首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The procedure for the isolation of the highly active fraction of sarcoplasmic reticulum from pigeon and dog hearts is described. The method is based on the partial loading of heart microsomes with calcium and oxalate ions and the precipitation of loaded vesicles in sucrose and potassium chloride concentration gradients. Preparations obtained possess high activity of Ca2+-dependent ATPase and are also able to accumulate up to 10 mumol Ca2+ per mg protein. Purification of sarcoplasmic reticulum membranes is accompanied by a decrease in concentration of cytochrome a+a3 and an increase in the content of [32P]phosphoenzyme. The basic components in "calcium-oxalate preparation" from hearts are proteins with molecular weights of about 100000 (Ca2+-dependent ATPase) and 55000 Calcium-oxalate preparation from pigeon hearts was used for subsequent purification of Ca2+-dependent ATPase. Specific activity of purified enzyme from pigeon hearts is 12-16 mumol Pi/min per mg protein. Enzyme activity of purified Ca2+-dependent ATPase is inhibited by EGTA and is not sensitive to azide, 2,4-dinitrophenol and ouabain. The data obtained demonstrate the similarity of calcium pump systems and Ca2+-dependent ATPases isolated from heart and skeletal muscles.  相似文献   

2.
The presence of an energy-dependent calcium uptake system in adipocyte endoplasmic reticulum (D. E. Bruns, J. M. McDonald, and L. Jarett, 1976, J. Biol. Chem.251, 7191–7197) suggested that this organelle might possess a calcium-stimulated transport ATPase. This report describes two types of ATPase activity in isolated microsomal vesicles: a nonspecific, divalent cation-stimulated ATPase (Mg2+-ATPase) of high specific activity, and a specific, calcium-dependent ATPase (Ca2+ + Mg2+-ATPase) of relatively low activity. Mg2+-ATPase activity was present in preparations of mitochondria and plasma membranes as well as microsomes, whereas the (Ca2+ + Mg2+)-ATPase activity appeared to be localized in the endoplasmic reticulum component of the microsomal fraction. Characterization of microsomal Mg2+-ATPase activity revealed apparent Km values of 115 μm for ATP, 333 μm for magnesium, and 200 μm for calcium. Maximum Mg2+-ATPase activity was obtained with no added calcium and 1 mm magnesium. Potassium was found to inhibit Mg2+-ATPase activity at concentrations greater than 100 mm. The energy of activation was calculated from Arrhenius plots to be 8.6 kcal/mol. Maximum activity of microsomal (Ca2+ + Mg2+)-ATPase was 13.7 nmol 32P/mg/min, which represented only 7% of the total ATPase activity. The enzyme was partially purified by treatment of the microsomes with 0.09% deoxycholic acid in 0.15 m KCl which increased the specific activity to 37.7 nmol 32P/mg/min. Characterization of (Ca2+ + Mg2+)-ATPase activity in this preparation revealed a biphasic dependence on ATP with a Hill coefficient of 0.80. The apparent Kms for magnesium and calcium were 125 and 0.6–1.2 μm, respectively. (Ca2+ + Mg2+)-ATPase activity was stimulated by potassium with an apparent Km of 10 mm and maximum activity reached at 100 mm potassium. The energy of activation was 21.5 kcal/mol. The kinetics and ionic requirements of (Ca2+ + Mg2+)-ATPase are similar to those of the (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum. These results suggest that the (Ca2+ + Mg2+)-ATPase of adipocyte endoplasmic reticulum functions as a calcium transport enzyme.  相似文献   

