首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interpersonal aggression is assessed paleoepidemiologically in a large skeletal population from the CA‐ALA‐329 site located on the southeastern side of San Francisco Bay, California. This comprehensive analysis included all currently recognized skeletal criteria, including craniofacial fracture, projectile injury, forearm fracture, and perimortem bone modification. Craniofacial injury is moderately common, showing an adult prevalence of 9.0% with facial lesions accounting for >50% of involvement. Clinical studies suggest that such separate evaluation of facial involvement provides a useful perspective for understanding patterns of interpersonal aggression. In this group male facial involvement is significantly greater than in females, paralleling the pattern found widely in contemporary populations as well as in African apes. When compared to other North American skeletal samples the prevalence of adult cranial vault injury (3.3%) and especially projectile injury (4.4%) are quite high. However, well documented populations from southern California show markedly higher prevalence for both types of skeletal markers of aggression. Forearm fracture is also assessed using a rigorous radiographic methodology and results suggest that these injuries are not reliable indicators of interpersonal aggression. Lastly, perimortem bone modification was not observed in this population, although it has been recorded from other (older) sites nearby. This study provides an evaluation of multiple skeletal markers of interpersonal aggression in the largest sample from a single site yet reported in North America and, joined with consideration of cultural context, helps further illuminate both geographic and temporal patterns of interpersonal aggression in California. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Acute kidney injury (AKI) is a substantial worldwide public health concern with no specific and effective therapies in clinic. NAD+ is a pivotal determinant of cellular energy metabolism involved in the progression of AKI; however, its mechanism in kidney injury remains poorly understood. Sirtuin 1 (SIRT1) is an NAD+‐dependent deacetylase associated with renal protection and acute stress resistance. In this study, we have investigated the role of NAD+ in AKI and the potential mechanism(s) involved in its renoprotective effect. NAD+ was notably decreased and negatively correlated with kidney dysfunction in AKI, restoring NAD+ with NMN significantly ameliorates LPS‐induced oxidative stress and apoptosis and attenuates renal damage. We also found that the protection of NAD+ is associated with SIRT1 expressions and performs in a SIRT1‐dependent manner. Inhibition of SIRT1 blunted the protective effect of NAD+ and up‐regulated the activity of glycogen synthase kinase‐3β (GSK‐3β) that was concomitant with mitigated Nrf2 nuclear accumulation, thereby exacerbates AKI. These findings suggest that NAD+/SIRT1/GSK‐3β/Nrf2 axis is an important mechanism that can protect against AKI which might be a potential therapeutic target for the treatment of AKI.  相似文献   

3.
Firearm injury is a disease that is disproportionately prevalent in the United States. When a bullet hits a human being, it brings together multiple structural determinants of health into one acute, life-changing event. Firearm injury can lead to long-term mental and physical challenges for individuals, families, and communities. Despite the impact of this disease, physicians often underestimate their role in not only treating but also preventing firearm injury. Physicians can intervene through screening, counseling, community engagement, and advocacy, and can mobilize the health care systems they serve to engage with injury prevention. Physicians also play a key role in expanding the knowledge base on firearm injury through much-needed research on the epidemiology, context, and outcomes of firearm injury. When we treat firearm injury as a disease, we can develop and implement interventions from the clinic to the statehouse that can curb profound harms. This work and these opportunities belong not only to emergency physicians and trauma surgeons, but to all fields that evaluate and assess patients over the life course.  相似文献   

4.
Treatment with benzbromarone can be associated with liver injury, but the detailed mechanism remains unknown. Our recent studies demonstrated that benzbromarone was metabolized to 1′,6‐dihydroxybenzbromarone and followed by formation of reactive intermediates that were trapped by glutathione, suggesting that the reactive intermediates may be responsible for the liver injury. The aim of this study was to clarify whether the reactive intermediates derived from 1′,6‐dihydroxybenzbromarone is a risk factor of liver injury in mice. An incubation study using mouse liver microsomes showed that the rates of formation of 1′,6‐dihydroxybenzbromarone from benzbromarone were increased by pretreatment with dexamethasone. Levels of a hepatic glutathione adduct derived from 1′,6‐dihydroxybenzbromarone were increased by pretreatment with dexamethasone. Furthermore, plasma alanine amino transferase activities were increased in mice treated with benzbromarone after pretreatment with dexamethasone. The results suggest that the reactive intermediate derived from 1′,6‐dihydroxybenzbromarone may be associated with liver injury.  相似文献   

