首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Band 3 is the predominant approximately 90,000-dalton polypeptide component of the human erythrocyte membrane. It was solubilized selectively, along with the other major glycoproteins, by extracting membrane ghosts with Triton X-100 under nondenaturing conditions. Two major polypeptides remained associated with Band 3 under these conditions; however one (Band 6) could be dissociated at an ionic strength of 0.15 and the other (Band 4.2) by treatment with p-chloromercuribenzoate. Band 3 was then purified (greater than or equal to 97%) by aminoethyl cellulose ion exchange chromatography. The isolated protein was free of phospholipid and was moderately enriched in apolar amino acid residues; it contained galactose and glucosamine but very little sialic acid and galactosamine. When Band 3 was labeled by treatment of ghosts with galactose oxidase plus KB3H4 and then purified, the electrophoretic mobility of its radioactivity lagged slightly behing that of its Coomassie blue staining profile. Variation in glycosylation could therefore cause the diffuse trailing zone characteristically observed for Band 3 on polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The ultraviolet circular dichroism of Band 3 was stable in nonionic detergent and suggested an alpha helix content of 43%, a value close to that estimated for this polypeptide in the membrane.  相似文献   

2.
The exposure of the carboxyl-terminal of the Band 3 protein of human erythrocyte membranes in intact cells and membrane preparations to proteolytic digestion was determined. Carboxypeptidase Y digestion of purified Band 3 in the presence of non-ionic detergent released amino acids from the carboxyl-terminal of Band 3. The release of amino acids was very pH dependent, digestion being most extensive at pH 3, with limited digestion at pH 6 or above. The 55,000 dalton carboxyl-terminal fragment of Band 3, generated by mild trypsin digestion of ghost membranes, had the same carboxyl-terminal sequence as intact Band 3, based on carboxypeptidase Y digestion. Treatment of intact cells with trypsin or carboxypeptidase Y did not release any amino acids from the carboxyl-terminal of Band 3. In contrast, carboxypeptidase Y readily digested the carboxyl-terminal of Band 3 in ghosts that were stripped of extrinsic membrane proteins by alkali or high salt. This was shown by a decrease in the molecular weight of a carboxyl-terminal fragment of Band 3 after carboxypeptidase Y digestion of stripped ghost membranes. No such decrease was observed after carboxypeptidase Y treatment of intact cells. In addition, Band 3 purified from carboxypeptidase Y-treated stripped ghost membranes had a different carboxyl-terminal sequence from intact Band 3. Cleavage of the carboxyl-terminal of Band 3 was also observed when non-stripped ghosts or inside-out vesicles were treated with carboxypeptidase Y. However, the digestion was less extensive. These results suggest that the carboxyl-terminal of Band 3 may be protected from digestion by its association with extrinsic membrane proteins. We conclude, therefore, that the carboxyl-terminal of Band 3 is located on the cytoplasmic side of the red cell membrane. Since the amino-terminal of Band 3 is also located on the cytoplasmic side of the erythrocyte membrane, the Band 3 polypeptide crosses the membrane an even number of times. A model for the folding of Band 3 in the erythrocyte membrane is presented.  相似文献   

3.
Polyclonal antibodies were raised in rabbits against a synthetic peptide which corresponds to the 12-amino acid carboxyl-terminal sequence of murine erythrocyte Band 3. Immunoblots of ghost membrane proteins showed that the antibody specifically recognized murine or rat Band 3 but not human or canine Band 3. The antibody also bound to murine ghost membranes applied directly to nitrocellulose but not to human ghost membranes. This shows that the carboxyl terminus of Band 3 is available for antibody binding in ghost membranes and that the carboxyl-terminal sequences of human and mouse Band 3 are not identical. The specificity of the antibody for the carboxyl terminus of Band 3 was confirmed by the loss of antibody binding after digestion of detergent-solubilized ghost membrane proteins with carboxypeptidase Y. In addition, carboxyl-terminal fragments of Band 3 generated by protease treatment of cells or ghost membranes were positive on immunoblots while amino-terminal fragments were negative. In contrast, protease-treated stripped ghost membranes did not contain a carboxyl-terminal fragment of Band 3 that was detectable on immunoblots. The carboxyl terminus of Band 3 was localized to the cytoplasmic side of the erythrocyte membrane since antibody binding as determined by immunofluorescence occurred in ghosts and permeabilized cells but not in intact cells. In addition, competition studies using enzyme-linked immunosorbent assays and immunoblots showed that cells and resealed ghosts competed poorly for antibody compared to ghost membranes, inside-out vesicles, or albumin-conjugated peptide.  相似文献   