3.
1. Microsomes were isolated from rabbit fast-twitch and slow-twitch muscle and were separated into heavy and light fractions by centrifugation in a linear (0.3–2m) sucrose density gradient. The membrane origin of microsomal vesicles was investigated by studying biochemical markers of the sarcoplasmic-reticulum membranes and of surface and T-tubular membranes, as well as their freeze-fracture properties. 2. Polyacrylamide-gel electrophoresis showed differences in the Ca2+-dependent ATPase/calsequestrin ratio between heavy and light fractions, which were apparently consistent with their respective origin from cisternal and longitudinal sarcoplasmic reticulum, as well as unrelated differences, such as peptides specific to slow-muscle microsomes (mol.wts. 76000, 60000, 56000 and 45000). 3. Freeze-fracture electron microscopy of muscle microsomes demonstrated that vesicles truly derived from the sarcoplasmic reticulum, with an average density of 9nm particles on the concave face of about 3000/μm2 for both fast and slow muscle, were admixed with vesicles with particle densities below 1000/μm2. 4. As determined in the light fractions, the sarcoplasmic-reticulum vesicles accounted for 84% and 57% of the total number of microsomal vesicles, for fast and slow muscle respectively. These values agreed closely with the percentage values of Ca2+-dependent ATPase protein obtained by gel densitometry. 5. The T-tubular origin of vesicles with a smooth concave fracture face in slow-muscle microsomes is supported by their relative high content in total phospholipid and cholesterol, compared with the microsomes of fast muscle, and by other correlative data, such as the presence of (Na++K+)-dependent ATPase activity and of low amounts of Na+-dependent membrane phosphorylation. 6. Among intrinsic sarcoplasmic-reticulum membrane proteins, a proteolipid of mol.wt. 12000 is shown to be identical in the microsomes of both fast and slow muscle and the Ca2+-dependent ATPase to be antigenically and catalytically different, though electrophoretically homogeneous. 7. Basal Mg2+-activated ATPase activity was found to be high in light microsomes from slow muscle, but its identification with an enzyme different from the Ca2+-dependent ATPase is still not conclusive. 8. Enzyme proteins that are suggested to be specific to slow-muscle longitudinal sarcoplasmic reticulum are the flavoprotėin NADH:cytochrome b5 reductase (mol.wt. 32000), cytochrome b5 (mol.wt. 17000) and the stearoyl-CoA desaturase, though essentially by criteria of plausibility.  相似文献   

4.
H.Linton Wray  R.Richard Gray 《BBA》1977,461(3):441-459
Ca2+-activated ATPase (EC 3.6.1.15) in canine cardiac sarcoplasmic reticulum was stimulated 50–80% by cyclic adenosine 3′ : 5′-monophosphate. The relationship of this stimulation to cyclic AMP-dependent membrane phosphorylation with phosphoester bands was studied. Cyclic AMP stimulation of ATPase activity was specific for Ca2+-activated ATPase and was half-maximal at about 0.1 μM which is similar to the concentration required for half-maximal stimulation of membrane phosphorylation by endogenous cyclic AMP-stimulated protein kinase (EC 2.7.1.37). Cyclic AMP stimulation of Ca2+-activated ATPase was calcium dependent and maximal at calculated Ca2+ concentrations of 2.0 μM. Cyclic AMP-dependent Ca2+-activated ATPase correlated well with the cyclic AMP-dependent membrane phosphorylation of which 80% was 20 000 molecular weight protein identified by sodium dodecyl sulfate discontinuous polyacrylamide gel electrophoresis. In trypsin-treated microsomes, cyclic AMP did not stimulate Ca2+-activated ATPase or phosphorylation of the 20 000 molecular weight membrane protein. An endogenous calcium-stimulated protein kinase (probably phosphorylase b kinase) with an apparent Km for ATP of 0.21–0.32 mM was present and appeared to be involved in the cyclic AMP-dependent phosphorylation of the 20 000 molecular weight protein which was calcium dependent. Cyclic guanosine 3′ : 5′-monophosphate did not inhibit any of the stimulatory effects of cyclic AMP. These data suggest that the cyclic AMP stimulation of Ca2+-activated ATPase in cardiac sarcoplasmic reticulum is mediated by the 20 000 molecular weight phosphoprotein product of a series of kinase reactions similar to those activating phosphorylase b.  相似文献   

5.
Arachidonic acid causes an increase in free cytoplasmic calcium concentration ([Ca2+]i) in differentiated skeletal multinucleated myotubes C2C12 and does not induce calcium response in C2C12 myoblasts. The same reaction of myotubes to arachidonic acid is observed in Ca2+-free medium. This indicates that arachidonic acid induces release of calcium ions from intracellular stores. The blocker of ryanodine receptor channels of sarcoplasmic reticulum dantrolene (20 μM) inhibits this effect by 68.7 ± 6.3% (p < 0.001). The inhibitor of two-pore calcium channels of endolysosomal vesicles trans-NED19 (10 μM) decreases the response to arachidonic acid by 35.8 ± 5.4% (p < 0.05). The phospholipase C inhibitor U73122 (10 μM) has no effect. These data indicate the involvement of ryanodine receptor calcium channels of sarcoplasmic reticulum in [Ca2+]i elevation in skeletal myotubes caused by arachidonic acid and possible participation of two-pore calcium channels from endolysosomal vesicles in this process.  相似文献   

