首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid, continuous, and highly sensitive fluorescence assay is described for the measurement of epoxide hydrase activity. The method is based on the large differences between the fluorescence spectra of certain K-region arene oxides and their corresponding trans-dihydrodiols. Enzymatic hydration of K-region arene oxides of phenanthrene, pyrene, benzo[a]pyrene, and 7,12-dimethylbenzo[a]anthracene was studied. The assay was most sensitive with benzo[a]pyrene-4,5-oxide as substrate. With 10 μm benzo[a]pyrene-4,5-oxide, enzymatic rates of 30 pmol of dihydrodiol/min/mg of protein are three to five times those of the blank without enzyme. The fluorometric method described has been used to study site-directed inhibitors of epoxide hydrase and the stereoselective hydration of racemic arene oxides.  相似文献   

2.
A radiometric assay for epoxide hydratase using [14C]benzene oxide as substrate has been developed. The reaction product trans-1,2-[14C]dihydroxy-1,2-dihydrobenzene (benzene dihydrodiol) was separated from the other components by simple extraction of the unreacted substrate and phenol (a rearrangement product) into a mixture of light petroleum and diethyl ether followed by extraction of the benzene dihydrodiol into ethyl acetate. The product was then estimated by scintillation counting. Using this assay the enzymic hydration of benzene oxide and the possible existence of a microsomal epoxide hydratase with a greater specificity toward benzene oxide were reinvestigated. The sequence of activities of microsomes from various organs was liver > kidney > lung > skin, the pH optimum of enzymic benzene oxide hydration was about pH 9.0, which is similar to that of styrene oxide hydration and both activities were equally stable when liver microsomal fractions were stored. The effect of low molecular weight inhibitors upon the hydration of styrene and benzene oxide by liver microsomes was similar in some cases and dissimilar in others. However, all the dissimilarities could be explained without recourse to the hypothesis of the existence of a separate benzene oxide hydratase. During enzyme purification studies the activity toward benzene oxide was inhibited by the detergent used (cutscum) but was recovered when the detergent was removed. Solubilization without significant loss of activity was successful using sodium cholate. This allowed immunoprecipitation studies, which were performed using monospecific antiserum raised against homogeneous epoxide hydratase. The dose-response curves of the extent of precipitation of activity with increasing amounts of added antiserum were indistinguishable for benzene oxide and styrene oxide as substrate. At high antiserum concentrations precipitation was complete with both substrates. The findings, taken together, indicate the presence in rat liver microsomes of a single epoxide hydratase catalyzing the hydration of both styrene and benzene oxide or the presence of enzymes so closely related that these cannot be distinguished by any of the criteria tested.  相似文献   

3.
A simple, rapid and sensitive assay is described for benzo(a)pyrene-4,5-oxide hydratase, an enzyme converting benzo(a)pyrene-4,5-oxide to benzo(a)pyrene-4,5-dihydro-4, 5-diol. The amount of the diol formed is constant with time and protein concentration and is equal to the oxide consumed. The enzyme has no requirements for oxygen or NADPH and is inhibited by 1,1,1-trichloropropylene oxide. The intact enzyme is highly resistant to destruction by proteases, but becomes susceptible to pronase digestion after treatment with detergent. The enzyme is inducible by phenobarbital but not by 3-methylcholanthrene, both inducers of aryl hydrocarbon(benzo(a)pyrene)hydroxylase, which demonstrates the ability to alter the ratio of hydratase to the coupled mixed-function oxygenase. A changed ratio of these two activities may result in altered benzo(a)pyrene metabolism.  相似文献   

4.
Immunochemical techniques were used to investigate the biochemical properties of human lung epoxide hydrolases. Two epoxide hydrolases with different immunoreactive properties were identified. These two epoxide hydrolases were found in both cytosolic and microsomal cell fractions. Immunotitration of enzyme activity showed that enzymes that catalyze the hydration of benzo(a)pyrene 4,5-oxide react with antiserum to rat microsomal epoxide hydrolase; those that hydrate trans-stilbene oxide do not. Immunotitration and Western blot experiments showed that microsomal and cytosolic benzo(a)pyrene 4,5-oxide hydrolases have significant structural homology. Immunohistochemical staining of human lung benzo(a)pyrene 4,5-oxide hydrolase showed that the enzyme is localized primarily in the bronchial epithelium. No cell type-specific localization was observed. An enzyme-linked immunosorbent assay was developed which allows direct quantitation of benzo(a)pyrene 4,5-oxide hydrolase protein. Levels of enzyme protein detected by this assay correlated well with enzyme levels determined by substrate conversion assays.  相似文献   

