for birds. Breeding and wintering bird community metrics were greater in filter strips than in non-buffered field edges but did not differ between cool-season and warm-season grass filter strips. Most breeding bird community metrics were negatively related to the percent cover of orchardgrass (Dactylis glomerata) in ≥1 yr. Breeding bird density was greater in narrow (<30 m) compared to wide (>60 m) filter strips. Our results suggest that narrow filter strips adjacent to wooded edges can provide habitat for many bird species but that wide filter strips provide better habitat for grassland birds, particularly obligate grassland species. If bird conservation is an objective, avoid planting orchardgrass in filter strips and reduce or eliminate orchardgrass from filter strips through management practices. © 2011 The Wildlife Society.  相似文献   

10.
Capsule Norway Spruce plantations with Scots Pine as a secondary tree species had higher bird densities than pure Norway Spruce. Shrub cover was the most important structural variable, influencing bird density, species richness and Simpson’s diversity.

Aims To investigate whether incorporating a native tree component into non‐native coniferous plantations had any effect on bird communities or vegetation structure.

Methods Birds were surveyed in plantations of Norway Spruce mixed with Oak and Scots Pine, each paired with a plantation of pure Norway Spruce. distance was used to generate bird densities. Bird density, species richness and Simpson’s diversity were compared between each mix type and pure Norway Spruce. glms were used to investigate relationships between structural components of plantations and bird data.

Results Bird communities of mixed plantations differed only slightly in their composition from pure Norway Spruce. Bird density was significantly higher in Scots Pine mixes than in Oak mixes or pure Norway Spruce. Neither species richness nor Simpson’s diversity differed significantly between the plantation types. Some vegetation components differed between the plantations and shrub cover was positively associated with bird density, species richness and Simpson’s diversity. The presence of rides also increased bird density.

Conclusions There is a positive effect on bird communities of including a native tree species in non‐native coniferous plantations, but the magnitude of the effect is small. The influence of shrub cover on birds suggests that forest management may play an important role in determining the utility of plantations for birds. We recommend the establishment of mixed tree species plantations where possible, although, in the case of Oak mixes, the Norway Spruce appeared to suppress growth of the Oak and thus may be restricting its effect on birds. Changes in management, such as planting Oaks in clumps or heavier thinning of the coniferous component, could address this problem.  相似文献   

11.
At a regional scale, species richness and human population size are frequently positively correlated across space. Such patterns may arise because both species richness and human density increase with energy availability. If the species-energy relationship is generated through the 'more individuals' hypothesis, then the prediction is that areas with high human densities will also support greater numbers of individuals from other taxa. We use the unique data available for the breeding birds in Europe to test this prediction. Overall regional densities of bird species are higher in areas with more people; species of conservation concern exhibit the same pattern. Avian density also increases faster with human density than does avian biomass, indicating that areas with a higher human density have a higher proportion of small-bodied individuals. The analyses also underline the low numbers of breeding birds in Europe relative to humans, with a median of just three individual birds per person, and 4 g of bird for every kilogram of human.  相似文献   

12.
Studies evaluating agri‐environmental schemes (AES) usually focus on responses of single species or functional groups. Analyses are generally based on simple habitat measurements but ignore food availability and other important factors. This can limit our understanding of the ultimate causes determining the reactions of birds to AES. We investigated these issues in detail and throughout the main seasons of a bird's annual cycle (mating, postfledging and wintering) in a dry cereal farmland in a Special Protection Area for farmland birds in central Spain. First, we modeled four bird response parameters (abundance, species richness, diversity and “Species of European Conservation Concern” [SPEC]‐score), using detailed food availability and vegetation structure measurements (food models). Second, we fitted new models, built using only substrate composition variables (habitat models). Whereas habitat models revealed that both, fields included and not included in the AES benefited birds, food models went a step further and included seed and arthropod biomass as important predictors, respectively, in winter and during the postfledging season. The validation process showed that food models were on average 13% better (up to 20% in some variables) in predicting bird responses. However, the cost of obtaining data for food models was five times higher than for habitat models. This novel approach highlighted the importance of food availability‐related causal processes involved in bird responses to AES, which remained undetected when using conventional substrate composition assessment models. Despite their higher costs, measurements of food availability add important details to interpret the reactions of the bird community to AES interventions and thus facilitate evaluating the real efficiency of AES programs.  相似文献   

