首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, sensitive and specific method for the determination of kynurenine is described. This is based on alkaline cleavage of kynurenine, followed by solvent extraction, trifluoroacetylation and gas—liquid chromatography with electron capture detection. Using this method kynurenine has been determined in urine and plasma, and for the first time in brain and cerebrospinal fluid. Increases in kynurenine in brain, plasma and urine are demonstrated following tryptophan administration to man and rat.  相似文献   

2.
Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase   总被引:16,自引:0,他引:16  
Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase was characterized, taking advantage of its induction by bacterial lipopolysaccharide. Our results demonstrated that in various tissues, N-formylkynurenine produced by the dioxygenase from tryptophan was rapidly hydrolyzed into kynurenine by a kynurenine formamidase, but it was not further metabolized. The localization in the liver and kidney of the kynurenine-metabolizing enzymes suggested that kynurenine thus formed was transported by the bloodstream to those two organs to be metabolized. In fact, the plasma kynurenine level increased in parallel with the induction of the dioxygenase by lipopolysaccharide, and kinetic analysis indicated that at the maximal induction of the enzyme there was a 3-fold increase in the kynurenine production. The major metabolic route of kynurenine was excretion in urine as xanthurenic acid. This increase in the kynurenine production was not explained by L-tryptophan 2,3-dioxygenase in the liver, because during the induction of indoleamine 2,3-dioxygenase, the hepatic enzyme level was substantially suppressed. These findings indicated that indoleamine 2,3-dioxygenase actively oxidized tryptophan in mice and that its induction resulted in an increase in tryptophan degradation.  相似文献   

3.
A rapid, sensitive assay for tryptophan and some of its metabolites in urine, plasma and saliva has been developed using sodium dodecylsulphate as a pairing ion in a surfactant ion-pair high-performance liquid chromatography technique. The method is highly selective for tryptophan which is separated from its main indoleamine metabolites, 5-hydroxytryptophan, 5-hydroxytryptamine and 5-hydroxyindoleacetic acid, and from kynurenine. The usefulness of the assay has been demonstrated in plasma level and urinary excretion studies of orally administered tryptophan.  相似文献   

4.
SYNTHESIS AND METABOLISM OF l-KYNURENINE IN RAT BRAIN   总被引:11,自引:7,他引:4  
Abstract— A method for the quantitative analysis of femtomole amounts of kynurenine (along with tryptophan, 3-hydroxykynurenine and kynuramine) in rat brain using high pressure liquid chroma-tography and electron-capture GLC is described. Endogenous concentrations of these substances in rat brain regions were measured, and their formation after the injection of radioactive tryptophan or kynurenine was determined. Kynurenine was formed from tryptophan in brain and was also taken up from the periphery. Extracerebral kynurenine was calculated to account for 60% of the cerebral pool of kynurenine. The cerebral rates of synthesis of kynurenine and 3-hydroxykynurenine were 0.29 and 0.17nmol/g/h. The turnover rate of kynurenine in the brain was 1.02 nmol/g/h measured from [14C]tryptophan or 1.14 nmol/g/h from [3H]kynurenine injected intraperitoneally. Kynuramine levels in different areas of the brain were similar to those of tryptamine. Following intraperitoneal injection of [14C]tryptophan, the presence of anthranilic, 3-hydroxyanthranilic, xanthurenic, kynurenic and quinaldic acids was demonstrated in the brain.  相似文献   

5.
The distribution of the indoleamine 2,3-dioxygenase activity was investigated in various parts of the rabbit brain using the supernatant fraction (30,000 X g, 30 min) of homogenates. A low but significant activity was detected in all parts of the brain. The highest activity was associated with the pineal gland and choroid plexus. Specific activities of the supernatant fractions derived from the pineal gland and choroid plexus were 84.8 and 34.2 pmol/h/mg of protein at 37 degrees C, respectively, with L-tryptophan as substrate. When the pineal gland was cultured with L-[methylene-14C]tryptophan, L-[methylene-14C]kynurenine formed by the action of indoleamine 2,3-dioxygenase was found as one of the major products. It was isolated by DEAE-cellulose column chromatography and identified by thin layer chromatography with and without the treatment by kynureninase from a pseudomonad. The amount of kynurenine thus measured accounted for approximately one-third of the total amount of tryptophan metabolites, indicating that the kynurenine pathway is one of the major metabolic pathways of tryptophan in the rabbit pineal gland.  相似文献   