4.
Summary Antisera directed against the cytoplasmic portion of human erythrocyte Band 3 were used to follow the degradation of the band 3 molecule. Small amounts of Band 3 were degraded when well-washed red cell membrane ghosts were incubated in the cold; this process was greatly accelerated by incubating ghosts at 37°C. Band 3 labeled with pyridoxal-phosphate was digested at comparable rates. Band 3 digestion also took place when alkali-extracted ghost membranes were incubated at 37° for prolonged periods. These results suggest that human erythrocytes contain tightly bound, membrane-associated proteolytic activity.  相似文献   

5.
In an attempt to determine which membrane proteins are essential to the stereospecific uptake of D-glucose, isolated human erythrocyte membranes were exposed to a variety of reagents capable of selectively extracting various membrane proteins. These reagents included EDTA, lithium 3,5-diiodosalicylate, sodium iodide, and 2,3-dimethylmaleic anhydride. Selective elution of spectrin and Components 2.1, 2.2, 2.3, 4.1, 4.2, 5, and 6 representing 65% of the ghost protein has no effect on the uptake of D-glucose. All of the sugar transport proteins are associated with a membrane residue consisting of the proteins of Bands 3, 4.5, and 7, the periodic acid-Schiff-sensitive glycoproteins, and ghost phospholipids. Specific cross-linking of the proteins of Band 3 of ghosts by the catalyzed oxidation of intrinsic sulfhydryl groups with the o-phenanthroline-cupric ion complex inhibits D-glucose uptake and alters the relative electrophoretic mobility of Band 3 proteins in sodium dodecyl sulfate-polyacrylamide-agarose gels. This uptake activity and the relative mobility of Band 3 proteins are recovered upon reversal of the cross-linking reaction by reduction with 2-mercaptoethanol. These results and other observations indicate that the D-glucose transport protein is an intrinsic component of the hydrophobic structure of the erythrocyte membrane and may be associated with the proteins of Band 3 which are glycoproteins spanning the membrane bilayer. It is proposed that D-glucose transport occurs through a water-filled channel formed by specific subunit aggregates of the transport proteins in the erythrocyte membrane rather than by rotation of the protein within the plane of the membrane.  相似文献   

6.
p-Aminobenzoic acid (PABA) was found to prevent eichinocytosis of red cells in vitro. Equilibrium binding studies with right-side-out membrane vesicles revealed a similar number of binding sites and Kd values for both normal and sickle cell membranes. A [14C]Azide analog of PABA was synthesized as a photoaffinity label to probe its sites of interaction on the erythrocyte membranes. Competitive binding studies of PABA with its azide indicated that both the compounds share common binding sites on the membrane surface. The azide was found to covalently incorporate into the membrane components upon irradiation; 52-35% of the label was associated with the proteins and the remaining with the lipids. Electrophoretic analysis of photolabeled membranes revealed that the azide interacts mainly with Band 3 protein in the case of intact erythrocytes and right-side-out sealed vesicles; however, if unsealed ghosts are used, other membrane proteins besides Band 3 are photolabeled. PABA was found to inhibit both high and low affinity calcium-binding sites situated on either surface of the membrane apparently in a non-competitive manner. However, calcium binding stimulated by magnesium and ATP was only slightly affected. Calcium transport into inside-out vesicles was inhibited by PABA, but it did not affect the calcium ATPase activity.  相似文献   