5.
6.
The insulin‐PI3K‐mTOR pathway exhibits a variety of cardiovascular activities including protection against I/R injury. Lin28a enhanced glucose uptake and insulin‐sensitivity via insulin‐PI3K‐mTOR signalling pathway. However, the role of lin28a on experimental cardiac I/R injury in diabetic mice are not well understood. Diabetic mice underwent 30 min. of ischaemia followed by 3 hrs of reperfusion. Animals were randomized to be treated with lentivirus carrying lin28a siRNA (siLin28a) or lin28a cDNA (Lin28a) 72 hrs before coronary artery ligation. Myocardial infarct size (IS), cardiac function, cardiomyocyte apoptosis and mitochondria morphology in diabetic mice who underwent cardiac I/R injury were compared between groups. The target proteins of lin28a were examined by western blot analysis. Lin28a overexpression significantly reduced myocardial IS, improved LV ejection fraction (LVEF), decreased myocardial apoptotic index and alleviated mitochondria cristae destruction in diabetic mice underwent cardiac I/R injury. Lin28a knockdown exacerbated cardiac I/R injury as demonstrated by increased IS, decreased LVEF, increased apoptotic index and aggravated mitochondria cristae destruction. Interestingly, pre‐treatment with rapamycin abolished the beneficial effects of lin28a overexpression. Lin28a overexpression increased, while Lin28a knockdown decreased the expression of IGF1R, p‐Akt, p‐mTOR and p‐p70s6k after cardiac I/R injury in diabetic mice. Rapamycin pre‐treatment abolished the effects of increased p‐mTOR and p‐p70s6k expression exerted by lin28a overexpression. This study indicates that lin28a overexpression reduces IS, improves cardiac function, decreases cardiomyocyte apoptosis index and alleviates cardiomyocyte mitochondria impairment after cardiac I/R injury in diabetic mice. The mechanism responsible for the effects of lin28a is associated with the insulin‐PI3K‐mTOR dependent pathway.  相似文献   

7.
8.
It has long been recognized that spinal cord injury (SCI) leads to a loss of bone mineral. However, the mechanisms of bone loss after SCI remain poorly understood. The aim of this study was to investigate whether SCI causes a shift in skeletal balance between osteoblastogenesis and adipogenesis. Eighty male Sprague‐Dawley rats at 6 weeks of age were randomly divided into two groups: sham‐operated (SHAM) group and SCI group. The rats were killed after 3 weeks, 3 months and 6 months, and their femora, tibiae and humeri were collected for mesenchymal stem cells (MSCs) culture, bone mineral density (BMD) measurement, RNA analysis and Western Blot analysis. Osteogenic and adipogenic differentiation potential of MSCs from SCI rats and SHAM rats was evaluated. We found increased marrow adiposity in sublesional tibiae of SCI rats. SCI caused increased peroxisome proliferator‐activated receptor‐γ (PPARγ) expression and diminished Wnt signalling in sublesional tibiae. Interestingly, in MSCs from SCI rats treated with the PPARγ inhibitor GW9662, the ratios of RANKL to OPG expression were significantly decreased. On the contrary, in MSCs from SCI rats treated with the PPARγ ligand troglitazone, the ratios of RANKL to OPG expression in SCI rats were significantly increased. High expression of PPARγ may lead to increased bone resorption through the RANKL/OPG axis after SCI. In addition, high expression also results in the suppression of osteogenesis and enhancement of adipogenesis in SCI rats. SCI causes a shift in skeletal balance between osteoblastogenesis and adipogenesis, thus leading to bone loss after SCI.  相似文献   

9.
10.
To date, studies have demonstrated the potential functions of microRNAs in cerebral ischemia reperfusion (IR) injury. Herein, we established a middle cerebral artery occlusion (MCAO) model in rats and then subjected them to reperfusion to explore the role of microRNA-374 (miR-374) in cerebral IR injury. After reperfusion, the endogenous miR-374 level decreased, and the expression of its target gene, Wnt5a, increased in brain tissues. Intracerebral pretreatment of miR-374 agomir attenuated cerebral damage induced by IR, including neurobehavioral deficits, infarction, cerebral edema and blood-brain barrier disruption. Moreover, rats pretreated with miR-374 agomir showed a remarkable decrease in apoptotic neurons, which was further confirmed by reduced BAX expression as well as increased BCL-2 and BCL-XL expression. A dual-luciferase reporter assay substantiated that Wnt5a was the target gene of miR-374. miR-374 might protect against brain injury by downregulating Wnt5a in rats after IR. Thus, our study provided a novel mechanism of cerebral IR injury from the perspective of miRNA regulation.  相似文献   

