首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 99 毫秒
1.
Cellular Inhomogeneity in Dog Red Cells As Revealed by Sodium Flux   总被引:5,自引:5,他引:0  
Unidirectional 24Na fluxes across the dog red blood cell membrane were measured. The kinetics were incompatible with a single time constant but could be accounted for in terms of a two-series compartment cell model, with approximately 1% of cell Na in the outer compartment. Dog red blood cells are known to be inhomogeneous in their Na and K permeabilities. Theoretical analysis showed that such cellular inhomogeneity in the Na permeability coefficient might in principle account for the flux data. In order to evaluate the inhomogeneity effect, a technique based on the differential response of cells suspended in isosmolar high K buffers was devised to measure the variations in Na permeability in the cell population. A variation in the Na permeability coefficient of approximately 30% was found. This inhomogeneity is insufficient to account for the flux data.  相似文献   

2.
Cation Transport in Dog Red Cells   总被引:3,自引:2,他引:1       下载免费PDF全文
Studies have been made on the cation transport system of the dog red cell, a system of particular interest because it has been shown that there is a marked dependence of cation fluxes on the cell volume. We have found that a 10% decrease in cell volume causes a large increase in 1 hr uptake of 24Na as well as a considerable inhibition of 42K uptake. This effect cannot be produced by a difference in medium osmolality but rather requires the cell volume to change. Dog red cell uptake of 24Na is not inhibited by iodoacetate. Phloretin inhibits 24Na uptake and lactate production, and virtually abolishes the volume effect on Na uptake. These several observations may be accounted for in terms of a working hypothesis which presupposes a cation carrier complex which pumps K into and Na out of cells of normal volume. When the cells are shrunken the carrier specificity shifts to an external Na-specific mode and there is a large increase in 24Na uptake, driven by the inwardly directed Na electrochemical potential gradient.  相似文献   

3.
After incubation in isotonic KCl, dog red blood cells can be separated by centrifugation into subgroups which assume different cell volumes and possess different transport characteristics. Those red cells which swell in isotonic KCl exhibit a higher permeability to K and possess a greater volume dependence for transport of K than those red cells which shrink. A high Na permeability characterizes cells which shrink in isotonic KCl and these cells exhibit a larger volume-dependent Na flux than those red cells which swell. These two subgroups of red cells do not seem to represent two cell populations of different age. The results indicate that the population of normal cells is evidently heterogeneous in that the volume-dependent changes in Na and K permeability are distributed between differnt cell types rather than representing a single cell type which reciprocally changes its selectivity to Na and K.  相似文献   

4.
Summary The effect of cell volume changes in human red cells on ouabain-insensitive net outward cation movements through 1) the Na–K and Li–K cotransport, 2) the Li–Na counter-transport system and 3) the furosemide-insensitive Na, K and Li pathway was studied. Cell volume was altered by changing a) the internal cation content (isosmotic method) or b) the external osmolarity of the medium (osmotic method). Na–K and Li–K cotransport were measured as the furosemide-sensitive Na or Li and K efflux into (Na, Li and K)-free (Mg-sucrose replacement) medium from cells loaded to contain approximately equal concentrations of Na and K, or a constant K/Li concentration ratio of 91, respectively. Li–Na countertransport was assayed as the Na-stimulated Li efflux from Li-loaded cells and net furosemide-insensitive outfluxes in (Na, Li and K)-free media containing 1mm furosemide. Swelling of cells by the isosmotic, but not by the osmotic method reduced furosemide-sensitive Na and Li but not K efflux by 80 and 86%, respectively. Changes in cell volume by both methods had no effect on Li–Na countertransport. The effects of cell volume changes were measured on the rate constants of ouabain- and furosemide-insensitive cation fluxes and were found to be complex. Isosmotic shrinkage more than doubled the rate constants of Na and Li efflux but did not affect that of K efflux. Osmotic shrinkage increased the K efflux rate constant by 50% only in cells loaded for countertransport. Isosmotic cell swelling specifically increased the K+ efflux rate constants both in cells loaded for cotransport and countertransport assays while no effect was observed in cells swollen by the osmotic method. Thus, the three transport pathways responded differently to changes in cell volume, and, furthermore, responses were different depending on the method of changing cell water content.  相似文献   

