首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zymogen granule membranes from the rat exocrine pancreas displays distinctive, simple protein and glycoprotein compositions when compared to other intracellular membranes. The carbohydrate content of zymogen granule membrane protein was 5–10-fold greater than that of membrane fractions isolated from smooth and rough microsomes, mitochondria and a preparation containing plasma membranes, and 50–100-fold greater than the zymogen granule content and the postmicrosomal supernate. The granule membrane glycoprotein contained primarily sialic acid, fucose, mannose, galactose and N-acetylglucosamine. The levels of galactose, fucose and sialic acid increased in membranes in the following order: rough microsomes < smooth microsomes < zymogen granules.Membrane polypeptides were analyzed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The profile of zymogen granule membrane polypeptide was characterized by GP-2, a species with an apparent molecular weight of 74 000. Radioactivity profiles of membranes labeled with [3H]glucosamine or [3H]leucine, as well as periodic acid-Schiff stain profiles, indicated that GP-2 accounted for approx. 40% of the firmly bound granule membrane protein. Low levels of a species similar to GP-2 were detected in membranes of smooth microsomes and the preparation enriched in plasma membranes but not in other subcellular fractions. These results suggest that GP-2 is a biochemical marker for zymogen granules.Membrane glycoproteins of intact zymogen granules were resistant to neuraminidase treatment, while those in isolated granule membranes were readily degraded by neuraminidase. GP-2 of intact granules was not labeled by exposure to galactose oxidase followed by reduction with NaB3H4. In contrast, GP-2 in purified granule membranes was readily labeled by this procedure. Therefore GP-2 appears to be located on the zymogen granule interior.  相似文献   

2.
An extracellular membranous structure is synthesized by an embryonal carcinoma-derived cell line, M1536-B3, in suspension cultures. Analysis of the solubilized membranous structure on polyacrylamide gels in sodium dodecyl sulfate yielded two major classes of glycoproteins with molecular weights of approximately 230,000 and 320,000 respectively. The amino acid composition of the purified membranous structures revealed the absence of both hydroxyproline and hydroxylysine. Carbohydrate analysis demonstrated the presence of fucose, xylose, mannose, galactose, glucose, N-acetylglucosamine, N-acetylgalactosamine, and N-acetylneuraminic acid. These carbohydrates represented approximately 9% of the weight of the membrane. A comparison of the electrophoretic patterns of cells grown on monolayers and in suspension revealed a marked accumulation of the glycoproteins under the latter growth conditions. D-[3H]-glucosamine was incorporated into these two and a third major glycoprotein by cells in suspension culture.  相似文献   

3.
Considerable disagreement exists between results reported by various authors for lipid composition and enzyme activity in purified muscle membrane fractions presumed to be sarcolemma, although an explanation for these discrepancies has not been presented. We have prepared muscle light surface membrane fractions of comparable density (1.050–1.120) by a low-salt sucrose method and by an LiBr-KCl extraction procedure and compared them for density profile, total lipid and cholesterol content, protein composition and ATPase activity. In addition, sodium channels characteristic of excitable membranes have been quantitated in each preparation using [3H]saxitoxin binding assays, and the density of acetylcholine receptors determined in fractions from control and denervated muscle using α-[125I]bungarotoxin. Although both fractions contain predominantly surface membrane, the LiBr fraction consistently shows the higher specific activity of p-nitrophenylphosphatase, higher free cholesterol content, and higher density of sodium channels and acetylcholine receptors. The density distribution of sodium channels appears uniform throughout both fractions. Quantitative differences were seen between sodium dodecyl sulfatepolyacrylamide gel electrophoresis patterns of membrane proteins from the two preparations although most bands are represented in both. A majority of the low-salt sucrose light membrane proteins were accessible in varying degrees to labelling with diazotized diiodosulfanylic acid in intact muscle. These results suggest that light surface membrane fractions may be mixtures of sarcolemma and T-tubular membranes. Using our preparative methods, the LiBr fraction may contain predominantly sarcolemma while low-salt sucrose light membranes may be enriched in T-tubular elements.  相似文献   

4.
Two glycopeptide fractions in a pronase digest of rabbit pulmonary angiotensin-converting enzyme were resolved by gel filtration. GP-I, the minor component (~1 mole/mol enzyme) contained mannose, galactose, glucose N-acetylglucosamine, N-acetylgalactosamine and sialic acid in an approximate molar ratio of 1:5:3:4:1:2 and molar equivalents of aspartic acid, threonine and serine. GP-II, the major oligosaccharide unit (~ 12 moles/mol enzyme, ~ 90% of total carbohydrate), contained fucose, mannose, galactose, N-acetylglucosamine, sialic acid and aspartic acid in a molar ratio of 1:4:4:4:1:1. Although accounting for about one-quarter of the weight of the enzyme, GP-II did not compete with the intact glycoprotein for binding to goat antienzyme antibodies. Some structural features of GP-II were deduced by periodate oxidation and digestion with various glycosidases.  相似文献   