5.
A rapid and highly sensitive fluorometric assay for UDP-glucuronyltransferase (EC 2.4.1.17) has been devised using 3-hydroxybenzo(a)pyrene as substrate. The sensitivity of the procedure is based on (a) the high coefficient of fluorescence of the product, benzo(a)pyrene-3-glucuronide, and (b) the very low background which is obtained by an efficient differential extraction of substrate and product and their widely differing fluorescence characteristics in alkaline solution. As little as 5–10 pmol of product can be determined. The procedure involves essentially a single extraction and transfer step. The method may be applicable in measuring transferase activity in a few micrograms of tissue protein or of cultured cells as well as in the routine processing of large numbers of samples. Some of the properties of glucuronyltransferase activity directed toward 3-hydroxybenzo(a)pyrene are described such as kinetic constants and the sensitivity of the reaction to detergents and organic solvents.  相似文献   

6.
A growing body of evidence implicates epoxide metabolites of mutagenic and carcinogenic polycyclic hydrocarbons as either the only species, or one of the contributing species responsible for these adverse effects. Selective induction of epoxide hydratase(s) catalyzing the transformation of epoxides to electrophilically unreactive dihydrodiols, under conditions not leading to increases in monooxygenase(s) responsible for epoxide formation would, therefore, be of interest. All inducers of rat hepatic epoxide hydratase (determined with [7-3H]styrene oxide as substrate) which have been discovered also induced monooxygenase (determined with benzo(a)pyrene as substrate) suggesting a possible common biosynthetic control of these enzymes. The enzyme levels observed in different sexes and at different stages of the ontogenetic development, possibly dependent on endogenous inducers, strengthened this view. No sex difference is epoxide hydratase activity was observed in young rats (1 to 5 days old) while epoxide hydratase levels were about 3-fold higher in adult males than in females, which was remarkably similar to the behavior of monooxygenase. Moreover, the prenatal development of epoxide hydratase and monooxygenase appeared to be similar--although the low enzyme levels precluded accurate determinations of the latter. Although different types of known monooxygenase inducers all led to epoxide hydratase induction in adult rat liver, their effect of epoxide hydratase and monooxygenase could be dissociated by transplacental treatment. Dissociation was clearest with inducers of the polycyclic hydrocarbon type which led to great induction of monooxygenase while epoxide hydratase remained unchanged. The increases in monooxygenase activity were very different when determined by two methods based on different principles, demonstrating that at least two monooxygenases are involved in oxidative metabolism of benzo(a)pyrene, and that the control of epoxide hydratase is not under common control with either of them.  相似文献   

7.
A rapid method for the assay of epoxide hydrase activity is described. 3-Methylcholanthrene-11,12-oxide is employed as substrate and high speed liquid chromatography is used to separate and quantitate trans-11,12-dihydro-11,12-dihydroxy-3-methylcholanthrene (product) formation. The determination of product at picomole levels can be obtained.  相似文献   

8.
A coupled assay was devised for the assay of liver microsomal epoxide hydratase using the ability of alcohol dehydrogenase to transfer electrons from diols to NAD+: epoxide hydratase activity was continuously monitored at 340 nm. Rates of hydrolysis of octene-1,2-oxide and styrene-7,8-oxide measured utilizing this assay were similar to those determined using gas-liquid chromatography and radiometric thin-layer chromatography, respectively. The assay was used to examine the ability of rat liver microsomes and highly purified rat liver microsomal epoxide hydratase fractions to hydrolyze 15 other epoxides.  相似文献   

9.
1-14C-labelled hepoxilin A3 (8-hydroxy-11,12-epoxyeicosa-5,9,14-trienoic acid) was generated from 1-14C-labelled arachidonic acid during incubation with a rat lung preparation lacking epoxide hydratase activity. The HPLC purified hepoxilin A3 gave only two isomeric 8,11,12-triols (termed trioxilins A3) upon incubation with a rat lung preparation containing epoxide hydratase activity. Based on this simple reaction an assay was developed using only 2000 cpm/tube of substrate and aliquots of a homogenate of platelet membranes from man. Products were assayed by thin-layer radiochromatography. Males were noted to have higher epoxide hydratase activity for this substrate than females.  相似文献   

