首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The midgut of the yellow mealworm, Tenebrio molitor L. (Coleoptera: Tenebrionidae) larvae has four beta-glycosidases. The properties of two of these enzymes (betaGly1 and betaGly2) have been described elsewhere. In this paper, the characterization of the other two glycosidases (betaGly3 and betaGly4) is described. BetaGly3 has one active site, hydrolyzes disaccharides, cellodextrins, synthetic substrates and beta-glucosides produced by plants. The enzyme is inhibited by amygdalin, cellotriose, cellotetraose and cellopentaose in high concentrations, probably due to transglycosylation. betaGly3 hydrolyzes beta 1,4-glycosidic linkages with a catalytic rate independent of the substrate polymerization degree (k(int)) of 11.9 s(-1). Its active site is formed by four subsites, where subsites +1 and -1 bind glucose residues with higher affinity than subsite +2. The main role of betaGly3 seems to be disaccharide hydrolysis. BetaGly4 is a beta-galactosidase, since it has highest activity against beta-galactosides. It can also hydrolyze fucosides, but not glucosides, and has Triton X-100 as a non-essential activator (K(a)=15 microM, pH 4.5). betaGly4 has two active sites that can hydrolyze p-nitrophenyl beta-galactoside (NPbetaGal). The one hydrolyzing NPbetaGal with more efficiency is also active against methylumbellipheryl beta-D-galactoside and lactose. The other active site hydrolyzes NPbetaFucoside and binds NPbetaGal weakly. BetaGly4 hydrolyzes hydrophobic substrates with high catalytical efficiency and is able to bind octyl-beta-thiogalactoside in its active site with high affinity. The betaGly4 physiological role is supposed to be the hydrolysis of galactolipids that are found in membranes from vegetal tissues. As the enzyme has a hydrophobic site where Triton X-100 can bind, it might be activated by membrane lipids, thus becoming fully active only at the surface of cell membranes.  相似文献   

2.
During the reaction catalyzed by enolase, a mobile loop, residues 36-45, closes over the active site. In order to probe the role of this loop movement in catalysis, the glycines at positions 37 and 41 of rabbit muscle enolase (beta beta) have been mutated to alanines. The mutant forms-G37A and G41A-of enolase are both active, but have altered selectivity for divalent cations. G37A, when assayed with Mg(2+), has 12% the activity of the wild type. However, it is twice as active as wild type when assayed with Mn(2+), Zn(2+), or Co(2+). G41A has 4% the activity of the wild type with Mg(2+), is more active than wild type with Co(2+), and slightly less active than wild type with Mn(2+) and Zn(2+). The kinetic isotope effect for both mutants is greater than that of the wild type with all 4 divalent cations. These results indicate that the flexibility of this loop has subtle effects on catalytic activity.  相似文献   

3.
Earlier it has been demonstrated that the active site (substrate-binding site + active site channel) of rat liver mitochondrial dicarboxylate transporter is characterized by rather complex topography. Probing the active site with 2-monoalkylmalonates revealed the existence of internal and external lipophilic areas separated by a polar region. A two substrate-binding site model of the transporter has been supposed. The correctness of this model has been evaluated by probing the active site with O-acyl-L-malates differing from 2-monoalkylmalonates by 0.23 nm longer distance from the anion groups to the aliphatic chain. Changes in the polar group of the probe did not prevent its binding and showed the same variable lipophilicity pattern for the transporter channel. Probing with alpha,omega-alkylene dimalonates did not reveal the second substrate-binding site at the active site. The substrate-binding site did not show any differences in affinity to O-acyl-derivatives of L-malate and D-malate, except L-malate binds more effectively than D-malate. This suggests involvement of the L-malate hydroxyl group in substrate binding and stereospecific behavior of the transporter substrate-binding site. A modified one substrate-binding site model of the dicarboxylate transporter is discussed.  相似文献   

4.
Traditional cAMP-dependent protein kinase (also known as protein kinase A [PKA]) assays, which are based on substrate phosphorylation, often have high background activity from other kinases, thereby limiting sensitivity and making it difficult to detect low levels of active PKA in cell lysates. Therefore, a better technique that measures active PKA in crude cell lysates undoubtedly is necessary. We developed an efficient and sensitive assay to compare active PKA levels based on binding of the active PKA catalytic subunit to its pseudosubstrate domain inhibitor (PKI) fused with glutathione S-transferase (GST-PKI). This pseudosubstrate affinity assay can detect variations in the active PKA levels in the presence of common inducers of PKA activity such as forskolin and prostaglandins. It has resolution to detect a concentration-dependent curve of active PKA in a linear range, and it also has sensitivity to detect up to 2.5 ng of active enzyme. An observed change in the binding affinity between PKA and PKI in the presence of the PKA inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H89) shows that this assay can be successfully used to measure how active PKA is affected by specific inhibitors. We conclude that this method is a simple, inexpensive, and nonhazardous method to compare active PKA levels with high sensitivity and specificity with negligible background.  相似文献   