7.
The putative hexose transport component of Band 4.5 protein of the human erythrocyte membrane was covalently photolabelled with [3H]cytochalasin B. Its transmembrane topology was investigated by electrophoretically monitoring the effect of proteinases applied to intact erythrocytes, unsealed ghosts, and a reconstituted system. Band 4.5 was resistant to proteolytic digestion at the extracellular face of the membrane in intact cells at both high and low ionic strengths. Proteolysis at the cytoplasmic face of the membrane in ghosts or reconstituted vesicles resulted in cleave of the transporter into two membrane-bound fragments, a peptide of about 30 kDa that contained its carbohydrate moiety, and a 20 000 kDa nonglycosylated peptide that bore the cytochalasin B label. Because it is produced by a cleavage at the cytoplasmic face and because the carbohydrate moiety is known to be exposed to the outside, the larger fragment must cross the bilayer. It has been reported that the Band 4.5 sugar transporter may be derived from Band 3 peptides by endogenous proteolysis, but the cleavage pattern found in the present study differs markedly from that previously reported for Band 3. Minimization of endogenous proteolysis by use of fresh cells, proteinase inhibitors, immediate use of ghosts and omission of the alkaline wash resulted in no change in the incorporation of [3H]cytochalasin B into Band 4.5, and no labelling of Band 3 polypeptides. These results suggest that the cytochalasin B binding component of Band 4.5 is not the product of proteolytic degradation of a Band 3 component.  相似文献   

8.
Band 3, the predominant membrane-spanning polypeptide and purported anion transport protein of human red cells, was isolated by a new procedure which utilized selective solubilization and anion exchange chromatography on Affi-Gel 102 in 0.5% and Triton X-100/0.03% sodium dodecyl sulfate. Rabbit anti-serum prepared against the purified protein reacted with human and monkey band 3 but gave no immunoprecipitate with membrane proteins from several non-primate species. The antiserum was directed solely towards a portion of the cytoplasmic pole of the band 3 polypeptide contained within a 23,000 dalton amino-terminal fragment, as shown by agglutination, absorption, double diffusion and immunoprecipitation techniques. Saturation of both surfaces of resealed erythrocyte ghosts with the anti-band 3 antiserum had no significant effect on chloride transport. Our data define the topographically-limited immunogenicity of human band 3 in rabbits, demonstrate a lack of immunological cross-reactivity of band 3 between primates and non-primates, and support the hypothesis that the cytoplasmic domain of band 3 is not intimately involved in anion transport.  相似文献   

9.
人红细胞膜带3蛋白的提纯与鉴定   总被引:5,自引:0,他引:5  
提出了一种分离纯化人红细胞膜带3蛋白的不含血型糖蛋白制剂的改良方法:先后用0.89%NaCl、20mM pH8.0磷酸钠和0.05%TritonX-100处理膜除去膜骨骼蛋白类和血型糖蛋白,再用自行设计的凝胶制备电泳装置进一步纯化。冰冻干燥的制剂是均质的,得率为18.5±2.85%,它的分子量、氨基酸组成和紫外吸收光谱与文献报道基本相同。  相似文献   

10.
Summary Normal human serum contains autoantibodies to a wide range of cellular and serum proteins. IgG autoantibodies to cell membrane proteins spectrin, syndein (Band 2.1), Band 3 degradation products, and the senescent cell antigen are among them. Physiologic autoantibodies to the senescent cell antigen, a 62 000 dalton glycopeptide derived from Band 3, initiate removal of senescent, damaged, and stored cells in vivo. The senescent cell antigen is one of the two Band 3 degradation products (Mr 66 000 and 62 000) observed in freshly prepared ghosts.Since the senescent cell antigen is observed on red cells aged in situ, data suggest that Band 3 undergoes proteolysis in situ. IgG eluted from blood stored for transfusion binds to the senescent cell antigen. The amount of IgG on red cells increases during storage suggesting accumulation of the senescent cell antigen. Autoantibodies to other cell and serum proteins are discussed as possible regulators of homeostasis. The effect of age on physiologic autoantibodies is reviewed.  相似文献   