10.
The roles of rabbit liver cytochrome b5, epoxide hydrase and various forms of cytochrome P-450 in the NADPH-dependent metabolism of benzo(a)pyrene were examined. After incorporation of the purified enzymes into phospholipid vesicles, using the cholate gel filtration technique, the various types of cytochrome P-450 did exhibit different stereospecificities in the oxygenation of the substrate. Cytochrome P-450LM2 was found to efficiently convert benzo(a)pyrene in the presence of epoxide hydrase to 4,5-dihydroxy-4,5-dihydrobenzo(a)pyrene whereas cytochrome P-450LM4 primarily participated in the formation of 9,10-dihydroxy-9,10-dihydrobenzo(a)pyrene. By contrast, benzo(a)pyrene was not metabolized by cytochrome P-450LM3. Cytochrome b5 enhanced cytochrome P-450LM2-catalyzed oxygenations 5-fold, whereas cytochrome P-450LM4-dependent oxygenations proceeded at a 3 times higher rate when cytochrome b5 was present in the membrane.  相似文献   

11.
Cytochrome P-450, NADPH-cytochrome c reductase, biphenyl hydroxylase, and epoxide hydratase have been compared in intact rat liver and in primary hepatocyte cultures. After 10 days in culture, microsomal NADPH-cytochrome c reductase and epoxide hydratase activities declined to a third of the liver value, while cytochrome P-450 decreased to less than a tenth. Differences in the products of benzo[a]pyrene metabolism and gel electrophoresis of the microsomes indicated a change in the dominant form(s) of cytochrome P-450 in the cultured hepatocytes. Exposure of the cultured cells to phenobarbital for 5 days resulted in a threefold induction in NADPH-cytochrome c reductase and epoxide hydratase activities which was typical of liver induction of these enzymes. Exposure of the cells to 3-methylcholanthrene did not affect these activities. Cytochrome P-450 was induced over two times by phenobarbital and three to four times by 3-methylcholanthrene. The λmax of the reduced carbon monoxide complex (450.7 nm) and analysis of microsomes by gel electrophoresis showed that the phenobarbital-induced cytochrome P-450 was different from the species induced by 3-methylcholanthrene (reduced carbon monoxide λmax = 447.9 nm). However, metabolism of benzo[a]pyrene (specific activity and product distribution) was similar in microsomes of control and phenobarbital- and 3-methylcholan-threne-induced hepatocytes and the specific activity per nmole of cytochrome P-450 was higher than in liver microsomes. The activities for 2- and 4-hydroxylation of biphenyl were undetectable in all hepatocyte microsomes even though both activities were induced by 3-methylcholanthrene in the liver. Substrate-induced difference spectra and gel electrophoresis indicated an absence in phenobarbital-induced hepatocytes of most forms of cytochrome P-450 which were present in phenobarbital-induced rat liver microsomes. It is concluded that the control of cytochrome P-450 synthesis in these hepatocytes is considerably different from that found in whole liver, while other microsomal enzymes may be near to normal. Hormonal deficiencies in the culture medium and differential hormonal control of the various microsomal enzymes provide a likely explanation of these effects.  相似文献   

12.
Comparison of nuclear and microsomal epoxide hydrase from rat liver   总被引:1,自引:0,他引:1  
The specific activities of hydration of nine arene and alkene oxides by purified nuclei prepared from the livers of 3-methylcholanthrene-pretreated rats were found to fall within the range of 2.2 to 9.1% of the corresponding microsomal values. Pretreatment with phenobarbital enhanced both the nuclear and microsomal hydration of phenanthrene-9,10-oxide, benzo(a)pyrene-11,12-oxide, and octene-1,2-oxide. 3-Methylcholanthrene pretreatment enhanced the nuclear hydration of these three substrates by 30–60% but had no significant effect on microsomal hydration. An epoxide hydrase modifier, metyrapone, stimulated the hydration of octene-1,2-oxide by the two organelles to quantitatively similar extents, but affected the nuclear and microsomal hydration of benzo(a)pyrene-4,5-oxide differentially. Cyclohexene oxide also exerted differential effects on nuclear and microsomal epoxide hydrase which were dependent both on the substrate and on the organelle. The inhibition by this agent of nuclear and microsomal epoxide hydrase was quantitatively similar only for a single substrate, benzo(a)anthracene-5,6-oxide. When purified by immunoaffinity chromatography, nuclear and microsomal epoxide hydrases from 3-methylcholanthrene-pretreated rats were shown to have identical minimum molecular weights (? 49,000) on polyacrylamide gels in the presence of sodium dodecyl sulfate. These findings support the assertion that microsomal metabolism can no longer be considered an exclusive index of the cellular activation of polycyclic aromatic hydrocarbons.  相似文献   