5.
Summary Hyposmotic swelling of pig red cells leads to a selective increase in K permeability, whereas hyperosmotic cell shrinkage augments the Na permeability. In this regard, the ouabain-resistant (OR) Na flux of red cells of newborn and adult pigs is characterized in detail. A reduction in cell volume by approximately 18% leads to an increase in the OR Na efflux of fetal and adult cells by 15-and fourfold, respectively. The OR Na influx in both cell types is equally influenced by cell shrinkage. Depletion of cellular K does not influence the volume-activated OR Na efflux. Nor does OR Na influx require external K. Both OR Na efflux and influx activated by shrinkage are inhibited by the diuretics furosemide and amiloride. The rank order of decreasing anion sensitivity for diuretic-sensitive Na efflux was acetate > chloride > gluconate > nitrate. Cell shrinkage induced by the addition of hypertonic salts results in an acidification of the unbuffered and CO2-free media, provided that both Na and DIDS are present. The qcidification process can be reversed by either of the diuretic agents. These findings suggest that the shrinkageactivated OR Na flux is primarily mediated by a Na/H exchanger rather than by a Na/K/Cl cotransporter. Once loaded with either cAMP or cGMP, cell swelling can no longer activate the Na/H exchanger. The Na/H exchanger activity is detectable in the fetal cells of normal volume but quiescent in adult cells, indicating that the exchanger undergoes a developmental change during the transition from the fetal to adult stage.  相似文献   

6.
Na+ transport in the red cells of the dog is dependent on cell volume, a 20% change in cell volume leading to a 25-fold increase in apparent Na+ flux; the effect is dependent upon metabolic energy. We have found that swelling and shrinking dog red cells causes a shift in the 31P-NMR peak of 2,3-diphosphoglycerate, which is present in dog red cells at 5.5 mM. Control experiments indicate that the 2,3-diphosphoglycerate resonance peak shifts may not be attributed to: interaction with hemoglobin, changes in cell pH, ionic strength, diamagnetic susceptibility or small changes in the Mg2+/2,3-diphosphoglycerate ratio. Experiments with chlorpromazine and pentanol which alter red cell membrane area by a mechanism different from osmotic swelling suggest that 2,3-diphosphoglycerate interacts with a binding site in the cell that is dependent upon the physical condition of the dog red cell membrane.  相似文献   

7.
Summary This study establishes a method for determining the concentration of Na and K in single red blood cells from electron probe microanalysis of a cell's Na and K content. To this end, red blood cells were separated into subpopulations according to their buoyant density by means of bovine serum density gradient centrifugation. Cell water and Na+K contents were then determined in each fraction by conventional analytic methods with cell volume estimated from measurements of hematocrits and cell number. It was found that an inverse relationship obtains between the mean cell volume and buoyant cell density since cells increased in size as density decreased. Although the amount of hemoglobin per cell was found to slightly increase as cell density decreased, hemoglobin concentration showed the inverse relationship, indicating that buoyant cell density differences are primarily the result of differences in hemoglobin concentration. In confirmation of Funder and Wieth (Funder, J., Wieth, J.O. 1966.Scand. J. Lab. Invest. 18:167–180) cell water and cell volume was found to vary directly with the summed content of Na+K. Finally, by means of electron probe microanalysis of single cells, the cellular concentration of hemoglobin was found to vary inversely with the Na+K content, providing a quantitative basis for directly estimating cell volume, and thus ionic concentration, with this technique.  相似文献   