5.
Affinity chromatography has been used to isolate and compare the peanut agglutinin receptors from neuraminidase-treated human, bovine and porcine erythrocyte membranes. Passage of Triton X-100-solubilised membrane material through either Sepharose- or acrylamide-based affinity columns resulted in the reversible binding of receptor molecules to the immobilised lectin. Elution with 0.2M galactose released specifically bound glycoprotein fractions, the composition and molecular weights of which were determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate.Carbohydrate analysis by gas chromatography identified these bound glycoprotein fractions as the major sources of the O-glycosidic-linked disaccharide galactosyl-β-(1 → 3)-N-acetylgalactosamine in these membranes. It is suggested that these isolated fractions represent a discrete population of glycoproteins within the membranes studied, which possess both O-glycosidic- and N-glycosidic-linked carbohydrates.  相似文献   

6.
A procedure is described for the isolation of synaptic membrane fragments that retain such functionally important proteins as acetylcholine receptors, acetylcholinesterase, 3′,5′-cyclic nucleotide phosphodiesterase, and (Na++K+)-ATPase. The method is based on the observation, made in brain slices, that junctional membranes are more resistant to phospholipase A2 attack than mitochondrial or plasma membranes. Hydrolysis by phospholipase A2 was controlled by addition of fatty acid-free bovine serum albumin. The membrane fraction obtained represents approximately a 15-fold enrichment of the postsynaptic marker proteins muscarinic and nicotinic acetylcholine receptor and 3′,5′-cyclic nucleotide phosphodiesterase over an ordinary synaptic plasma membrane preparation, and is devoid of mitochondrial and microsomal contaminations. The membranes appear on the electron micrographs as rigid fragments (average length 2500–4000Å), which do not form vesicles.  相似文献   

7.
Forebrains from day-old chicks were homogenized and fractionated by differential sedimentation and density gradient centrifugation to yield subcellular fractions. The synaptosomal plasma membrane fraction was further treated with Triton X-100 to yield subsynaptic membrane fractions including synaptic junctions. Glycoproteins from these subsynaptic membrane fractions were identified after separation by SDS-polyacrylamide gel electrophoresis by incubating the gel slabs with radioiodinated concanavalin A. Two lectin-binding proteins were discerned in the synaptic junction fraction while none were observed in the Triton-soluble portion of the synaptic plasma membrane. The carbohydrate content of the glycoproteins from each subcellular fraction was quantitated after methanolysis and derivatization aso-methyl-trifluoroacetyl analogs by gas-liquid chromatography. The lowest concentration of glycoprotein sugars was found in the synaptic junction, mitochondrial, and soluble fractions while the greatest concentration was found in the myelin, light-synaptic plasma membrane, and the Triton-soluble portion of the synaptic plasma membrane. Of the subcellular fractions, the synaptic junction contained the highest porportion of mannose and lowest proportion of sialic acid. Moreover, this fraction's content of galactose andN-acetylglucosamine, relative to mannose was the lowest while its content of fucose was low. The oligosaccharide chains extending into the synaptic cleft therefore are predominantly of the neutral, mannose-rich type and are attached to a limited number of high-molecular-weight glycoproteins.  相似文献   

8.
Glycoproteins in the external surface of intact synaptosomes from rat brain cortex have been studied by oxidation of exposed galactose and galactosamine groups by galactose oxidase followed by reduction with labeled sodium borohydride. Purified synaptosomes were labeled, disrupted by osmotic shock, and the particulate components were fractionated on diatrizoate to give four synaptosomal membrane fractions (A to D) and a mitochondrial pellet (E). Fractions A and B represent highly purified synaptosomal plasma membranes. After separation of their polypeptides by electrophoresis, 45 of the label was present in two bands: one about 72 000 and the other between 7800 and 3200 daltons. Seven other bands were labeled to various degrees: 160 000, 96 000, 53 000, 39 000, 34 000, 23 000 and 16 000 daltons. With isolated membranes (which incorporate 5–6 times more label) 45 of label was present in polypeptides in three ranges: 160 000–96 000, 70 000–40 000 and 7800-3200. The number of polypeptides that can be labeled by treatment of isolated membranes is very large. In comparison, glycoproteins whose topographical distribution permits interaction with large molecules at the synaptic surface are very limited. It is further suggested that the external synaptosome membrane involves a relatively tight network of interacting molecules that cannot be readily penetrated by large molecules.  相似文献   