13.
Epoxide hydrolase (EC 3.3.2.3) purified from rat liver microsomes has been immobilized by covalent linking to dextran activated by imidazolyl carbamate groups, under mild conditions. Kappm values of free and dextran bound epoxide hydrolase toward benzo(a)pyrene-4,5-oxide were 0.5 and 0.35 μM respectively, while Vappmax was lowered from 300 to 120 nmol min?1mg?1protein. The activity lost upon coupling could not be restored by digestion of the support by dextranase (1,6-α-d-glucan 6-glucanohydrolase, EC 3.2.1.11) treatment. This fact, along with the similarity of the activation energy values for both native and bound epoxide hydrolase, indicated that steric hindrance effects due to the polymer support played only a minor role in this loss of activity. Evidences of changes in the conformation of epoxide hydrolase were obtained by a comparative study of u.v. circular dichroism and tryptophan fluorescence emission spectra of the native and dextran bound enzymes. On the other hand, the enzyme conjugate showed greater resistance than the free enzyme to thermal inactivation.  相似文献   

14.
The repair of human DNA after damage by known and potential metabolites of benzo(a)pyrene has been examined utilizing the bromodeoxyuridine photolysis assay. Repair was characterized as either ultraviolet (“long”) or ionizing radiation type (“short”) repair utilizing normal cells and cells deficient in ultraviolet-type repair endonuclease from a patient with xeroderma pigmentosum (XP). We have found that only (±)-7β,8-dihydroxy-9β,-10β-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (BP diol epoxide 1) and its disastereomer, (±)-7β,8,-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (BP diol epoxide 2) elicit damage to DNA which is recognizable by the ultraviolet excision repair system in normal human cells. Benzo(a)pyrene 4,5-, 9,10-, 11,12-oxides do not elicit damage which is repairable by this repair system. The 1,2-diol-3,4-epoxides from naphthalene have no measurable activity in our assay. These results indicate that both the benzo(a)pyrene ring structure and the diol epoxide groups are important in causing the damage to DNA which is repairable by the ultraviolet excision repair system. These results parallel the reported high mutagenic activity of these compounds and support the concept that benzo(a)pyrene 7,8-diol-9,10-epoxides may be the ultimate, metabolically activated forms of benzo(a)pyrene.  相似文献   

15.
Epoxide hydratase was solubilized from human liver microsomal fractions and purified to an extent where the specific activity was 40-fold greater than that of the liver homogenate. Combination of homogenate and purified preparation showed that the increase in activity was not due to the removal of an inhibitor. Monosubstituted oxiranes with a lipophilic substituent larger than an ethyl group (isopropyl, t-butyl, n-hexyl, phenyl) readily interacted as substrates or inhibitors with this purified human epoxide hydratase, whereas those with a small substituent (methyl, ethyl, vinyl) were inactive, probably reflecting greater affinity of the former epoxides owing to lipophilic binding sites near the active site of the enzyme. In a series of oxiranes having a lipophilic substituent of sufficient size (styrene oxides), monosubstituted as well as 1,1- and cis-1,2-disubstituted oxiranes readily served as substrates or inhibitors of the enzyme, but not the trans-1,2-disubstituted, tri- or tetra-substituted oxiranes. trans-Substitution at the oxirane ring apparently prevents access of the oxirane ring to the active site by steric hindrance. Epoxide hydratase was also solubilized from microsomal fractions of rat and guinea-pig liver and purified by the same procedure. Structural requirements for effective interaction of substrates, inhibitors and activators were qualitatively identical for epoxide hydratase from the three sources. However, several quantitative differences were observed. Thus human hepatic epoxide hydratase seems to be very similar to, although not identical with, the enzyme from guinea pig or rat. Studies with epoxide hydratase from the latter two species therefore appear to be significant with respect to man. In addition, knowledge of structural requirements for epoxides to serve as substrates for human epoxide hydratase may prove useful for drug design. Compounds which need aromatic or olefinic moieties for their desired effect would not be expected to lead to accumulation of epoxides if their structure was such as to allow for a metabolically produced epoxide to be rapidly consumed by epoxide hydratase.  相似文献   