11.
Wsc1I homologues featuring both an N‐terminal DUF1996 (domain of unknown function 1996) and a C‐terminal WSC (cell wall stress‐responsive component) domain exist in filamentous fungi but have never been functionally characterized. Here, Wsc1I is shown to localize in the vacuoles and cell wall/membrane of the insect mycopathogen Beauveria bassiana and hence linked to cell membrane‐ and vacuole‐related cellular events. In B. bassiana, deletion of Wsc1I resulted in marked increases of hyphal and conidial sensitivities to hyperosmotic agents, oxidants, cell wall perturbing chemicals, and metal cations (Cu2+, Zn2+, Fe2+, and Mg2+) despite slight impact on normal growth and conidiation. Conidia produced by the deletion mutant showed not only reduced tolerance to both 45°C heat and UVB irradiation but also attenuated virulence to a susceptible insect through normal cuticle infection or cuticle‐bypassing infection. Importantly, phosphorylation of the mitogen‐activated protein kinase Hog1 was largely attenuated or nearly abolished in the Wsc1I‐free cells triggered with hyperosmotic, oxidative, or cell wall perturbing stress. All changes were well restored by targeted gene complementation. Our findings highlight a novel role of Wsc1I in sensing multiple stress cues upstream of the Hog1 signalling pathway and its pleiotropic effects in B. bassiana.  相似文献   

12.
The nucleotide‐binding oligomerization domain‐like receptor family, pyrin domain containing 3 (NLRP3) inflammasome has a key role in the inflammatory response. We found that cisplatin (7.5, 15 mg/kg, IV) could induce acute injury to the liver and kidneys of rats. Western blot and immunohistochemical analyses showed that expression of NLRP3, caspase‐1 and interleukin‐1β was upregulated significantly in a dose‐dependent manner after cisplatin exposure. Autophagy could inhibit NLRP3 expression and assembly of the NLRP3 inflammasome. Expression of light chain 3 II/I and p62 suggested that autophagy was inhibited during injury to the liver and kidneys. These data suggested that cisplatin might activate NLRP3 by inhibiting autophagy in the liver and kidneys of rats.  相似文献   

13.
14.
Little is known about the molecules mediating the cross‐talk between post‐traumatic axons and scar‐forming cells after spinal cord injury. We found that a sustained NB‐3 induction was simultaneously present in the terminations of post‐traumatic corticospinal axons and scar‐forming cells at the spinal lesion site, where they were in direct contact when axons tried to penetrate the glial scar. The regrowth of corticospinal axons was enhanced in vivo with NB‐3 deficiency or interruption of NB‐3 trans‐homophilic interactions. Biochemical, in vitro and in vivo evidence demonstrated that NB‐3 homophilically interacted in trans to initiate a growth inhibitory signal transduction from scar‐forming cells to neurons by modulating mTOR activity via CHL1 and PTPσ. NB‐3 deficiency promoted BMS scores, electrophysiological transmission, and synapse reformation between regenerative axons and neurons. Our findings demonstrate that NB‐3 trans‐homophilic interactions mediate the cross‐talk between post‐traumatic axons and scar‐forming cells and impair the intrinsic growth ability of injured axons.  相似文献   

15.
Improving how health care providers respond to medical injury requires an understanding of patients’ experiences. Although many injured patients strongly desire to be heard, research rarely involves them. Institutional review boards worry about harming participants by asking them to revisit traumatic events, and hospital staff worry about provoking lawsuits. Institutions’ reluctance to approve this type of research has slowed progress toward responses to injuries that are better able to meet patients’ needs. In 2015–2016, we were able to surmount these challenges and interview 92 injured patients and families in the USA and New Zealand. This article explores whether the ethical and medico‐legal concerns are, in fact, well‐founded. Consistent with research about trauma‐research‐related distress, our participants’ accounts indicate that the pervasive fears about retraumatization are unfounded. Our experience also suggests that because being heard is an important (but often unmet) need for injured patients, talking provides psychological benefits and may decrease rather than increase the impetus to sue. Our article makes recommendations to institutional review boards and researchers. The benefits to responsibly conducted research with injured patients outweigh the risks to participants and institutions.  相似文献   