9.
The saxitoxin-binding component of the excitable membrane sodium channel exhibits glycoprotein characteristics as evidenced by its specific interaction with various agarose-immobilized lectins. The detergent-solubilized saxitoxin-binding component interacts quantitatively with immobilized wheat germ agglutinin and concanavalin A and fractionally with immobilized Lens culinaris hemagglutinin and Ricinus communis agglutinin. These lectins preferentially bind N-acetylglucosamine and sialic acid (wheat germ agglutinin), mannose (concanavalin A and Lens cunilaris and galactose (Ricinus communis). Removal of terminal sialic acid residues by neuraminidase markedly decreases binding to immobilized wheat germ agglutinin but uncovers sites capable of interacting with lectins specific for galactose and N-acetylgalactosamine. β-N-acetylglucosaminidase, an exoglycosidase has no effect on the binding of the channel protein to wheat germ agglutinin. Similarly, phospholipase C has no effect on binding of the solubilized toxin binding component to this lectin. Neither wheat germ agglutinin nor concanavalin A free in solution alters the number of toxin binding sites or their affinity for toxin. The sodium channel saxitoxin-binding component appears to be a glycoprotein containing terminal sialic acid residues and internal mannose, galactose, N-acetylglucosamine, and N-acetylgalactosamine residues. The toxin binding site is spatially separated from the binding sites for the lectins studied. The effect of these sugar moieties must be considered when evaluating the biophysical parameters of the sodium channel.  相似文献   

10.
Riboflavin-binding proteins (RBP) purified from chicken egg white, yolk and the serum of laying hens differ in their carbohydrate compositions reflecting tissue-specific modifications of a single gene product. All three are complex glycoproteins having more than twice as many N-acetylglucosamine residues (>12) as mannose residues (approx. 6). Egg white RBP is distinctive in having only one sialic acid and two galactose residues. Serum RBP contains approx. five sialic acid and seven galactose residues. In addition there is one residue of fucose. The carbohydrate composition of yolk RBP indicates the hydrolysis, respectively, of one, one, two and 3 residues of sialic acid, fucose, galactose, and N-acetylglucosamine from its precursor, serum RBP. The effect of these differing levels of glycosylation on plasma clearance, ovarian uptake and tissue distribution of 125I-labeled riboflavin-binding proteins in laying hens were compared. 2 h after intravenous injection, 19% of the egg white RBP, 29% of the yolk RBP, and 37% of the serum RBP remained in circulation. The kinetics of plasma clearance was distinctly biphasic for each of the radioiodinated proteins. The initial rapid-turnover component (t12=13 min) ranged from 27% of the serum RBP sample to 48% of the egg white RBP sample. The remaining slow-turnover components were cleared with half-lives fo 81 min (egg white RBP), 101 min (yokl RBP), and 121 min (serum RBP). 16 h after injection, only 4% of the egg white RBP was deposited in the yolk of developing oocytes while about 12% of the serum RBP and yolk RBP was deposited. This higly significant difference is apparently due to preferential, carbohydrate-dependent clearance of egg white RBP by the liver rather than preferential uptake of serum and yolk RBP by the ovarian follicle. We find no evidence for carbohydrate-directed uptake of riboflavin-binding protein by the ovarian follicle.  相似文献   

11.
Oligodendroglial plasma membranes are complex structures composed of a heterogeneous mixture of proteins and glycoproteins. The Coomassie stained gel patterns showed a maximum of 40 proteins with molecular weights ranging from > 200 000 to 12 500. Autoradiography was used to detect binding of radioiodinated lectins to glycoproteins. With concanavalin A, 5 major glycoproteins were seen; with wheat germ agglutinin, 2 major glycoproteins with approximate molecular weights of 95 000 and 78 000 were found; with Ulex europaeus, 7 major glycoproteins were observed. Additional minor bands were also seen. The impermeant probe diazodi[125I]iodosulfanilic acid was used to radiolabel intact cells. It was found that 5 major proteins were radiolabeled in the plasma membranes. In all cases, the whorls of membrane lamellae produced in culture by oligodendroglia tend to have a somewhat less complicated pattern with fewer proteins and glycoproteins than the plasma membranes. However, the whorls of membrane lamellae have far more complicated protein patterns than myelin.  相似文献   