16.
Benzo(a)pyrene 4,5-oxide is reduced to benzo(a)pyrene by microsomes in the presence of NADPH. Carbon monoxide and oxygen inhibit this reduction. The liver has highest activity which is almost lackng in new-born rats. Phenobarbital as well as 3-methylcholanthrene pretreatment increases the epoxide reduction. Additions of FMN or methylviologen stimulate the epoxide reduction; dimethylaniline N-oxide and cumene hydroperoxide are inhibitory. These results indicate that benzo(a)pyrene 4,5-oxide is reduced by the reduced form of cytochrome P-450.  相似文献   

17.
When incubated with a 9,000 x g rat-liver supernatant, benzo(a)pyrene 7,8-diol and benz(a)anthracene 8,9-diol were more active than the parent hydrocarbons in inducing his+ revertant colonies of S. typhimurium TA 100. Benzo(a) pyrene 9,10-diol was less active than benzo(a)pyrene; the K-region diols, benz(a)anthracene 5,6-diol and benzo(a)pyrene 4,5-diol, were inactive. None of the diols was active when the cofactors for the microsomal mono-oxygenase were omitted. The diol-epoxides benzo(a)pyrene 7,8-diol 9,10-oxide, benz(a)anthracene 8,9-diol 10,11-oxide and 7-methylbenz(a)anthracene 8,9-diol 10,11-oxide and the K-region epoxides, benzo(a)pyrene 4,5-oxide and benz(a)anthracene 5,6-oxide, were mutagenic without further metabolism.  相似文献   

18.
A high-pressure liquid chromatography (HPLC) system is described that separates at least nine benzo(a)pyrene metabolites including an epoxide. The epoxide metabolite has been isolated and characterized as benzo(a)pyrene-4,5-epoxide by comparison of its HPLC retention times, ultraviolet and mass spectral analysis with synthetic benzo(a)pyrene-4,5-epoxide and its conversion by liver microsomes to benzo(a)pyrene-4,5-dihydrodiol.  相似文献   

19.
A number of epoxides, including cis- and trans-stilbene oxides, were assayed as substrates for epoxide hydrolases (EHs) by gas-liquid chromatography. Radiolabeled stilbene oxides were prepared by sodium borotritide reduction of desyl chloride followed by ring closure with base treatment. Rapid radiometric assays for EHs were performed by differential partitioning of the epoxide into dodecane, while the product diol remained in the aqueous phase. Glutathione (GSH) transferase was similarly assayed by partitioning the epoxide and diol, if formed metabolically, into 1-hexanol, while the GSH conjugate was retained in the aqueous phase. The cytosolic EH rapidly hydrates the trans isomer while the cis is very poorly hydrated. In contrast, the cis is a better substrate for the microsomal EH than the trans. GSH transferase utilized both epoxides as substrates, but conjugation is faster with the cis isomer. Cytosolic EH activity is high in mouse but very low in rat and guinea pig. Microsomal EH activity, in contrast, is highest in guinea pig, intermediate in rat, and the lowest in mouse. GSH transferase activity, which is high in all three species, can be inhibited by chalcone, with an I50 of 3.1 × 10?5m. These assays facilitate the rapid evaluation and direct comparison of epoxide-metabolizing systems in cell homogenates used in short-term mutagenicity assays, cell or organ culture, and possibly in vivo.  相似文献   

20.
An accurate and rapid method for the assay of pyridoxine kinase in human erythrocytes has been developed. The procedure involves the separation of the radioactive product from the substrate with Dowex 50 resin in a test tube. Using the assay designed, we found that human red blood cells have a pyridoxine kinase activity of 1.381 nmole/min/g of hemoglobin (n = 25, SE = 0.051), and the enzyme has a Km of approximately 1.72 × 10?6m for pyridoxine. Pyridoxine phosphate was identified as the main product of the assay reaction catalyzed by human erythrocyte pyridoxine kinase in crude hemolysates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号