6.
Exhaustive exercise can cause a transient depression of immune function. Data indicate significant effects of immune activation cascades on the biochemistry of monoamines and amino acids such as tryptophan. Tryptophan can be metabolized through different pathways, a major route being the kynurenine pathway, which is often systemically up-regulated when the immune response is activated. The present study was undertaken to examine the effect of exhaustive aerobic exercise on biomarkers of immune activation and tryptophan metabolism in trained athletes. After a standardized breakfast 2 h prior to exercise, 33 trained athletes (17 women, 16 men) performed an incremental cycle ergometer exercise test at 60 rpm until exhaustion. After a 20 min rest phase, the participants performed a 20 min maximal time-trial on a cycle ergometer (RBM Cyclus 2, Germany). During the test, cyclists were strongly encouraged to choose a maximal pedalling rate that could be maintained for the respective test duration. Serum concentrations of amino acids tryptophan, kynurenine, phenylalanine, and tyrosine were determined by HPLC and immune system biomarker neopterin by ELISA at rest and immediately post exercise. Intense exercise was associated with a strong increase in neopterin concentrations (p<0.001), indicating increased immune activation following intense exercise. Exhaustive exercise significantly reduced tryptophan concentrations by 12% (p<0.001) and increased kynurenine levels by 6% (p = 0.022). Also phenylalanine to tyrosine ratios were lower after exercise as compared with baseline (p<0.001). The kynurenine to tryptophan ratio correlated with neopterin (r = 0.560, p<0.01). Thus, increased tryptophan catabolism by indoleamine 2,3-dioxygenase appears likely. Peak oxygen uptake correlated with baseline tryptophan and kynurenine concentrations (r = 0.562 and r = 0.511, respectively, both p<0.01). Findings demonstrate that exhaustive aerobic exercise is associated with increased immune activation and alterations in monoamine metabolism in trained athletes which may play a role in the regulation of mood and cognitive processes.  相似文献   

7.
An isocratic reversed-phase high-performance liquid chromatographic method for the simultaneous determination of tryptophan and four metabolites of the kynurenine pathway (kynurenine, 3-hydroxykynurenine, kynurenic acid and 3-hydroxyanthranilic acid) in human serum is described. This new method, which uses both isocratic elution and two on-line connected programmable ultraviolet and spectrofluorimetric detectors, allows the determination of these metabolites, in the physiological ranges, with satisfying specificity and sensitivity within 30 min.  相似文献   

8.
Reversed-phase HPLC method by direct plasma injection has been developed for the analysis of major tryptophan metabolites (both metabolites in kynurenine pathways and in indole pathways). Two columns were used: one was a short precolumn of protein-coated octadecylsilane (ODS) for deproteinization and also for trapping of tryptophan metabolites, and the other was an analytical column of the usual ODS. By a column-switching method, the metabolites trapped in the precolumn were allowed to be eluted through the analytical column. The recovery of the spiked metabolites in plasma by the present method was almost quantitative (98-102%) with good reproducibility (CV less than 3%, within-run), and the method is determined to be simple and reproducible for the analysis of total (free + protein-bound) tryptophan metabolites in plasma. The analysis of rabbit plasma showed several peaks corresponding to kynurenine, kynurenic acid, 5-hydroxyindole-3-acetic acid, indole-3-lactic acid, indole-3-acetic acid, indole-3-propionic acid, and 5-hydroxy-tryptamine in addition to tryptophan.  相似文献   