6.
7.
Two membrane fractions, one enriched in sarcoplasmic reticulum and the other enriched in sarcolemma, were isolated from the myocardium of young (3–4-months-old) and aged (24–25-months old) rats. ATP-supported Ca2+ binding and accumulating activities as well as (Mg2+ + Ca2+)-ATPase activities of these membrane fractions were studied in an effort to determine the influence of age on the Ca2+ pump function of the two myocardial membrane systems. Sarcoplasmic reticulum from aged hearts showed significantly reduced (approx. 50%) rates of ATP-supported (oxalate-facilitated) Ca2+ accumulation compared to sarcoplasmic reticulum from young hearts; the amount of Ca2+ accumulated by this membrane of aged heart at steady state was also lower. On the other hand, sarcolemma from aged hearts displayed 2-fold higher rates of ATP-supported Ca2+ accumulation compared to sarcolemma from young hearts; at steady state, sarcolemma from aged hearts accumulated significantly higher amounts of Ca2+ than did sarcolemma from young hearts. Similar age-related differences were also observed in the ATP-dependent Ca2+ binding activities of the two membranes, determined in the absence of oxalate. The divergent age-associated changes in Ca2+ binding and accumulating activities of sarcoplasmic reticulum and sarcolemma were seen at varying Ca2+ concentrations (0.24–39.1 μM).With either membrane, kinetic analysis showed 2-fold age-related differences in the V values for ATP-supported Ca2+ accumulation (V (nmol Ca2+/mg protein per min): sarcoplasmic reticulum — young, 119 ± 8; aged, 59 ± 5; sarcolemma — young, 11 ± 2; aged, 21 ± 3); the concentrations of Ca2+ required for half-maximal velocities did not differ significantly with age (K0.5 for Ca2+ (μM): sarcoplasmic reticulum — young, 2.5 ± 0.20; aged, 2.9 ± 0.25; sarcolemma — yount, 2.7 ± 0.25; aged, 3.2 ± 0.30). Kinetic parameters of ATP-dependent Ca2+ binding also indicated that the velocity of Ca2+ binding but not the concentration of Ca2+ required for half-maximal binding was altered due to aging. At identical Ca2+ concentrations, the combined Ca2+ accumulating activity of sarcoplasmic reticulum and sarcolemma from aged hearts was significantly lower (38–47%) than the combined Ca2+ accumulating activity of the two membranes from young hearts. No significant age-related differences were observed in the ATP-independent (passive) Ca2+ binding (or accumulation) by sarcoplasmic reticulum and sarcolemma, the (Mg2+ + Ca2+)-ATPase activities of these membranes, their polypeptide composition or relative purity. These results indicate that differential alterations occur in the ATP-supported Ca2+ pump activities of sarcoplasmic reticulum and sarcolemma in aging myocardium and such alterations may be due to age-associated changes in the efficacy of coupling ATP hydrolysis to Ca2+ transport. Further, the age-related increment in the Ca2+ pump activity of sarcolemma is inadequate to fully compensate for the diminished Ca2+ pump activity of sarcoplasmic reticulum. It is, therefore, suggested that deterioration of the Ca2+ pump function of sarcoplasmic reticulum may contribute to the increased relaxation time observed in aging heart.  相似文献   

8.
Ruthenium red, a powerful inhibitor of Ca2+ transport by mitochondria, does not inhibit the active Ca2+ uptake by sarcoplasmic reticulum isolated from rabbit skeletal muscle promoted by 5 mM ATP-Mg in the presence or absence of potassium oxalate. Although concentrations of ruthenium red up to 100 μM do not affect the active uptake of Ca2+, 25 μM of the inorganic dye inhibit the passive binding of Ca2+ by about 50%. This inhibitory effect is observed in sarcoplasmic reticulum even after its lipid fraction is extracted with acetone.Although active Ca2+ uptake by sarcoplasmic reticulum is not inhibited by ruthenium red, in the absence of oxalate it inhibits significantly the Ca2+-dependent ATPase activity but not the Mg2+-ATPase. However, if potassium oxalate is present, the Ca2+-stimulated ATPase is not sensitive to the dye. It is not clear how oxalate functions to protect the Ca2+-ATPase against the inhibitor effect of ruthenium red.The high sensitivity to ruthenium red of the Ca2+ transport mechanism in mitochondria as compared to the Ca2+ transport in sarcoplasmic reticulum may be useful in determining the extent to which each organelle functions in the cell to regulate intracellular free Ca2+.  相似文献   