11.
The action of purified calcium-dependent proteinases on human erythrocyte membrane skeleton proteins has been examined. Preferential cleavage of proteins 4.1 a and b and band 3 and limited cleavage of alpha- and beta-spectrin occur when either calcium-dependent proteinase I or calcium-dependent proteinase II has access to the cytoplasmic side of the ghost membrane skeleton in the presence of calcium. Thus, when these proteinases are incubated with sealed ghosts they do not cleave these proteins. Leupeptin, mersalyl, the specific cellular protein inhibitor of these enzymes, and calcium chelators can inhibit proteolysis of the red cell ghost proteins by Ca2+-dependent proteinases. Each proteinase has also been loaded into erythrocyte ghosts in the absence of calcium at low ionic strength and subsequently trapped inside by resealing the ghosts. The proteinases were activated by incubating these ghosts in the presence of the calcium ionophore A23187 and calcium. Examination of the ghost proteins by electrophoresis demonstrated calcium-dependent proteolysis of Bands 4.1 and 3 and limited cleavage of alpha- and beta-spectrin similar to that observed on proteolysis of the open, leaky ghosts. In the presence of calcium each calcium-dependent proteinase appears to associate with the erythrocyte ghost membrane.  相似文献   

12.
The transport activity of Band 3 of spectrin-stripped inside-out erythrocyte membrane vesicles (IOVs) or resealed ghosts was enhanced in the presence of trace amounts of Na2SeO3 (0.2-0.5 p.p.m.); however, at higher concentrations of Na2SeO3 (> 4.0 p.p.m.), an inverse result was obtained. Reassociation of spectrin with IOVs has no effect either on the transport activity of Band 3 or on the enhancement of its activity by Na2SeO3. Sulfhydryl reagents (p-chloromercuribenzoic acid and N-ethylmaleimide) could also inhibit Band 3 activity and eliminate the selenium effect. It is suggested that SH groups are involved in anion transport of Band 3 and that the selenium effect is based on the interaction of SH groups of Band 3 with Na2SeO3.  相似文献   

13.
Spermine (N, N'-bis(aminopropyl)-1,4-butanediamine) is a polyamine thought to be important in several cell regulatory processes. Previous studies had shown that spermine prevented the lateral diffusion of transmembrane proteins in human erythrocyte ghosts (Schindler et al. (1980) Proc. Natl. Acad. Sci. USA 77, 1457-1461). In this paper, we present results of studies on the effect of spermine on erythrocyte membranes by employing electron spin resonance spin-labeling techniques in conjunction with spin labels specific for skeletal proteins, bilayer lipids or cell-surface sialic acid of the membrane and by employing SDS-polyacrylamide gel electrophoresis analysis of extracted spectrin and Triton shells. The major findings are: (1) spermine significantly decreases the segmental motion of protein spin-label binding sites (P less than 0.0001), which are predominantly on cytoskeletal proteins; (2) addition of spermine leads to a significant increase in the rotational motion of spin-labeled terminal sialic acid residues (P less than 0.001), most of which are located on glycophorin A, a result which may be secondarily caused by spermine-induced aggregation of cytoskeletal proteins and the cytoplasmic pole of this transmembrane sialoglycoprotein; (3) spermine completely inhibits the low-ionic strength extraction of spectrin, the major protein of the skeletal network which is attached to the bilayer proteins by two or more connecting proteins; (4) pretreatment of ghosts with spermine followed by Triton extraction resulted in the retention of significantly increased amounts of Band 3 and other skeletal and bilayer proteins including Bands 4.2, 6 and 7 in Triton X-100 shells relative to that of control-treated ghosts. These results suggest that spermine acts both to increase protein-protein interactions in the cytoskeletal protein network and to bridge skeletal and bilayer proteins and are discussed with reference to possible molecular mechanisms by which spermine may influence cell functions.  相似文献   

14.
1. A method which allows the characterization of lectin-binding components is described. This method should be useful in defining the nature and heterogeneity of these components in cell membranes. 2. The method, which we have used on erythrocyte "ghosts", involves the fixation of "ghost" components after sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and incubation with purified 125I-labelled lectins. 3. Each of the four lectins used shows an individual pattern of reactivity towards "ghosts" components. Band 3, the major membrane-penetrating glycoprotein, is bound by the lectins from Ricinus communis and Phaseolus vulgaris (phytohaemagglutinin) and by concanavalin A. The major erythrocyte sialoglycoprotein is bound by the lectins from R. communis, P. vulgaris and Maclura aurantiaca. 4. Three of the lectins displays binding for other membrane components, some of which are not demonstratable by conventional protein- and carbohydrate-staining techniques.  相似文献   