5.
A facile and quantitative assay for measuring the activity of sphingomyelinase D in recluse spider venom has been developed using L-alpha-[palmitoyl-1-14C]lysophosphatidylcholine as substrate. This assay avoids the problem of substrate insolubility that occurs when sphingomyelin and other insoluble lipids are used as substrates. This assay has been employed in gel filtration and isoelectric focusing isolation techniques to purify sphingomyelinase D from spider venom. The purified sphingomyelinase exhibits four active enzyme forms in isoelectric focusing with pI values of 8.7, 8.4, 8.2, and 7.8. Each active form when examined in SDS-polyacrylamide gel electrophoresis gave an estimated molecular weight of 32 000. The four active enzyme forms were immunologically cross-reactive with each other as demonstrated with radioimmune assays using an antiserum developed to one of the active forms. Each active form hydrolysed sphingomyelin to release choline and produce N-acylsphingosine phosphate. One of the active enzyme forms was characterized further in dermonecrosis and platelet aggregation measurements. This purified sphingomyelinase D was identified as a poisonous toxin that can developed typical dermonecrotic spider lesions when injected into experimental animals at levels expected to be delivered in a normal bite. Furthermore, the purified toxin acts to aggregate human blood platelets. The toxin-induced platelet aggregation has been related to serotonin release as aggregation occurs, and it has been shown to be inhibited by EDTA over the range of 0.6 yo 3.0 mM EDTA. It is suggested that spider-induced dermonecrosis could result in part from platelet aggregation at and near the site of envenomation.  相似文献   

6.
The three-dimensional structure of phosphoglycerate mutase has been analyzed using a contoured distance matrix and by visual inspection using three-dimensional computer graphics. Three folding lobes have been identified and their internal structure tentatively characterized. The active site is located at a lobe interface with a channel providing possible access from above and below. The arrangement of active site residues on two lobes suggests that the active site might be conformationally flexible. The remaining interface not associated with the active site channel appears to be predominately hydrophobic and thus may contribute to inter-lobe stability.  相似文献   

7.
The binding of carbon monoxide, a competitive inhibitor of many hydrogenases, to the active site of Desulfovibrio fructosovorans hydrogenase has been studied by infrared spectroscopy in a spectroelectrochemical cell. Direct evidence has been obtained of which redox states of the enzyme can bind extrinsic CO. Redox states A, B and SU do not bind extrinsic CO; only after reductive activation of the hydrogenase can CO bind to the active site. Two states with bound extrinsic CO can be distinguished by FTIR. These two states are in redox equilibrium and are most probably due to different oxidation states of the proximal 4Fe-4S cluster. Vibrational frequencies and theoretical quantum mechanics studies (DFT) of this process preclude the possibility of strong bonding of extrinsic CO to the Fe or Ni atoms of the active site. We propose that CO inhibition is caused by weak interaction of the extrinsic ligand with the Ni atom, blocking electron and proton transfer at the active site. A calculated structure with a weakly bound extrinsic CO at Ni has relative CO frequencies in excellent agreement with the experimental ones.  相似文献   

8.
A facile and quantitative assay for measuring the activity of sphingomyelinase D in recluse spider venom has been developed using L-α-[palmitoyl-1-14C]lysophosphatidylcholine as substrate. This assay avoids the problem of substrate insolubility that occurs when sphingomyelin and other lipids are used as subtrates. This assay has been employed in gel filtration and isoelectric focusing isolation techniques to purify sphingomyelinase D from spider venom. The purified sphingomyelinase exhibits four active enzyme forms in isoelectric focusing with pI values of 8.7, 8.4., 8.2, and 7.8. Each active form when examined in SDS-polyacrylamide gel electrophoresis gave an estimated molecular weight of 32 000. The four active enzyme forms were immunologically cross-reactive with each other as demonstrated with radioimmune assays using an antiserum developed to one of the active forms. Each active form hydrolysed sphingomyelin to release choline and produce N-acylsphingosine phosphate. One of the active enzyme forms was characterized further in dermonecrosis and platelet aggregation measurements. This purified sphingomyelinase D was identified as a poisonous toxin that can develop the typical dermonecrotic spider lesion when injected into experimental animals at levels expected to be delivered in a normal bite. Furthermore, the purified toxin acts to aggregate human blood platelets. The toxin-induced platelet aggregation has been related to serotonin release as aggregation occurs, and it has been shown to be inhibited by EDTA over the range of 0.6 to 3.0 mM EDTA. It is suggested that spider-induced dermonecrosis could result in part from platelet aggregation at and near the site of envenomation.  相似文献   