9.
Summary Active calcium transport by cardiac sarcoplasmic reticulum assumes a central role in the excitation-concentration coupling of the myocardium, in that Ca2+-dependent ATPase (mol.wt. 100 000) of cardiac sarcoplasmic reticulum serves as an energy transducer and a translocator of Ca2+ across the membrane. During the translocation of Ca2+, the ATPase undergoes a complex series of reactions during which the phosphorylated intermediate EP is formed. We documented how the elementary steps of the ATPase reaction are coupled with calcium translocation, and provided evidences to indicate that two key steps of ATPase correspond to the conformational change of the enzyme, and appear to alter the affinity of the enzyme for Ca2+.A line of evidence also indicated that Ca2+-dependent ATPase of cardiac sarcoplasmic reticulum is regulated by a specific protein named phospholamban (mol.wt. 22 000), which serves as a substrate for cyclic AMP-dependent protein kinase. Cyclic AMP-dependent phosphorylation of phospholamban resulted in a marked increase in the rate of turnover of the ATPase, by enhancing the rates of the key elementary steps, i.e. the steps at which the intermediate EP is formed and decomposed. Thus phospholamban is putatively thought to serve as a modulator of Cat2+-dependent ATPase of cardiac sarcoplasmic reticulum. A working model was proposed to interpret the mechanism. Also documented is a possibility that another protein kinase activatable by Ca2+ and calmodulin is functional in regulating the phospholamban-ATPase system, thus suggesting the existence of a dual control system, in which both cyclic AMP- and calmodulin-dependent phosphorylation are in control of the Cat2+-dependent ATPase.Such a control mechanism may provide the interpretation, at the cellular level, that catecholamines exert actions on myocardial contractility. Thus, catecholamine-mediated increases in intracellular cyclic AMP could enhance calcium fluxes across the membrane of sarcoplasmic reticulum, thus resulting in the increased rates of relaxation and, at the same time, the increased rate and extent of contraction. Such a mechanism could also be operational in the tissues, other than the myocardium, in which catecholamines and other hormones serve as the first messenger, producing intracellular cyclic AMP as the second messenger.  相似文献   

10.
On solubilization with Triton X-100 of sarcoplasmic reticulum vesicles isolated by differential centrifugation, the Ca2+-ATPase is selectively extracted while approximately half of the initial Mg2+-, or ‘basal’, ATPase remains in the Triton X-100 insoluble residue. The insoluble fraction, which does not contain the 100 000 dalton polypeptide of the Ca2+-ATPase, contains high levels of cytochrome c oxidase. Furthermore, its Mg2+-ATPase activity is inhibited by specific inhibitors of mitochondrial ATPase, indicating that the ‘basal’ ATPase separated from the Ca2+-ATPase by detergent extraction originates from mitochondrial contaminants.To minimize mitochondrial contamination, sarcoplasmic reticulum vesicles were fractionated by sedimentation in discontinuous sucrose density gradients into four fractions: heavy, intermediate and light, comprising among them 90–95% of the initial sarcoplasmic reticulum protein, and a very light fraction, which contains high levels of Mg2+-ATPase. Only the heavy, intermediate and light fractions originate from sarcoplasmic reticulum; the very light fraction is of surface membrane origin. Each fraction of sarcoplasmic reticulum origin was incubated with calcium phosphate in the presence of ATP and the loaded fractions were separated from the unloaded fractions by sedimentation in discontinuous sucrose density gradients. It was found that vesicles from the intermediate fraction had, after loading, minimal amounts of mitochondrial and surface membrane contamination, and displayed little or no Ca2+-independent basal ATPase activity. This shows conclusively that the basal ATPase is not an intrinsic enzymatic activity of the sarcoplasmic reticulum membrane, but probably originates from variable amounts of mitochondrial and surface membrane contamination in sarcoplasmic reticulum preparations isolated by conventional procedures.  相似文献   