9.
A high performance liquid chromatography method with ultraviolet and fluorimetric detection has been developed for the simultaneous determination of urinary creatinine (Cr), tryptophan (Trp) and three Trp-related metabolites including kynurenine (Kyn), kynurenic acid (Kyna) and 5-hydroxyindole-3-acetic acid (5-HIAA). Samples were pretreated by centrifugation after a freeze-thaw cycle to remove protein and other precipitates. Separation was achieved by an Agilent HC-C18 (2) analytical column and a gradient elution program with a constant flow rate 1mL/min at an ambient temperature. Total run time was 30 min. Cr, Kyn and Kyna were measured by a variable wavelength detector at wavelengths 258 nm, 365 nm and 344 nm respectively. Trp and 5-HIAA were measured by a fluorescence detector with an excitation wavelength of 295 nm and an emission wavelength of 340 nm. This allowed the determination of Kyn/Cr, Kyna/Cr, Trp/Cr and 5-HIAA/Cr concentration ratios in a single run on the same urine sample. Good linear responses were found with correlation coefficient (r)>0.999 for all analytes within the concentration range of physiological level. The limit of detection of the developed method was: Cr, 0.0002 g/L; Kyn, 0.1 μmol/L; Kyna, 0.04 μmol/L; Trp, 0.02 μmol/L and 5-HIAA, 0.01 μmol/L. Recoveries from spiked human urine were: Cr, 93.0-106.4%; Kyn, 97.9-106.9%; Kyna, 98.5-105.6%; Trp, 96.7-105.2% and 5-HIAA, 96.1-99.7%. CVs of repeatability and intermediate precision of all analytes were less than 5%. This method has been applied to the analysis of urine samples from normal subjects.  相似文献   

10.
There is now some evidence that i) the availability of plasma tryptophan, the precursor of serotonin, is significantly lower in pregnant women at the end of term and the first few days after delivery than in nonpregnant women; and ii) both pregnancy and the early puerperium are accompanied by activation of the inflammatory response system. The aims of the present study were to examine the effects of pregnancy and delivery on plasma kynurenine, a major tryptophan catabolite synthesized after induction of indoleamine-2, 3 dioxygenase (IDO) by pro-inflammatory cytokines. We measured plasma kynurenine and tryptophan and immune markers, such as serum interleukin-6 (IL-6), IL-8 and the leukemia inhibitory factor-receptor (LIF-R) in healthy, nonpregnant and pregnant women at the end of term and one and three days after delivery. Plasma kynurenine was significantly lower in pregnant women at the end of term than in nonpregnant women, findings which may be attributed to lower plasma tryptophan at the end of term. The kynurenine/tryptophan (K/T) quotient was significantly higher in the pregnant women at the end of term and in the early puerperium than in nonpregnant women. In the early puerperium there was a significant increase in plasma kynurenine and the K/T quotient. The increases in plasma kynurenine and the K/T quotient were significantly more pronounced in women whose anxiety and depression scores significantly increased in the puerperium. The changes from the end of term to the early puerperium in plasma kynurenine and the K/T quotient were significantly related to those in the immune markers. It is concluded that 1) lower plasma kynurenine at the end of term is the consequence of lower plasma tryptophan; 2) the increased K/T quotient at the end of term and in the early puerperium indicates inflammation-induced degradation of tryptophan along the kynurenine pathway; and 3) that depressive and anxiety symptoms in the early puerperium are (causally) related to an increased catabolism of tryptophan into kynurenine, a phenomenon which probably results from immune activation.  相似文献   

11.
One pathway by which tryptophan is metabolized in the brain as well as in the periphery is through cleavage of the indole ring to formylkynurenine and then kynurenine. Indoleamine-2,3-dioxygenase, the enzyme that catalyzes this clavage, and kynurenine are distributed all across the different anatomic regions of brain. Approximately 40% of the kynurenine in brain is synthesized there, the remainder having come from plasma. Tryptophan loading, which has been used both experimentally and therapeutically as a means of increasing tryptophan conversion to serotonin, also increases kynurenine formation in the brain and in the periphery. Because of the formation of kynurenine, which competes for cerebral transport and cellular uptake ofl-tryptophan, and because of substrate inhibition on tryptophan hydroxylase, excessively high doses of tryptophan may actually decrease the production of cerebral serotonin and 5-hydroxyindoleacetic acid.Some aspects of this paper were presented in a lecture at the meeting of the International Study Group for Tryptophan Research (ISTRY-77) on August 11, 1977 at the University of Wisconsin, Madison, Wisconsin.  相似文献   

12.
Individual islets were isolated from rat pancreas to study the effects of tryptophan and its metabolites on leucine-stimulated release of insulin. 3-Hydroxykynurenine, 3-hydroxyanthranilic acid, and o-aminophenol were inhibitors at concentrations below 10 mM whereas tryptophan, kynurenine, kynurenic acid, xanthurenic acid, and anthranilic acid were ineffective inhibitors at concentrations up to 10 mM. A structure-activity analysis of these metabolites demonstrated that vicinal aromatic hydroxy and amino groups with their concomitant electron donating properties are required for inhibition of insulin release. Inhibition of islet insulin release by the three kynurenine metabolites may be involved in the depressed insulin levels found in vitamin B6-deficient rats by other workers.  相似文献   