8.
In response to osmotic perturbation, the Amphiuma red blood cell regulates volume back to "normal" levels. After osmotic swelling, the cells lose K, Cl, and osmotically obliged H2O (regulatory volume decrease [RVD] ). After osmotic shrinkage, cell volume is regulated as a result of Na, Cl, and H2O uptake (regulatory volume increase [RVI] ). As previously shown (Cala, 1980 alpha), ion fluxes responsible for volume regulation are electroneutral, with alkali metal ions obligatorily counter-coupled to H, whereas net Cl flux is in exchange for HCO3. When they were exposed to the Ca ionophore A23187, Amphiuma red blood cells lost K, Cl, and H2O with kinetics (time course) similar to those observed during RVD. In contrast, when cells were osmotically swollen in Ca-free media, net K loss during RVD was inhibited by approximately 60%. A role for Ca in the activation of K/H exchange during RVD was suggested from these experiments, but interpretation was complicated by the fact that an increase in cellular Ca resulted in an increase in the membrane conductance to K (GK). To determine the relative contributions of conductive K flux and K/H exchange to total K flux, electrical studies were performed and the correspondence of net K flux to thermodynamic models for conductive vs. K/H exchange was evaluated. These studies led to the conclusion that although Ca activates both conductive and electroneutral K flux pathways, only the latter pathways contribute significantly to net K flux. On the basis of observations that A23187 did not activate K loss from cells during RVI (when the Na/H exchange was functioning) and that amiloride inhibited K/H exchange by swollen cells only when cells had previously been shrunk in the presence of amiloride, I concluded that Na/H and K/H exchange are mediated by the same membrane transport moiety.  相似文献   

9.
Alteration in cell volume of vertebrates results in activation of volume-sensitive ion flux pathways. Fine control of the activity of these pathways enables cells to regulate volume following osmotic perturbation. Protein phosphorylation and dephosphorylation have been reported to play a crucial role in the control of volume-sensitive ion flux pathways. Exposing Amphiuma tridactylu red blood cells (RBCs) to phorbol esters in isotonic medium results in a simultaneous, dose-dependent activation of both Na(+)/H(+) and K(+)/H(+) exchangers. We tested the hypothesis that in Amphiuma RBCs, both shrinkage-induced Na(+)/H(+) exchange and swelling-induced K(+)/H(+) exchange are activated by phosphorylation-dependent reactions. To this end, we assessed the effect of calyculin A, a phosphatase inhibitor, on the activity of the aforementioned exchangers. We found that exposure of Amphiuma RBCs to calyculin-A in isotonic media results in simultaneous, 1-2 orders of magnitude increase in the activity of both K(+)/H(+) and Na(+)/H(+) exchangers. We also demonstrate that, in isotonic media, calyculin A-dependent increases in net Na(+) uptake and K(+) loss are a direct result of phosphatase inhibition and are not dependent on changes in cell volume. Whereas calyculin A exposure in the absence of volume changes results in stimulation of both the Na(+)/H(+) and K(+)/H(+) exchangers, superimposing cell swelling or shrinkage and calyculin A treatment results in selective activation of K(+)/H(+) or Na(+)/H(+) exchange, respectively. We conclude that kinase-dependent reactions are responsible for Na(+)/H(+) and K(+)/H(+) exchange activity, whereas undefined volume-dependent reactions confer specificity and coordinated control.  相似文献   

10.
Sulfate flux in high sodium cat red cells   总被引:2,自引:2,他引:0       下载免费PDF全文
The transport of radioactive sulfate in cat red cells has been studied. The rate constant for 35SO4 inward movement under steady-state conditions is 0.24 ± 0.02/hr. This movement was found to be sensitive to osmotic changes in cell volume and to the nature of anions in the incubation medium; it increases with increasing cell volume and decreases with decreasing cell volume. The anions SCN, NO3, and I were found to inhibit the uptake of 35SO4. Furthermore, 1-fluoro-2,4-dinitrobenzene at a concentration of 1 mM inhibits (>90%) this uptake. The inward movement of erythritol-14C shows qualitatively the same dependence on cell volume as 35SO4, but it is insensitive to the nature of the anion present in the bathing medium. It was also found that the usually observed inhibition of radioactive Na uptake by SCN in cat red cells can be reversed when cell volume is increased.  相似文献   