12.
Myelin was purified from rat brain and sciatic nerve after invivo labeling with [3H]fucose and [14C]glucosamine to provide a radioactive marker for glycoproteins. The glycoproteins in the isolated myelin were digested exhaustively with pronase, and glycopeptides were isolated from the digest by gel filtration on Bio-Gel P-10. The glycopeptides from brain myelin separated into large and small molecular weight fractions, whereas the glycopeptides of sciatic nerve myelin eluted as a single symmetrical peak. The large and small glycopeptide fractions from central myelin and the single glycopeptide fraction from peripheral myelin were analyzed for carbohydrate by colorimetric and gas liquid chromatographic techniques. The glycopeptides from brain myelin contained 2.4 μg of neutral sugar and 0.59 μg of sialic acid per mg total myelin protein, whereas sciatic nerve myelin glycopeptides contained 10 μg of neutral sugar and 3.8 μg of sialic acid per mg total protein. Similarly, the gas-liquid chromatographic analyses showed that the glycopeptides from peripheral myelin contained 4- to 7-fold more of each individual per mg total myelin protein than those from central myelin. Most of the sialic acid and galactose in the glycopeptides from central myelin were in the large molecular weight fraction, and the small molecular weight glycopeptides contained primarily mannose and N-acetylglucosamine. The considerably higher content of glycoprotein-carbohydrate in peripheral myelin supports the results of gel electrophoretic studies, which indicate that the major protein in peripheral myelin in glycosylated while the glycoproteins in purified central myelin are quantitatevely minor components.  相似文献   

13.
A plasma membrane-enriched vesicle fraction has been prepared from Trypanosoma brucei by sonication and differential centrifugation on sucrose gradients. This fraction is enriched 5-fold in the plasma membrane marker enzymes adenyl cyclase (EC 4.6.1.1) and ouabain-inhibitable, (Na+ + K+)-dependent adenosine triphosphatase (EC 3.6.1.3). It is also enriched up to 14-fold in iodinated surface proteins, and up to 4-fold in [3H]mannose-labeled glycoproteins, of which the major variable surface coat glycoprotein is the main constituent. Proteins of the plasma membrane fraction and other subcellular fractions have been identified by electrophoretic analysis in sodium dodecyl sulfate-polyacrylamide gradient slab gels. Several high molecular weight surface glycopeptides have been selectively investigated and partially characterized by a combination of metabolic labeling with [3H]mannose, lactoperoxidase-catalyzed surface iodination, and affinity chromatography on Con A-Sepharose. In addition to the major variable surface coat glycoprotein (estimated Mr = 58 000), there are several minor surface glycopeptides (Mr = 76 000, 86 000 and 92 000–100 000) which are apparent extrinsic membrane components, and two surface glycopeptides (Mr = 42 000 and 130 000) which are intrinsic membrane components.  相似文献   

14.
Synaptic junctions (SJ) were prepared from synaptic plasma membranes (SPM) by extraction with Triton X-100 and density gradient centrifugation. These SJs were enriched in certain Concanavalin A (Con A) binding glycoproteins, the 52,000 Mr postsynaptic density (PSD) protein, and receptor sites for L-glutamate, L-aspartate, kainic acid (KA) but not quinuclidinyl benzilate (QNB). Various other membrane fractions were extracted by means of the same procedure. Those fractions prepared from light SPMs and crude myelin contained identifiable synaptic junctions and were also highly enriched in the synaptic components. The SJ-like fraction from mitochondria did not contain any of the characteristic synaptic macromolecules. However, this fraction from microsomes contained levels of the 52,000 Mr PSD protein and binding sites for L-glutamate (L-Glu) and L-aspartate (L-Asp) similar to true synaptic junctions, although the Con A binding glycoproteins and KA binding sites were nearly absent. On the basis of electron microscopy, the SJ-like fraction from microsomes did not contain structures recognizable as SJs. Thus, the Con A binding glycoproteins and KA binding sites appear to be excellent markers for the SJ.  相似文献   

15.
Phenol extraction of horse, sheep, cow, pig and human erythrocyte membranes and human milk fat globule membranes gave glycoprotein fractions, all of which were shown by gas chromatography to contain the reduced disaccharide β-d-galactosyl (1?3)-N-acetyl-d-galactosaminital after treatment with alkaline borohydride. Cow and pig erythrocyte membrane glycoproteins were found however to contain much lower amounts than the erythrocyte membrane glycoproteins of the other species tested. After gel filtration, a tetrasaccharide was isolated from horse and sheep glycoproteins containing the disaccharide plus two molecules of sialic acid. Periodate oxidation together with paper chromatography of alkaline degraded fragments showed these two molecules of sialic acid to be linked to positions C3 and C6 of the galactosyl and N-acetylgalactosamine residues respectively. Evidence was obtained for a similar structure from pig and cow erythrocyte glycoproteins and human milk fat globule membrane glycoproteins although the complete structure was not elucidated.In all native glycoprotein fractions, the unsubstituted disaccharide β-d-galactosyl (1?3)-N-acetyl-d-galactosamine was found to be present to different extents.Haemagglutination inhibition tests against human anti-T serum, Arachis hypogoea and Vicia graminea by desialylated glycoproteins showed the presence of the T-antigen, confirming the chemical findings. Inhibition was found to be proportional to the chemically detected amounts of disaccharide in each fraction. Evidence for a second carbohydrate chain in horse, sheep and human erythrocyte glycoproteins with a sialic acid substituted N-acetylgalactosamine residue as the terminal sequence was obtained using the agglutinin from Helix pomatia.  相似文献   