11.
We have examined calcium cycling and associated ATP consumption by isolated heavy sarcoplasmic reticulum (HSR) vesicles incubated in conditions believed to exist in resting muscle. Our goals were to estimate the magnitude of calcium cycling under those conditions and identify the main mechanisms involved in its regulation. The integrity of the HSR vesicles was documented by the retention of [14C]-sucrose and electron microscopy. HSR actively exchanged Ca2+ with the medium through a partially open ryanodine-binding channel (RyR), as evidenced by the rapid attainment of a steady-state gradient between HSR and medium, which was promptly increased by the closure of the channel with ruthenium red (RR) or collapsed by its opening with caffeine. The ATP dependency was evidenced by the sustained ATP consumption after the steady state was attained and by the abrogation of the gradient following inhibition of the pump with thapsigargin (Tg) or the omission of ATP. When HSR vesicles were incubated in a comparatively large pool of calcium (≈1 μmol/mg HSR protein), ATP consumption was 1–1.5 μmol × [min × mg protein]−1 at 0.1 μM free Ca2+. Under such conditions, the main regulator of the sarcoplasmic Ca2+-dependent ATPase (SERCA) was extravesicular-free Ca2+ concentration, with a four- to fivefold increase between 0.1 and 2 μM Ca2+, whereas RyR channel activity and the replenishment of the HSR vesicles had only a modest effect on ATP consumption. When calcium pool size was reduced to 0.1 μmol/mg HSR protein, a steady state was established at a lower level of HSR calcium. In spite of a slightly lower free extravesicular Ca2+ at equilibrium (≈0.07 μM following an initial concentration of 0.1 μM), both ATP consumption and the open probability of the RyR channel were increased by a factor of three to five. Compared to the large calcium pool, the sensitivity of both RyR channel and SERCA to extravesicular free Ca2+ concentration as well as to caffeine and RR was markedly enhanced. Conclusions: (1) In conditions present in resting muscle, HSR calcium is in dynamic equilibrium with the medium through a partially open RyR channel, which requires continuous ATP hydrolysis. (2) The availability of calcium is a major determinant of the sensitivity of both RyR channel and SERCA to free extravesicular Ca2+ and possibly other stimuli. (3) These observations are consistent with the concept that calcium cycling in resting muscle may account for a significant fraction of muscle energy demands and further suggest that restricting calcium availability may enhance the energetic demands of this process. J. Cell. Physiol. 175:283–294, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Summary Treatment of human red cell membranes with pure phospholipase A2 results in a progressive inactivation of both Ca2+-dependent and (Ca2++K+)-dependent ATPase and phosphatase activities. When phospholipase C replaces phospholipase A2, Ca2+-dependent ATPase activity and Ca2+-dependent phosphorylation of red cell membranes are lost, while Ca2+-dependent phosphatase activity is enhanced and its apparent affinity for Ca2+ is increased about 20-fold. Activation of Ca2+-dependent phosphatase following phospholipase C treatment was not observed in sarcoplasmic reticulum preparation. Phospholipase C increases the sensitivity of the phosphatase to N-ethylmaleimide but has little effect on the kinetic parameters relating the phosphatase activity to substrate and cofactors, suggesting that no extensive structural disarrangement of the Ca2+-ATPase system has occurred after incubation with phospholipase C.  相似文献   

13.
J M Lamers  J T Stinis 《Life sciences》1979,24(25):2313-2319
To evaluate Ca2+-uptake in sarcoplasmic reticulum in the hypertrophied rabbit heart, microsomes were prepared from myocardium of rabbits with experimentally induced aortic stenosis. A significant reduction of microsomal Ca2+-uptake was observed in hypertrophied left ventricle, 195±10 compared to 280±18 nmol/mg found in control animals. A similar pattern was observed for the Ca2+-stimulated ATPase (30±9 and 59±10 nmol/min/mg resp.). A minimal activity difference of the microsomal marker enzyme rotenone-insensitive NADPH cyt. c reductase was found (7.77±0.05 and 8.17±0.11 nmol/min/mg resp.). The specific activity of the latter enzyme was 5–6 fold increased in microsomes compared to homogenates in both animal groups, which excludes the possibility of increased amounts of contaminant or nonfunctional protein in sarcoplasmic reticulum prepared from hypertrophied myocardium. In addition the yield of microsomal protein did not differ significantly. Maximal phosphorylation by exogenous cyclic AMP and protein kinase increased Ca2+-uptake in both microsomal preparations (to 287±27 and 375±26 nmol/mg resp. for hypertrophied and control hearts), but Ca2+-transport rate found in pathological hearts remained lower than in controls. These findings indicate that impairment of Ca2+-metabolism in the hypertrophied heart is based on a defective Ca2+-pump.  相似文献   