9.
Spin-labeled fluorophosphonates react with serine proteinases and esterases in a manner analogous to the common active phosphate ester inhibitors. The reporter group properties of the spin-labeled inhibitors enable a comparative study of the micro structure of the active sites of these enzymes as well as a facile determination of rates of inhibition. The effect of various environmental perturbations on the conformation of these active sites has also been probed.  相似文献   

10.
The interaction of transketolase with its acceptor substrate, ribose 5-phosphate, has been studied. The active centers of the enzyme were shown to be functionally nonequivalent with respect to ribose 5-phosphate binding. Under the conditions where only one out of the two active centers of transketolase is functional, their affinities for ribose 5-phosphate are identical. The phenomenon of nonequivalence becomes apparent when the substrate interacts with one of the two active centers. As a consequence of such interaction, the affinity of the second active center for ribose 5-phosphate decreases.  相似文献   

11.
P J Tonge  P R Carey 《Biochemistry》1989,28(16):6701-6709
By use of resonance Raman (RR) spectroscopy, the population of the reactive carbonyl group in active acylchymotrypsins has been characterized and correlated with acyl-enzyme reactivity. RR spectra have been obtained, with a flow system and 324- and 337.5-nm excitation, at low and active pH for six acylchymotrypsins, viz., (indoleacryloyl)-, (4-amino-3-nitrocinnamoyl)-, (furylacryloyl)-, [( 5-ethylfuryl)-acryloyl]-, (thienylacryloyl)-, and [( 5-methylthienyl)acryloyl]chymotrypsin. These acyl-enzymes represent a 100-fold range of deacylation rate constants. Good RR spectral quality has enabled us to obtain the vibrational spectrum of the carbonyl group at low and active pH in each acyl-enzyme. The measured pKa of the spectroscopic changes in the carbonyl region is identical with that for the deacylation kinetics, showing that the RR carbonyl features reflect the ionization state of His-57. A carbonyl population has been observed in the active acyl-enzymes in which the carbonyl oxygen atom of the reactive acyl linkage is hydrogen-bonded in the active site. The proportion of this hydrogen-bonded population, with respect to other observed non-hydrogen-bonded species, together with the degree of polarization of the carbonyl bond, as monitored by vC = 0, has been correlated with the deacylation rate constants of the acyl-enzymes. It is proposed that the hydrogen-bonded carbonyl species is located at or near the oxyanion hole and represents the ground state from which deacylation occurs. An increase in the proportion of the hydrogen-bonded population and an increase in polarization of the carbonyl bond result in an increase in deacylation rate constant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The enzymatically active form of protease 1, the major exocellular protein produced by Pseudomonas aeruginosa strain 34362, has been shown to exist exclusively exocellularly with no significant cell-associated activity. However, the presence of a cell-associated, enzymatically inactive protein which is serologically cross-reactive with, and convertible to, active enzyme has been demonstrated. One method of conversion of "precursor" to active enzyme is via limited proteolysis. Two assay systems for precursor were developed, one a radioimmune assay, and the other a proteolytic activation procedure. Localization studies suggest that the association while more tenacious than classical periplasmic enzymes is still an ionic rather than a covalent one. Kinetics of production studies showed to precursor to be synthesized early in the growth cycle and to accumulate prior to the rapid release of the active enzyme. Molecular weight studies showed only slight changes produced upon activation.  相似文献   

13.
Curcumin is the yellow pigment of turmeric that interacts irreversibly forming an adduct with thioredoxin reductase (TrxR), an enzyme responsible for redox control of cell and defence against oxidative stress. Docking at both the active sites of TrxR was performed to compare the potency of three naturally occurring curcuminoids, namely curcumin, demethoxy curcumin and bis-demethoxy curcumin. Results show that active sites of TrxR occur at the junction of E and F chains. Volume and area of both cavities is predicted. It has been concluded by distance mapping of the most active conformations that Se atom of catalytic residue SeCYS498, is at a distance of 3.56 from C13 of demethoxy curcumin at the E chain active site, whereas C13 carbon atom forms adduct with Se atom of SeCys 498. We report that at least one methoxy group in curcuminoids is necessary for interation with catalytic residues of thioredoxin. Pharmacophore of both active sites of the TrxR receptor for curcumin and demethoxy curcumin molecules has been drawn and proposed for design and synthesis of most probable potent antiproliferative synthetic drugs.  相似文献   