16.
When bakers' yeast cells which had been grown anaerobically in galactose were aerated in the presence of 10% glucose, they showed a 40% decrease in invivo [14C]-leucine incorporation into a washed mitochondrial membrane fraction compared with cells which had been aerated in a low glucose medium. The observed catabolite repression of membrane protein synthesis was primarily due to a decrease in cytoplasmic translational activity, but this repression was entirely dependent upon concomitant mitochondrial translation. The inductions of reduced coenzyme Q cytochrome c reductase (complex III) and of cytochrome c oxidase (complex IV) activities were repressed 30 and 60%, respectively, by aeration of the cells for 8 hours in 10% glucose. The catabolite repression of the formation of these two inner membrane complexes was again shown to be dependent upon concomitant mitochondrial translation. Both the amino acid incorporation and enzyme induction data suggest that catabolite repression of both cytoplasmically and mitochondrially translated mitochondrial membrane proteins is mediated through a mitochondrially translated repressor.  相似文献   

17.
18.
The organisation of the protein components of bovine chromaffin granules has been investigated by labelling or digesting intact granules or broken membranes with the following reagents: lactoperoxidase/Na125I as a reagent for tyrosine residues, N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulphonic acid as a reagent for cysteine residues, pronase, and galactose oxidase/KB3H4. Following treatment, membranes were purified and washed and proteins were examined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. Rather more than 60 bands were resolved, of which about 40 were relatively intense and reproducible. The bands were classified according to their molecular weights and sensitivity to reagents. Penetration of the membranes by the reagents was assessed by examination of intragranular proteins.The majority of chromaffin granule membrane polypeptides became labelled when intact granules were treated with impermeant reagents. Eleven were probably protected in the intact granules, reactive sites becoming exposed only on membrane lysis. By contrast, carbohydrate moieties of glycoproteins appear to be exposed only on the matrix side of the membrane. Two proteins were shown to span the membrane, although this is probably an underestimate.  相似文献   

19.
Lipopolysaccharide and an acidic polysaccharide were extracted with phenol-water from a rough strain of Escherichia coli (LP1092). The polysaccharide portion of lipopolysaccharide contained galactose, glucose, L-glycero-D-mannoheptose, small amounts of mannose and an unusually high proportion of 3-deoxy-D-manno-octulosonic acid; this polysaccharide was shown to represent the complete coli R2 core. The acidic polysaccharide, which functioned as a K antigen, contained large amounts of a 2-keto-3-deoxy sugar acid. On colorimetric and chromatographic evidence this acid appeared to be 3-deoxy-D-manno-octulosonic acid.  相似文献   

20.
Different glycosides were grafted on the surface of liposomes containing 125I-labelled γ-globulin by two ways: (1) by using glycolipid and (2) by covalent coupling of p-aminophenyl-d-glycosides to phosphatidylethanolamine liposomes using glutaraldehyde. The distribution of 125I-labelled γ-globulin was determined in mouse tissues from 5–60 min after a single injection of these liposomes. The liver uptake of encapsulated 125I-labelled γ-globulin was highest from liposomes having galactose and mannose on the surface. Competition experiments and cross-inhibition studies indicate that this uptake are mediated by specific recognition of the surface galactose and mannose residues of liposomes by the receptors present on the plasma membrane of liver cells. Stearylamine-containing liposomes were found to be more efficient in mediating the uptake of 125I-labelled γ-globulin by the lung, whereas in the case of spleen, phosphatidylethanolamine liposomes were more efficient. The extent of uptake of 125I-labelled γ-globulin from all types of liposome decreases as the amount of given liposomes increases. The uptake of 125I-labelled γ-globulin from liposomes containing asialogangliosides depends upon the phospholipid/ glycolipid ratio. These experiments clearly demonstrate that enhanced liposome uptake by liver cells could be achieved by grafting galactose and mannose on the liposomal surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号