13.
Microanalysis of tryptophan metabolites in mice   总被引:2,自引:0,他引:2  
Techniques were devised to quantitatively monitor a wide variety of tryptophan metabolites in a single mouse urine sample. Behavior of reference tryptophan standards on two-dimensional thin layer and DEAE-cellulose chromatography as well as fluorescence and color reactions were used to identify urinary tryptophan metabolites. The use of d,l-tryptophan (benzene ring-14C) and 5-hydroxytryptamine-3′-14C creatinine sulfate to mice allowed us to monitor the metabolites on thin-layer plates by autoradiography and to quantitate the relative amounts of kynurenine and serotonin pathway metabolites excreted in a single mouse urine sample.  相似文献   

14.
Tryptophan is an essential amino acid. The liver is primary organ involved the oxidative catabolism of tryptophan. However, in the immune system, tryptophan and its catabolites, kynurenine and 3-hydroxyanthranilic acid (3-HAA), play an anti-inflammatory role. Rheumatoid arthritis (RA) is an autoimmune disease. Collagen induced arthritis (CIA) is an animal model of RA. Therefore, it was of interest to measure concentration of tryptophan, kynurenine and 3-HAA in mice with CIA. Concentration of tryptophan and 3-HAA was measured with HPLC methods. Concentration of kynurenine was measured with colorimetric test. mRNA expression for the kynurenine pathway genes was assessed using qRT-PCR. It has been found that in sera from diseased mice concentration of tryptophan was not changed. Concentration of kynurenine and 3-HAA was decreased. Moreover, in the livers from mice with CIA, concentration of tryptophan and kynurenine was decreased. These observations coincided with decreased mRNA expression for Ido2 and Afm and increased mRNA expression for Kynureninase in the liver. It has been also shown that in CIA the concentration of 3-HAA was increased in the kidneys.  相似文献   

15.
In animal models, immune activation is often difficult to assess because of the limited availability of specific assays to detect cytokine activities. In human monocytes/macrophages, interferon-gamma induces increased production of neopterin and an enhanced activity of indoleamine 2,3-dioxygenase, which degrades tryptophan via the kynurenine pathway. Therefore, monitoring of neopterin concentrations and of tryptophan degradation can serve to detect the extent of T helper cell 1-type immune activation during cellular immune response in humans. In a porcine model of cardiac arrest, we examined the potential use of neopterin measurements and determination of the tryptophan degradation rate as a means of estimating the extent of immune activation. Urinary neopterin concentrations were measured with high-performance liquid chromatography (HPLC) and radioimmunoassay (RIA) (BRAHMS Diagnostica, Berlin, Germany). Serum and plasma tryptophan and kynurenine concentrations were also determined using HPLC. Serum and urine neopterin concentrations were not detectable with HPLC in these specimens, whereas RIA gave weakly (presumably false) positive results. The mean serum tryptophan concentration was 39.0 +/- 6.2 micromol/l, and the mean kynurenine concentration was 0.85 +/- 0.33 micromol/l. The average kynurenine-per-tryptophan quotient in serum was 21.7 +/- 8.4 nmol/micromol, and that in plasma was 20.7 +/- 9.5 nmol/micromol (n = 7), which corresponds well to normal values in humans. This study provides preliminary data to support the monitoring of tryptophan degradation but not neopterin concentrations as a potential means of detecting immune activation in a porcine model. The kynurenine-per-tryptophan quotient may serve as a short-term measurement of immune activation and hence permit an estimate of the extent of immune activation.  相似文献   