11.
In systems containing human red cells and sodium taurocholate as a lysin, or distearyl lecithin as a sphering agent, the prolytic loss of K at 25°C. is accompanied by a gain of Na by the cell, the gain being somewhat greater than the K loss. A small volume increase accompanies the exchange. The kinetics of the K loss and the Na gain are similar to those already described; i.e., the changes are rapid at first, and slow down so that after 12 to 20 hours it appears that a new steady state is being approached. Similar, but smaller, losses of K and gains of Na occur when the cells stand in isotonic NaCl at 25°C. without the addition of a lysin or sphering agent. On these and other experimental grounds, it is impossible to retain the idea that the mammalian red cell in general is impermeable to cations. The cells nevertheless seem to be in a steady state with respect to their environment, their ionic composition changing as the composition of the environment is changed. The possible processes by means of which one steady state can be exchanged for another—changes in the permeability of a surface membrane, changes in the velocity of an active ion transfer process dependent on red cell metabolism, and changes in the activity of the ions in the red cell interior as a result of changes in an orderly internal structure—are discussed.  相似文献   

12.
Na+ transport in the red cells of the dog is dependent on cell volume, a 20% change in cell volume leading to a 25-fold increase in apparent Na+ flux; the effect is dependent upon metabolic energy. We have found that swelling and shrinking dog red cells causes a shift in the 31P-NMR peak of 2,3-diphosphoglycerate, which is present in dog red cells at 5.5 mM. Control experiments indicate that the 2,3-diphosphoglycerate resonance peak shifts may not be attributed to: interaction with hemoglobin, changes in cell pH, ionic strength, diamagnetic susceptibility or small changes in the Mg2+/2,3-diphosphoglycerate ratio. Experiments with chlorpromazine and pentanol which alter red cell membrane area by a mechanism different from osmotic swelling suggest that 2,3-diphosphoglycerate interacts with a binding site in the cell that is dependent upon the physical condition of the dog red cell membrane.  相似文献   

13.
Volume regulation by flounder red blood cells in anisotonic media   总被引:4,自引:2,他引:2       下载免费PDF全文
The nucleated high K, low Na red blood cells of the winter flounder demonstrated a volume regulatory response subsequent to osmotic swelling or shrinkage. During volume regulation the net water flow was secondary to net inorganic cation flux. Volume regulation the net water flow was secondary to net inorganic cation flux. Volume regulation after osmotic swelling is referred to as regulatory volume decrease (RVD) and was characterized by net K and water loss. Since the electrochemical gradient for K is directed out of the cell there is no need to invoke active processes to explain RVD. When osmotically shrunken, the flounder erythrocyte demonstrated a regulatory volume increase (RVI) back toward control cell volume. The water movements characteristic of RVI were a consequence of net cellular NaCl and KCl uptake with Na accounting for 75 percent of the increase in intracellular cation content. Since the Na electrochemical gradient is directed into the cell, net Na uptake was the result of Na flux via dissipative pathways. The addition of 10(-4)M ouabain to suspensions of flounder erythrocytes was without effect upon net water movements during volume regulation. The presence of ouabain did however lead to a decreased ration of intracellular K:Na. Analysis of net Na and K fluxes in the presence and absence of ouabain led to the conclusion that Na and K fluxes via both conservative and dissipative pathways are increased in response to osmotic swelling or shrinkage. In addition, the Na and K flux rate through both pump and leak pathways decreased in a parallel fashion as cell volume was regulated. Taken as a whole, the Na and K movements through the flounder erythrocyte membrane demonstrated a functional dependence during volume regulation.  相似文献   

14.
The ion content of compartments within cortical cells of mature roots of the halophyte Suaeda maritima grown at 200 mol·m-3 NaCl has been studied by X-ray microanalysis of freeze-substituted thin sections. Sodium and Cl were found in the vacuoles at about four-times the concentration in the cytoplasm or cell walls, whereas K was more concentrated in the cell walls and cytoplasm than in vacuoles. The vacuolar Na concentration was 12- to 13-times higher than that of K. The Na concentration of cell walls of cortical cells was about 95 mol·m-3 of analysed volume. The cytoplasmic K concentration within the mature cortical cells was estimated to be 55 mol·m-3 of analysed volume.  相似文献   