14.
Calcium is actively transported into intracellular organelles and out of the cytoplasm by Ca2+/Mg2+-ATPases located in the endoplasmic reticulum and plasma membranes. We studied the effects of aluminum on calcium transport in the adult rat brain. We examined 45Ca-uptake in microsomes and Ca2+-ATPase activity in microsomes and synaptosomes isolated from the frontal cortex and cerebellum of adult male Long-Evans rats. ATP-dependent45Ca-uptake was similar in microsomes from both brain regions. The addition of 50-800 μM AICI3 resulted in a concentration-dependent inhibition of 45Ca-uptake. Mg2+-dependent Ca2+-ATPase activity was significantly lower in synaptosomes compared to microsomes in both frontal cortex and cerebellum. In contrast to the uptake studies, AICI3 stimulated Mg2+-dependent Ca2+-ATPase activity in both microsomes and synaptosomes from both brain regions. To determine the relationship between aluminum and Mg2+, we measured ATPase activity in the presence of increasing concentrations of Mg2+ or AICI3. Maximal ATPase activity was obtained between 3 and 6 mM Mg2+. When we substituted AICI3 for Mg2+, ATPase activity was also stimulated in a concentration-dependent manner, but to a greater extent than with Mg2+. One interpretation of these data is that aluminum acts at multiple sites to displace both Mg2+ and Ca2+, increasing the activity of the Ca2+-ATPase, but disrupting transport of calcium.  相似文献   

15.
In order to determine whether polymorphic forms of the Ca2+ + Mg2+-dependent ATPase exist, we have examined the cross-reactivity of five monoclonal antibodies prepared against the rabbit skeletal muscle sarcoplasmic reticulum enzyme with proteins from microsomal fractions isolated from a variety of muscle and nonmuscle tissues. All of the monoclonal antibodies cross-reacted in immunoblots against rat skeletal muscle Ca2+ + Mg2+-dependent ATPase but they cross-reacted differentially with the enzyme from chicken skeletal muscle. No cross-reactivity was observed with the Ca2+ + Mg2+-dependent ATPase of lobster skeletal muscle. The pattern of antibody cross-reactivity with a 100,000 dalton protein from sarcoplasmic reticulum and microsomes isolated from various muscle and nonmuscle tissues of rabbit demonstrated the presence of common epitopes in multiple polymorphic forms of the Ca2+ + Mg2+-dependent ATPase. One of the monoclonal antibodies prepared against the purified Ca2+ + Mg2+-dependent ATPase of rabbit skeletal muscle sarcoplasmic reticulum was found to cross-react with calsequestrin and with a series of other Ca2+-binding proteins and their proteolytic fragments. Its cross-reactivity was enhanced in the presence of EGTA and diminished in the presence of Ca2+. Its lack of cross-reactivity with proteins that do not bind Ca2+ suggests that it has specificity for antigenic determinants that make up the Ca2+-binding sites in several Ca2+-binding proteins including the Ca2+ + Mg2+-dependent ATPase.This paper is dedicated to the memory of Dr. David E. Green.  相似文献   