13.
Land management intrinsically influences the distribution of animals and can consequently alter the potential for density-dependent processes to act within populations. For declining species, high densities of breeding territories are typically considered to represent productive populations. However, as density-dependent effects of food limitation or predator pressure may occur (especially when species are dependent upon separate nesting and foraging habitats), high territory density may limit per-capita productivity. Here, we use a declining but widespread European farmland bird, the yellowhammer Emberiza citrinella L., as a model system to test whether higher territory densities result in lower fledging success, parental provisioning rates or nestling growth rates compared to lower densities. Organic landscapes held higher territory densities, but nests on organic farms fledged fewer nestlings, translating to a 5 times higher rate of population shrinkage on organic farms compared to conventional. In addition, when parental provisioning behaviour was not restricted by predation risk (i.e., at times of low corvid activity), nestling provisioning rates were higher at lower territory densities, resulting in a much greater increase in nestling mass in low density areas, suggesting that food limitation occurred at high densities. These findings in turn suggest an ecological trap, whereby preferred nesting habitat does not provide sufficient food for rearing nestlings at high population density, creating a population sink. Habitat management for farmland birds should focus not simply on creating a high nesting density, but also on ensuring heterogeneous habitats to provide food resources in close proximity to nesting birds, even if this occurs through potentially restricting overall nest density but increasing population-level breeding success.  相似文献   

14.
The decline in farmland birds observed throughout Europe during recent decades has attracted much attention. Agricultural intensification or land abandonment are commonly forwarded as key drivers. Several countries have established agri-environmental schemes (AES) to counter these negative trends among farmland birds. This paper reports a study of the relationship between land use and bird species in the agricultural landscape of Norway. The main objective was to investigate the effect of spatial heterogeneity and diversity of land use on total richness and abundance of farmland birds at a national level.Monitoring the distribution and abundance of birds is part of the Norwegian monitoring programme for agricultural landscapes. The monitoring programme is based on mapping of 1 × 1 km squares distributed across the entire agricultural landscape. Within these squares permanent observation points are established for bird monitoring. Detailed interpretation of aerial photographs provides the land classification. We tested the relationship between landscape metrics at different levels of land type detail and species richness and abundance of farmland and non-farmland birds.There was a positive relationship between species richness and abundance of farmland birds and agricultural area. For non-farmland birds the relationship was negative. Spatial heterogeneity of land use was a significant positive factor for both farmland and non-farmland species. High land type diversity was positive for farmland bird richness, but negative for abundance. Non-farmland bird richness was not affected by land type diversity, but abundance had a negative response.The results presented in this paper highlight the importance of a spatial heterogeneous landscape. However, we also found that land type diversity could negatively affect the abundance of both farmland and non-farmland birds. Our findings suggest a need for different management approaches depending on whether the aim is increased species richness or abundance. Achieving both aims with the same means might be difficult. We thus suggest a need for land use analyses before proper management strategies can be implemented.  相似文献   

15.
Capsule Different urban breeding bird communities are associated with different habitat types, but, although community species diversity varies significantly, total bird density does not.

Aims To investigate the association between breeding bird communities and habitats within Bristol, UK and how these communities vary in terms of species diversity and total bird abundance.

Methods Breeding density data for 70 species in the metropolitan area of Bristol, UK were subjected to de‐trended correspondence analysis to identify the number of different communities present and their indicator species. These data were then used to identify patterns of habitat association with each community and differences in species richness and total bird density.

Results Three communities were identified: a rural community associated with woodland, managed grassland and inland water; a suburban community associated with buildings and residential gardens; and an intermediate community that shared some of these habitat characteristics. Species richness, but not total bird abundance, was lowest in the suburban community.

Conclusion The diversity of species in urban areas appears to be most dependent upon the availability of patches of natural and semi‐natural habitats. Residential gardens support fewer species, but those species that are present may be found at high densities.  相似文献   

16.
洪咏怡  卢训令  赵海鹏 《生态学报》2021,41(5):2045-2055
鸟类是地球生物多样性中的重要组成部分,在生态系统功能和服务中发挥着重要作用,是生态环境变化的重要指示物种。农业景观中的食虫鸟类提供了重要的虫害控制服务。当前,农业景观中鸟类多样性丧失加剧,为探讨鸟类多样性在各生境以及年际间的变化,以黄淮平原为研究区,在河流、湖泊、农田、村庄等生境中共设置20个样点。于2016-2019年连续4年在繁殖期采用样线法对鸟类进行多样性调查。调查结果显示:(1)共发现22922只个体,分属14目,38科,53属。从区系分布来看,各生境各年间均以广布种为主;从生态类群来看,鸣禽占绝对优势;从居留型来看,留鸟所占比例最高。(2)在食性组成上,从物种丰富度看,食虫鸟类有57种,约占总物种数的77%;从个体数来看,杂食性鸟类占比超52%。(3)物种丰富度、多样性和均匀度指数最高值均出现在湖泊或河流生境中。(4)鸟类群落相似性分析显示,各生境间鸟类群落均为中等相似程度;鸟类物种丰富度波动幅度在农田和村庄中呈逐年上升趋势。(5)物种多样性加性拆分分析显示,在生境尺度上,局地的α多样性是生物多样性的最重要组成,而从整个研究区来看,生境间的差异则更为重要。造成鸟类多样性时空差异的原因复杂多样,而生境异质性的增加和水域的存在对提高鸟类多样性是具有积极作用的。调查中超过77%的物种和40%的个体均为食虫鸟类,应当充分重视鸟类为区域农业景观提供的虫害控制服务。本研究可为区域鸟类多样性保护及鸟类提供的生态系统服务的提升管理提供理论基础和科学依据。  相似文献   