15.
Summary Red cell volume regulation is important in sickle cell anemia because the rate and extent of HbS polymerization are strongly dependent on initial hemoglobin concentration. We have demonstrated that volume-sensitive K:Cl cotransport is highly active in SS whole blood and is capable of increasing MCHC. We now report that Na+/H+ exchange (Na/H EXC), which is capable of decreasing the MCHC of erythrocytes with pHi<7.2, is also very active in the blood of patients homozygous for HbS. The activity of Na/H EXC (maximum rate) was determined by measuring net Na+ influx (mmol/liter cell·hr=FU) driven by an outward H+ gradient in oxygenated, acidloaded (pHi 6.0), DIDS-treated SS cells. The Na/H EXC activity was 33±3 FU (mean±se) (n=19) in AA whites, 37±8 FU (n=8) in AA blacks, and 85±15 FU (n=14) in SS patients (P<0.005). Separation of SS cells into four density-defined fractions by density gradient revealed mean values of Na/H EXC four to five times higher in reticulocytes (SS1), discocytes (SS2) and dense discocytes (SS3), than in the fraction containing irreversibly sickled cells and dense discocytes (SS4). In contrast to K:Cl cotransport, which dramatically decreases after reticulocyte maturation, Na/H EXC persists well after reticulocyte maturation. In density-defined, normal AA red cells, Na/H EXC decreased monotonically as cell density increased. In SS and AA red cells, the magnitude of stimulation of Na/H EXC by cell shrinkage varied from individual to individual. We conclude that Na/H EXC is highly expressed in SS and AA young red cells and decays slowly after reticulocyte maturation.  相似文献   

16.
The relative Na24 specific activity of red cells and plasma was measured at periods up to 30 hours following a single intravenous injection of Na24 in normal healthy young adults. The average specific activity of the red cells relative to that of the plasma at 24 hours and beyond was found to average 0.83 ± 0.05 in a series of five normal individuals, significantly different from 1.0. This indicates that all the intracellular Na is not exchangeable in 24 hours, and confirms earlier in vitro results. The red cell Na concentration in man was shown to be 12.1 ± 1.1 m.eq. Na/liter red cell, as measured in a series of nineteen normal healthy young adults. A theoretical analysis of the data on exchangeable cell Na suggests that the red cell Na (5.3 m.eq. Na/liter blood) is divided into a fast compartment comprising 4.25 m.eq. Na/liter blood, and a slow compartment comprising 1.07 m.eq. Na/liter blood. If these compartments are arranged in parallel, the flux between plasma and fast compartment is 1.32 m.eq. Na/liter blood hour, and that between plasma and slow compartment is 0.016 m.eq. Na/liter blood hour. Results of experiments on two patients with congenital hemolytic jaundice suggest that the fraction of slowly exchanging Na may increase with the age of the red cell.  相似文献   

17.
The phosphoproteins formed by incubation of red cell ghosts with [γ-32P]ATP in the presence of Mg and Na + Mg have been characterized by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The 32P-labeled phosphoprotein was seen as a single peak confined to the region of the diffuse 90,000 dalton polypeptide band; labeling with Na + Mg considerably increased the quantity of 32P-phosphoprotein contained in this band relative to labeling with Mg alone. Treatment of intact cells with Pronase known to partially hydrolyze the glycoproteins and the 90,000 daltons polypeptide did not change either the amount or the position of the 32P-phosphoprotein present in the gels. The molecular weight of the 32P-phosphoprotein is estimated to be 103,000. Pronase treatment of intact cells also did not significantly alter any of the transport parameters of the membrane such as the K pump flux, ouabain binding, or Na,K-ATPase. In contrast, treatment of ghosts with Pronase not only resulted in drastic alteration of the transport parameters but also inhibited the formation of the phosphoprotein under all conditions. Thus, while the Na:K pump is not intrinsically resistant to Pronase, those elements of the pump which are susceptible are not accessible from the outside of the cell. Further, SDS-polyacrylamide gel electrophoresis after Pronase treatment of intact cells results in a substantial increase in the purification of the phosphoprotein relative to that which was previously possible in ghosts.  相似文献   