16.
A. A. Klimov 《Biophysics》2006,51(5):744-751
A method and a device had been developed to directly measure the accumulation of calcium in the sarcoplasmic reticulum and its release from the sarcoplasmic reticulum, depending on the free Ca2+ concentration in the solution. The sarcoplasmic reticulum occupies to 30% of the volume of the swim bladder muscles of the oyster toadfish Opsanus tau. To isolate and skin muscle fibers and to remove the accumulated calcium from the sarcoplasmic reticulum, a set of solutions containing EGTA as a pCa buffer was used. To measure the calcium exchange between a fiber ~10 nl in volume and the solution in a 5-μl cuvette, instead of EGTA, 50–100 μM FURA2 or bisFURA2 was used both as pCa buffer and as a fluorescent indicator of the calcium concentration in the cuvette. An increase in fluorescence intensity meant an increase in the free FURA concentration in the solution surrounding the fiber since the calcium entering the sarcoplasmic reticulum was taken from this solution. The slope of the fluorescence curve corresponded to a rate of calcium accumulation in the sarcoplasmic reticulum of 1.6 μmol per second per liter of the solution in the cuvette or 2.6 mmol per second per liter of the sarcoplasmic reticulum. A solution without oxalate and ruthenium red may exhibit oscillations of the free FURA concentration, which can be explained by calcium-activated calcium release from the sarcoplasmic reticulum.  相似文献   

17.
  • 1.1. Ca2+ uptake, Ca2+-dependent ATPase activity and halothane-induced Ca2+ release from the heavy sarcoplasmic reticulum fraction of muscle from malignant hyperthermia susceptible individuals are similar to those of normal human muscle.
  • 2.2. Ca2+-induced Ca2+ release from the diseased muscle was increased by 13%.
  相似文献   

18.
Erythrosin B (USFD&;C RED 3) inhibits the transport of calcium ions into isolated rabbit muscle sarcoplasmic reticulum vesicles with an IC50 of ~ 0.5 μM and inhibits the Ca2+Mg2+ ATPase activity with an IC50 of ~ 1 μM. The dye also binds to this tissue with an apparent Kd of ~ 300 nM. Other iodinated and brominated fluorescein analogs and blue dextran also inhibit ATPase activity and displace bound dye, suggesting that erythrosin may bind to a site near to but not identical with the nucleotide site. The dye should prove to be a useful probe for transport and ATPase activity.  相似文献   

19.
A cytosolic protein fraction, termed CPF-I, derived by (NH4)2 SO4 fractionation of rabbit heart cytosol caused marked inhibition (up to 95%) of ATP-dependent Ca2+ uptake by cardiac sarcoplasmic reticulum. The inhibitory effect of CPF-I was concentration-dependent (50% inhibition with ~ 80–100 μg CPF-I) and heat labile. The inhibitor reduced the velocity of Ca2+ uptake without altering the apparent affinity of the transport system for Ca2+. Concomitant with the inhibition of Ca2+ uptake, Ca2+-sensitive ATP hydrolysis was also inhibited by CPF-I. The inhibitor did not cause release of Ca2+ from Ca2+-preloaded membrane vesicles. The inhibitor activity of CPF-I could be adsorbed to a DEAE cellulose column and could be eluted with a linear gradient of KCl. These results demonstrate the presence of a soluble protein inhibitor of sarcoplasmic reticulum calcium pump in cardiac muscle and raises the intriguing possibility of its participation in the regulation of calcium pump invivo.  相似文献   

20.
Treatment of cardiac sarcoplasmic reticulum with the crosslinking reagent dithiobis (succinimidyl propionate) in the presence of125I-calmodulin, resulted in the formation of a 40,000-dalton affinity labeled component, consisting of a 11, phospholamban:125I-calmodulin complex. In parallel experiments, sarcoplasmic reticulum was phosphorylated in the presence of calmodulin and [-32P]ATP, and then treated with the crosslinking reagent to produce an affinity labeled component consisting of a 11, calmodulin:32P-phospholamban complex. These experiments permitted determination of the amount of125I and32P incorporated into the 40,000-dalton complexes, as well as the amount of32P incorporated into the 23,000-dalton form of phospholamban. If 1 mol of Ca2+-dependent ATPase phosphoprotein represents 1 mol of 100,000-dalton Ca2+-dependent ATPase monomer, then there are 4.88±1.33 mol Ca2+-dependent ATPase/mol of phospholamba. If there are 2 mol of Ca2+-dependent ATPase phosphoprotein/mol of 100,000-dalton Ca2+-dependent ATPase monomer, then there are 9.76±2.66 mol Ca2+-dependent ATPase/mol phospholamban.Special issue dedicated to Dr. E. M. Shooter and Dr. S. Varon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号