15.
This report presents an analysis of the phosphorylation of human and rabbit erythrocyte membrane proteins which migrate in NaDodSO4-polyacrylamide gels in the area of the Coomassie Blue-stained proteins generally known as band 3. The phosphorylation of these proteins is of interest as band 3 has been implicated in transport processes. This study shows that there are at least three distinct phosphoproteins associated with the band 3 region of human erythrocyte membranes. These are band 2.9, the major band 3, and PAS-1. The phosphorylation of these proteins is differentially catalyzed by solubilized membrane and cytoplasmic cyclic AMP-dependent and -independent erythrocyte protein kinases. Band 2.9 is present and phosphorylated in unfractionated human and rabbit erythrocyte ghosts but not in NaI- or dimethylmaleic anhydride (DMMA)-extracted membranes. These latter membrane preparations are enriched in band 3 and in sialoglycoproteins. The NaI-extracted ghosts contain residual protein kinase activity which can catalyze the autophosphorylation of band 3 whereas the DMMA-extracted ghosts are usually devoid of any kinase activity. However, both NaI- and DMMA-extracted ghosts, as well as Triton X-100 extracts of the DMMA-extracted ghosts, can be phosphorylated by various erythrocyte protein kinases. The kinases which preferentially phosphorylate the major band 3 protein are inactive towards PAS-1 while the kinases active towards PAS-1 are less active towards band 3. The band 3 protein in the DMMA-extracted ghosts can be cross-linked with the Cu2+ -σ-phenanthroline complex. The cross-linking of band 3 does not affect its capacity to serve as a phosphoryl acceptor nor does phosphorylation affect the capacity of band 3 to form cross-links. In addition to band 2.9, the major band 3 and PAS-1, another minor protein component appears to be present in the band 3 region in human erythrocyte membranes. This protein is specifically phosphorylated by the cyclic AMP-dependent protein kinases isolated from the cytoplasm of rabbit erythrocytes. The rabbit erythrocyte membranes lack PAS-1 and the cyclic AMP-dependent protein kinase substrate.  相似文献   

16.
1. Activity of proteases, strongly related with erythrocyte membrane, was analysed employing a new methodological approach. 2. Intact bovine ghosts, ghosts depleted in peripheric proteins or purified Triton X-100 and ghost extracts were electrophoresed and the proteolytic activity in the gel fragments (SDS-PAGE) was assayed. 3. At least two proteases that were inhibited by EDTA and PMSF were found.  相似文献   

17.
We have examined the associations of purified red cell band 4.2 with red cell membrane and membrane skeletal proteins using in vitro binding assays. Band 4.2 bound to the purified cytoplasmic domain of band 3 with a Kd between 2 and 8 X 10(-7) M. Binding was saturable and slow, requiring 2-4 h to reach equilibrium. This finding confirms previous work suggesting that the principal membrane-binding site for band 4.2 lies within the 43-kDa cytoplasmic domain of band 3 (Korsgren, C., and Cohen, C. M. (1986) J. Biol. Chem. 261, 5536-5543). Band 4.2 also bound to purified ankyrin in solution with a Kd between 1 and 3.5 X 10(-7) M. As with the cytoplasmic domain of band 3, binding was saturable and required 4-5 h to reach equilibrium. Reconstitution with ankyrin of inside-out vesicles stripped of all peripheral proteins had no effect upon band 4.2 binding to membranes; similarly, reconstitution with band 4.2 had no effect upon ankyrin binding. This shows that ankyrin and band 4.2 bind to distinct loci within the 43-kDa band 3 cytoplasmic domain. Coincubation of ankyrin and band 4.2 in solution partially blocked the binding of both proteins to the membrane. Similarly, coincubation of bands 4.1 and 4.2 in solution partially blocked binding of both to membranes. In all cases, the data suggest the possibility that domains on each of these proteins responsible for low affinity membrane binding are principally affected. The data also provide evidence for an association of band 4.2 with band 4.1. Our results show that band 4.2 can form multiple associations with red cell membrane proteins and may therefore play an as yet unrecognized structural role on the membrane.  相似文献   