16.
17.
18.
Although lung injury including fibrosis is a well‐documented side effect of lung irradiation, the mechanisms underlying its pathology are poorly understood. X‐rays are known to cause apoptosis in the alveolar epithelial cells of irradiated lungs, which results in fibrosis due to the proliferation and differentiation of fibroblasts and the deposition of collagen. Apoptosis and BH3‐only pro‐apoptotic proteins have been implicated in the pathogenesis of pulmonary fibrosis. Recently, we have established a clinically analogous experimental model that reflects focal high‐dose irradiation of the ipsilateral lung. The goal of this study was to elucidate the mechanism underlying radiation‐induced lung injury based on this model. A radiation dose of 90 Gy was focally delivered to the left lung of C57BL/6 mice for 14 days. About 9 days after irradiation, the mice began to show increased levels of the pro‐apoptotic protein Noxa in the irradiated lung alongside increased apoptosis and fibrosis. Suppression of Noxa expression by small interfering RNA protected cells from radiation‐induced cell death and decreased expression of fibrogenic markers. Furthermore, we showed that reactive oxygen species participate in Noxa‐mediated, radiation‐induced cell death. Taken together, our results show that Noxa is involved in X‐ray‐induced lung injury.  相似文献   

19.
Adenosine triphosphate (ATP)-MgCl2 attenuates ischemia-reperfusion (I-R)-induced lung injury in rats. A previous study indirectly suggests that Mg2+-dependent ecto-ATPases on the surface of leukocytes are responsible for the hydrolysis of ATP-MgCl2 to adenosine, which then contributes to the protective effect of ATP-MgCl2. This study investigated the role of leukocytes in I-R injury and the protective effect of ATP-MgCl2 in our buffer-perfused isolated rat lung model. After isolating the lung blood flow of adult male Sprague-Dawley rats, the lungs were perfused through the pulmonary artery cannula with a physiologic salt solution containing human serum albumin. The protective effect of ATP-MgCl2 pretreatment with or without leukocytes was investigated. Capillary permeability (Kfc), lung weight gain (LWG), lung wet weight/body weight ratio (LW/BW), lung lavage protein concentration (LPC) and pulmonary artery pressure (PAP) were measured. I-R produced a significant increase in Kfc, LWG, LW/BW, LPC, and PAP. The increases in these indices were significantly attenuated by pretreatment with ATP-MgCl2 (1×10–6 M) together with leukocytes (2.9×106/ml in the perfusate) but not with ATP-MgCl2 alone. Our data suggest that I-R-induced acute lung injury is not dependent on circulating leukocytes. Pretreatment with ATP-MgCl2 plus leukocytes but not ATP-MgCl2 alone had protective effects against I-R lung injury. Whether these findings occur in vivo could not be determined in this study. In our isolated lung red blood cell-free perfusate system, the protective effect of ATP-MgCl2 requires the presence of leukocytes.  相似文献   

20.
Background  Characterizing the biomechanical failure responses of neonatal peripheral nerves is critical in understanding stretch-related peripheral nerve injury mechanisms in neonates. Objective  This in vitro study investigated the effects of prestretch magnitude and duration on the biomechanical failure behavior of neonatal piglet brachial plexus (BP) and tibial nerves. Methods  BP and tibial nerves from 32 neonatal piglets were harvested and prestretched to 0, 10, or 20% strain for 90 or 300 seconds. These prestretched samples were then subjected to tensile loading until failure. Failure stress and strain were calculated from the obtained load-displacement data. Results  Prestretch magnitude significantly affected failure stress but not the failure strain. BP nerves prestretched to 10 or 20% strain, exhibiting significantly lower failure stress than those prestretched to 0% strain for both prestretch durations (90 and 300 seconds). Likewise, tibial nerves prestretched to 10 or 20% strain for 300 seconds, exhibiting significantly lower failure stress than the 0% prestretch group. An effect of prestretch duration on failure stress was also observed in the BP nerves when subjected to 20% prestretch strain such that the failure stress was significantly lower for 300 seconds group than 90 seconds group. No significant differences in the failure strains were observed. When comparing BP and tibial nerve failure responses, significantly higher failure stress was reported in tibial nerve prestretched to 20% strain for 300 seconds than BP nerve. Conclusion  These data suggest that neonatal peripheral nerves exhibit lower injury thresholds with increasing prestretch magnitude and duration while exhibiting regional differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号