14.
The results of studies on the substrate specificities of elimination and replacement reactions allowed insight into the active and regulatory sites of Streptomyces phaeochromogenes cystathionine gamma-lyase (L-cystathionine cysteine-lyase (deaminating), EC 4.4.1.1). The enzyme has an active site and a regulatory site. The active site consists of two subsites; one recognizes the L-forms of amino acids (L-homoserine and L-moieties of cystathionine isomers) and the other shows affinity for thiol compounds with a carboxyl group. The regulatory site is specific for L-cysteine and has no affinity for ordinary thiol compounds, such as 3-mercaptopropionate and thioglycolate.  相似文献   

15.
A novel type of caspase inhibitor prodrug that improves systemic exposure after oral administration in rats has been designed. Such a prodrug, based on a 6,6a-dihydrofuro[3,2-d]oxazol-5(3aH)-one motif, has the advantage of rapidly liberating the active inhibitor without producing any cleavage by-product. Prodrugs 6-8, are synthesised in a high yielding one-step transformation from the active parents with high diastereomeric excess.  相似文献   

16.
Direct determination of the number of catalytically active molecules of the coenzyme in holotransketolase (sedoheptulose-7-phosphate:D-glyceraldehyde-3-phosphate glycoaldehydetransferase, EC 2.2.1.1) has corroborated our previous data indicating that in the native enzyme there are two active centres. They have been provided to be functionally identical. It has been shown that the decrease in the specific activity of transketolase during its storage is due to inactivation of one of the active centres, having a lower affinity for the coenzyme. The second active centre retains thereby its full catalytic activity.  相似文献   

17.
Various foraging modes are employed by predators in nature, ranging from ambush to active predation. Although the foraging mode may be limited by physiological constraints, other factors, such as prey behavior and distribution, may come into play. Using a simulation model, we tested to what extent the relative success of an ambush and an active predator changes as a function of the relative velocity and movement directionality of prey and active predator. In accordance with previous studies, we found that when both active predator and prey use nondirectional movement, the active mode is advantageous. However, as movement becomes more directional, this advantage diminishes gradually to 0. Previous theoretical studies assumed that animal movement is nondirectional; however, recent field observations show that in fact animal movement usually has some component of directionality. We therefore suggest that our simulation is a better predictor of encounter rates than previous studies. Furthermore, we show that as long as the active predator cannot move faster than its prey, it has little or no advantage over the ambush predator. However, as the active predator's velocity increases, its advantage increases sharply.  相似文献   

18.
The mechanism of interaction between ADP and the myosin active center has been studied using a transient kinetic technique. The results show that the interaction of ADP with the myosin active center is a homogeneous process independent of the association state of the active centers; namely, whether ADP interacts with the monomeric myosin subfragment-1, or with the dimeric forms heavy meromyosin and myosin. The kinetics of the interaction conforms to a simple two-step reaction mechanism for ADP binding. The kinetic and thermodynamic constants for this mechanism have been determined. In addition, analysis of the binding isotherm indicates that the two active sites in heavy meromyosin and myosin function as identical and independent sites.  相似文献   

19.
Human alpha 1-antichymotrypsin reacts with bovine chymotrypsin to form an equimolar complex and this reaction is accompanied by the formation of a free, modified form of the inhibitor. Time-course studies, performed on mixtures containing an excess of native inhibitor and kept at 0 degree C or at 25 degrees C, show that the equimolar complex dissociates spontaneously; this dissociation results in the release of inactive modified alpha 1-antichymotrypsin and of some active enzyme, which is able to recycle with active inhibitor in excess. When all the native inhibitor is used up, the released active enzyme degrades the remaining intact complex into intermediate forms. At the endpoint of the reaction only inactive modified inhibitor and some active chymotrypsin remain. Immunochemical data indicate that, in the complex, a steric hindrance of the antigenic determinants of the inhibitor prevents the formation of the precipitate with specific antiserum. Inactive modified inhibitor, which has dissociated from the complex, has retained antigenic determinants of the native alpha 1-antichymotrypsin.  相似文献   

20.
The number of catalytic sites in acetylcholinesterase   总被引:3,自引:2,他引:1       下载免费PDF全文
By using two methods of titration, the number of active sites in acetylcholinesterase was determined. Either stepwise inhibition of the enzyme by an irreversible inhibitor, namely di-isopropyl phosphorofluoridate, or direct measurement of the concentration of active sites by titration with o-nitrophenyl dimethylcarbamate yielded an equivalent weight of approx. 130000 for an active site in acetylcholinesterase. This indicates two sites per molecule, since the native enzyme has a molecular weight of 260000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号