16.
Mammalian cells rely on cellular uptake of the essential amino acid tryptophan. Tryptophan sequestration by up-regulation of the key enzyme for tryptophan degradation, indoleamine 2,3-dioxygenase (IDO), e.g., in cancer and inflammation, is thought to suppress the immune response via T cell starvation. Additionally, the excreted tryptophan catabolites (kynurenines) induce apoptosis of lymphocytes. Whereas tryptophan transport systems have been identified, the molecular nature of kynurenine export remains unknown. To measure cytosolic tryptophan steady-state levels and flux in real time, we developed genetically encoded fluorescence resonance energy transfer nanosensors (FLIPW). The transport properties detected by FLIPW in KB cells, a human oral cancer cell line, and COS-7 cells implicate LAT1, a transporter that is present in proliferative tissues like cancer, in tryptophan uptake. Importantly, we found that this transport system mediates tryptophan/kynurenine exchange. The tryptophan influx/kynurenine efflux cycle couples tryptophan starvation to elevation of kynurenine serum levels, providing a two-pronged induction of apoptosis in neighboring cells. The strict coupling protects cells that overproduce IDO from kynurenine accumulation. Consequently, this mechanism may contribute to immunosuppression involved in autoimmunity and tumor immune escape.  相似文献   

17.
Isolated thoracic ganglia were incubated in physiological solution containing 14C-tryptophan. After this procedure, they were homogenized in a 1 per cent solution of HCL in methanol, and supernatant was subjected to two-dimensional thin layer chromatography in the presence of tryptophan, kynurenine, 3-hydroxy kynurenine, as well as kynurenic, anthranilic and xanthurenic acids. The spots were cut out and counted by liquid scintillation technique. Except tryptophan, only kynurenine and 3-hydroxy kynurenine spots contained notable radioactivity. Therefore, at least the initial stages of kynurenine pathway operate in the nervous system of Drosophila melanogaster. This finding is in accordance with observations of the effects of kynurenines on insect behaviour.  相似文献   

18.
19.
Abnormalities in the kynurenine pathway may play a role in Huntington's disease (HD). In this study, tryptophan depletion and loading were used to investigate changes in blood kynurenine pathway metabolites, as well as markers of inflammation and oxidative stress in HD patients and healthy controls. Results showed that the kynurenine : tryptophan ratio was greater in HD than controls in the baseline state and after tryptophan depletion, indicating increased indoleamine dioxygenase activity in HD. Evidence for persistent inflammation in HD was provided by elevated baseline levels of C-reactive protein, neopterin and lipid peroxidation products compared with controls. The kynurenate : kynurenine ratio suggested lower kynurenine aminotransferase activity in patients and the higher levels of kynurenine in patients at baseline, after depletion and loading, do not result in any differences in kynurenic acid levels, providing no supportive evidence for a compensatory neuroprotective role for kynurenic acid. Quinolinic acid showed wide variations in blood levels. The lipid peroxidation data indicate a high level of oxidative stress in HD patients many years after disease onset. Levels of the free radical generators 3-hydroxykynurenine and 3-hydroxyanthranilic acid were decreased in HD patients, and hence did not appear to contribute to the oxidative stress. It is concluded that patients with HD exhibit abnormal handling of tryptophan metabolism and increased oxidative stress, and that these factors could contribute to ongoing brain dysfunction.  相似文献   

20.
Near the time of pupation, autofluorescent kynurenine globules appear in the cells in the anterior region of the fatbody of Drosophila melanogaster. It has been reported previously that kynurenine synthesis may be induced in an additional group of fat cells by feeding the precursor tryptophan to Drosophila larvae, and that this induction of kynurenine production viewed within the fat cells is correlated with an increase in tryptophan pyrrolase activity. In the present report, conditions are outlined which result in the appearance of kynurenine in all of the fat cells. The number of cells in the fatbody which contain kynurenine is influenced by the quantity of tryptophan included in the diet, as well as by the developmental stage at the time of treatment and the duration of the feeding period on the inducer. Physical barriers modifying permeability, such as the membranous layer noted surrounding the fatbody, may be a factor in the regulation of the time and nature of the cellular induction of kynurenine synthesis. Another factor to be considered is the possibility of interference with the availability of tryptophan as a substrate or inducer for this synthesis within the cell. It is suggested that the occurrence of pteridines in some of the fat cells may modify the response of these cells to produce kynurenine, since pteridines as electron acceptors can complex with tryptophan as an electron donor. Kynurenine may be produced in the fat cells under in vitro conditions when they are incubated with L-tryptophan, but kynurenine is not formed when fat cells are incubated with D-tryptophan. The in vitro studies further demonstrate that induction of kynurenine synthesis may occur in fat cells isolated from young larvae in contrast, to in vivo conditions in which inducer does not effect an earlier appearance of kynurenine in the larval fatbody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号