18.
Dimethyl-3,3'-dithiobispropionimidate penetrates intact human erythrocytes and cross-links many of the membrane proteins to hemoglobin as well as to each other. The cross-linked complexes so produced have been analyzed by both one- and two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis, making use of the easy cleavability of the disulfide-containing reagent. The basic pattern of cross-linked complexes appears identical with that seen with unsealed ghosts. Although subtle relative motions cannot be ruled out, no rearrangement of nearest neighbor peptide chains, on a scale that would alter the cross-linking pattern, occurs during osmotic lysis of erythrocytes. Superimposed on the basic pattern was a series of complexes involving globin chains. Bands 1, 2, 2.2, 2.4, 3, 4.1, 4.2, 6, and 7 (nomenclature of Steck, T.L. (1972) J. Mol. Biol. 66, 295-305) are all cross-linked to hemoglobin. Bands 2.2 and 2.4, recently shown to be accessible to the external surface of the membrane (Staros, J. V., and Richards, F. M. (1974) Biochemistry 13, 2720-2726), may be transmembrane proteins on the basis of the present findings. Band 5 is the only major band to show no detectable complexes with hemoglobin; oligomers of Band 5 itself, however, are seen. The absence of hemoglobin/Band 5 cross-linking in this case could reflect a special, as yet unexplained, environment for the Band 5 peptide. The amount of Band 6 in isolated membranes diminishes with increasing reagent concentration.  相似文献   

19.
Reconstitution of the erythrocyte anion channel   总被引:2,自引:0,他引:2  
Band 3, the membrane protein which mediates erythrocyte anion exchange, was purified on a concanavalin A column. Triglycerides, diglycerides, cholesteryl esters, cholesterol, and phosphatidylcholine were found to copurify. The column product gave at least two and probably three bands by isoelectric focusing. Antibodies prepared against the purified Band 3 appeared to react only with the cytoplasmic face of Band 3. Vesicles prepared with Band 3 had an accelerated uptake of SO4(2-) which could be inhibited by 2-(j'-aminophenyl)-6-methyl benzene thiazo-3', 7-disulfonic acid, a potent inhibitor of anion transport in the intact system. The possible source of this difference is discussed. Band 3 was spin labeled, probably at one specific site. The spectra showed that the spin label was highly immobilized, but no dipole-dipole interactions between spin labels on adjacent Band 3 subunits were apparent.  相似文献   

20.
Peroxiredoxin 2 (Prx2) is an abundant antioxidant protein in erythrocytes that protects against hemolytic anemia resulting from hemoglobin oxidation and Heinz body formation. A small fraction of Prx2 is bound to the cell membrane, but the mechanism and relevance of binding are not clear. We have investigated Prx2 interactions with the erythrocyte membrane and oxidized hemoglobin and whether these interactions are dependent on Prx2 redox state. Membrane binding of Prx2 in erythrocytes decreased when the cells were treated with H2O2, but studies with purified Prx2 and isolated ghosts showed that the interaction was independent of Prx2 redox state. Hemoglobin oxidation leads to the formation of hemichrome, a denatured form of the protein that binds to Band3 protein in the cell membrane as part of the senescence process and is a precursor of Heinz bodies. Hemichrome competed with Prx2 and decreased Prx2 binding to the membrane, potentially explaining the decreased binding in oxidant-exposed cells. The increased membrane binding of Prx2 seen with increasing intracellular calcium was less sensitive to H2O2 or hemichrome, suggesting an alternative mode of binding. Prx2 was also shown to exhibit chaperone-like activity by retarding the precipitation of pre-formed hemichrome. Our results suggest that Prx2, by restricting membrane binding of hemichrome, could impede Band3 clustering and exposure of senescence antigens. This mechanism, plus the observed chaperone activity for oxidized hemoglobin, may help protect against hemolytic anemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号