17.
18.
Agricultural intensification in Europe has affected farmland bird populations negatively, both during summer and winter. Although the migratory period poses separate challenges on birds than breeding and wintering, the consequences of farming practices for birds during migration remain poorly investigated. We monitored abundance and species richness of migratory birds in autumn at matched pairs of organic and conventional farms situated either in intensively farmed open plains (homogeneous landscapes) or in small‐scale farming landscapes (heterogeneous landscapes) in southern Sweden. Total bird density did not differ between landscape types but was marginally higher on organic compared to conventional farms. When including taxonomic status in the model (passerines vs non‐passerines), we found significantly more birds on organic farms, and more non‐passerines in the homogeneous landscapes. The effect of farming practice and landscape type on density differed between functional groups. Omnivore density was higher in the homogeneous landscapes, and invertebrate feeders were marginally more abundant on organic farms. The effects of farming practice on the overall species richness and on the density of granivorous birds were landscape dependent. In the homogeneous landscapes, organic farms held a higher number of species and density of granivorous birds than conventional farms, but there was no such difference in the heterogeneous landscapes. Thus, organic farming can enhance abundance and species richness of farmland birds during migration, but the effect differs between landscape types and species. The effectiveness of organic farming was highest in the homogeneous landscape making it important to promote organic farming there. However, for some species during migration, increased heterogeneity in homogeneous landscapes may have negative effects. We propose that migratory bird diversity in homogeneous landscapes may be best preserved by keeping the landscape open, but that a reduced agricultural intensity, such as organic farming, should be encouraged.  相似文献   

19.
Aim To examine the species richness of breeding birds along a local elevational gradient and to test the following assumptions of the energy limitation hypothesis: (1) the energy flux through birds is positively correlated with above‐ground net primary productivity, (2) bird density is positively correlated with total energy flux, and (3) bird species richness is positively correlated with bird density. Location An elevational gradient from 1400 to 3700 m on Mt. Yushan, the highest mountain in Taiwan (23°28′30″ N, 120°54′00″ E), with a peak of 3952 m a.s.l. Methods We established 50 sampling stations along the elevational gradient. From March to July 1992, we estimated the density of each bird species using the variable circular‐plot method. Above‐ground net primary productivity was modelled using monthly averages from weather data for the years 1961–90. Results Bird species richness had a hump‐shaped relationship with elevation and with net primary productivity. Bird energy flux was positively correlated with net primary productivity and bird species richness was positively correlated with bird density. The relationship between bird density and energy flux was hump‐shaped, which does not support one assumption of the energy limitation hypothesis. Main conclusions The results supported two essential assumptions of the energy limitation hypothesis. However, when energy availability exceeded a certain level, it could decrease species richness by increasing individual energy consumption, which reduced bird density. Thus, energy availability is a primary factor influencing bird species richness at this scale, but other factors, such as body size, could also play important roles.  相似文献   

20.
The conservation of biodiversity within tropical forest regions does not lie only in the maintenance of natural forest areas, but on conservation strategies directed toward agricultural land types within which they are embedded. This study investigated variations in bird assemblages of different functional groups of forest‐dependent birds in three agricultural land types, relative to distance from the interior of 34 tropical forest patches of varying sizes. Point counts were used to sample birds at each study site visited. Data from counts were used to estimate species richness, species evenness, and Simpson's diversity of birds. Mean species richness, evenness, and diversity were modeled as responses and as a function of agricultural land type, distance from the forest interior and three site‐scale vegetation covariates (density of large trees, fruiting trees, and patch size) using generalized linear mixed‐effect models. Mean observed species richness of birds varied significantly within habitat types. Mean observed species richness was highest in forest interior sites while sites located in farm centers recorded the lowest mean species richness. Species richness of forest specialists was strongly influenced by the type of agricultural land use. Fallow lands, density of large trees, and patch size strongly positively influenced forest specialists. Insectivorous and frugivorous birds were more species‐rich in fallow lands while monoculture plantations favored nectarivorous birds. Our results suggest that poor agricultural practices can lead to population declines of forest‐dependent birds particularly specialist species. Conservation actions should include proper land use management that ensures heterogeneity through retention of native tree species on farms in tropical forest‐agriculture landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号