18.
Sodium movement in high sodium feline red cells   总被引:5,自引:4,他引:1  
The transport of Na in the cat red cells has been studied under various experimental conditions. The unidirectional radioactive Na influx increased with increasing temperature until it reached a maximum value at 37°C ± 2°C and then decreased with a further increase in temperature. Errors stated in this paper represent 1.0 standard errors of the mean. The apparent activation energy was calculated in the region between 25 and 37°C and was found to be 4.9 ± 0.5 kcal/mole. Copper at a concentration of 0.04 mM inhibited this influx by 65%. When cells were suspended in isosmotic KCl buffer, cell volume was found to decrease initially with time. This unusual behavior is discussed in terms of Na to K preference of the cell membrane. In cat red cells, Na influx was found to increase about 13-fold when cell volume was decreased from 1.16 normal to 0.87. This effect could not be reproduced when the medium osmolarity was changed only by the addition of urea, a permeating molecule. On the other hand, K influx was found to decrease from 0.24 ± 0.03 mEq/liters RBC, hr at a relative cellular volume equal to 1.0 to 0.11 ± 0.01 mEq/liters RBC, hr at a cell volume of 0.75. Na influx in human red cells did not show any significant dependence on cell volume. The properties of Na movement in the cat red cells are compared to those of human red cells.  相似文献   

19.
The kinetics of movement of tracer Na into human and dog red cells have been studied. The time courses of these processes and of K transfer were compared with the theoretical time course for saturation of a flat sheet having a resistive surface. The theoretical and the experimental curves when plotted against t½ have a considerable portion which is linear; on the basis of this resemblance the results are interpreted in terms of a permeability constant and an internal diffusion constant. It is supposed that selective adsorption acts to bring about concentration of K in the human cell and that the bulk of the Na of that cell is present in a thin outer region, while the K is in the interior. The action of strophanthin is to remove the usual limit to the Na capacity of the cell and it is proposed that the Na region increases in thickness at the expense of the K region. Omission of K from the medium has a similar result. Na uptake into poisoned cells measured either with tracer or as a net gain has a linear dependence upon t½ after a delay. The permeability of the dog cell to Na is reduced when K is added to the medium; this may be due to the formation of an outer K-rich region which imposes a resistance to Na movement.  相似文献   

20.
The density distribution and cation composition of red blood cells from newborn puppies have been studied. The density distribution of red cells from a newborn puppy in a bovine serum albumin density gradient resembles a normal distribution with a peak density at a region less than that found for adult dog red cells. In two weeks the whole distribution shifts toward a more dense region, and a second cell peak appears so that the distribution becomes bimodal. This second cell peak is smaller than the original peak, and it appears at a region of lower density. In nine weeks the distribution becomes a normal one again, but the peak density corresponds to the peak density of the second cell peak which first appeared at two weeks. Evidence has been obtained to show that fetal red cells are located in the more dense cell peak and neonatal cells are in the less dense second peak. These results were obtained by labeling fetal cells with Cr51 and neonatal cells with Fe59. The analysis of the cation content of these cells shows that fetal cells contain more K and Na and have a higher K/Na ratio than adult red cells. Furthermore, neonatal cells contain considerably less cation and hemoglobin than do fetal cells. From a study of the cation and hemoglobin content of red cells appearing in various density fractions it is concluded that fetal cells lose K and Na during the first two weeks after birth. Thus, the change in the density disribution of the erythrocytes is thought to be due to two factors: (1) An increase in the density of fetal cells due to the loss of K and Na and, hence, water during the first two weeks after birth, and (2) the entry of less dense neonatal cells into the circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号