首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Partition in an aqueous Dextran-polyethylene glycol two-phase system has been used for the separation of chloroplast membrane vesicles obtained by press treatment of a grana-enriched fraction after unstacking in a low salt buffer.

The fractions obtained were analysed with respect to chlorophyll, photochemical activities and ultrastructural characteristics. The results reveal that the material partitioning to the Dextran-rich bottom phase consisted of large membrane vesicles possessing mainly Photosystem II properties with very low contribution from Photosystem I. Measurements of the H2O to phenyl-p-benzoquinone and ascorbate-Cl2Ind to NADP+ electron transport rates indicate a ratio of around six between Photosystem II and I.

The total fractionation procedure could be completed within 2–3 h with high recovery of both the Photosystem II water-splitting activity and the Photosystem I reduction of NADP+.

These data demonstrate that press treatment of low-salt destabilized grana membranes yields a population of highly Photosystem-II enriched membrane vesicles which can be discriminated by the phase system. We suggest that such membrane vesicles originate from large regions in the native grana membrane which contain virtually only Photosystem II.  相似文献   


2.
3.
4.
By density gradient centrifugation of the 80000 × g supernatant of digitonintreated spinach chloroplasts two main green bands and one minor green band were obtained. The purification and properties of the particles present in the main bands, which were shown to be derived from Photosystem I and Photosystem II, have been described previously; those of the particles in the minor fraction will be described in the present paper.

After purification, these particles show Photosystem II activity but are devoid of Photosystem I activity. They have a high chlorophyll a/chlorophyll b ratio and are enriched in β-carotene and cytochrome b559. At liquid nitrogen temperature, photoreduction of C550 and photooxidation of cytochrome-b559 can be observed. At room temperature, cytochrome b559 undergoes slight photooxidation.

These properties indicate that this particle may be the reaction-center complex of Photosystem II. It is suggested that, in vivo, the Photosystem II unit is made up of a reaction-center complex and an accessory complex, the latter being found in one of the main green bands of the density gradient.  相似文献   


5.
1. In the presence of Triton X-100, chloroplast membranes of the green alga Acetabularia mediterranea were disrupted into two subchloroplast fragments which differed in buoyant density. Each of these fractions had distinct and unique complements of polypeptides, indicating an almost complete separation of the two fragments.

2. One of the two subchloroplast fractions was enriched in chlorophyll b. It exhibited Photosystem II activity, was highly fluorescent and was composed of particles of approx. 50 Å diameter.

3. The light-harvesting chlorophyll-protein complex of the Photosystem II-active fraction had a molecular weight of 67 000 and contained two different subunits of 23 000 and 21 500. The molecular ratio of these two subunits was 2:1.  相似文献   


6.
7.
E.S. Canellakis  G. Akoyunoglou 《BBA》1976,440(1):163-175
Spinach chloroplasts exposed to iodide can be washed free of the bulk of the iodide. In the presence of lactoperoxidase and H2O2, iodide can be introduced into chloroplasts in high amounts and in non diffusible forms. The resultant particles, which have been named iodochloroplasts, extrude their iodide upon stimulation by light. The form and the amount of extruded iodide bears a definite relationship to the amount of incident light. A flash of marginally effective light is additive to the next such flash even after a lapse of 10 min of darkness. These and other properties of iodochloroplasts may make them of great use in the study of intermediate reactions of photosynthesis.  相似文献   

8.
The treatment of spinach chloroplasts with p-nitrothiophenol in the light at acidic and neutral pH's caused specific inhibition of the Photosystem II activity, whereas the same treatment in the dark did not affect the activity at all. The photosystem I activity was not inhibited by p-nitrothiophenol both in the light and in the dark. The inhibition was accompanied by changes of fluorescence from chloroplasts. As observed at room temperature, the 685-nm band was lowered by the p-nitrothiophenol treatment in the light and, at liquid nitrogen temperature, the relative height of the 695-nm band to the 685-nm band increased and the 695-nm band shifted to longer wavelengths. The action spectra for these effects of p-nitrothiophenol on the activity and fluorescence showed a peak at 670 nm with a red drop at longer wavelengths. It was concluded that the light absorbed by Photosystem II is responsible for the chemical modification of chloroplasts with p-nitrothiophenol to causing the specific inhibition of Photosystem II.  相似文献   

9.
The effects of lowering the pH on Photosystem II have been studied by measuring changes in absorbance and electron spin resonance in spinach chloroplasts.At pH values around 4 a light-induced dark-reversible chlorophyll oxidation by Photosystem II was observed. This chlorophyll is presumably the primary electron donor of system II. At pH values between 5 and 4 steady state illumination induced an ESR signal, similar in shape and amplitude to signal II, which was rapidly reversed in the dark. This may reflect the accumulation of the oxidized secondary donor upon inhibition of oxygen evolution. Near pH 4 the rapidly reversible signal and the stable and slowly decaying components of signal II disappeared irreversibly concomitant with the release of bound manganese.The results are discussed in relation to the effects of low pH on prompt and delayed fluorescence reported earlier (van Gorkom, H. J., Pulles, M. P. J., Haveman, J. and den Haan, G. A. (1976) Biochim. Biophys. Acta 423, 217–226).  相似文献   

10.
G. Girault  J.M. Galmiche 《BBA》1974,333(2):314-319
The restoration by silicotungstic acid of the reversible light-induced pH rise mediated by pyocyanine in EDTA-treated chloroplasts corresponds to an irreversible fixation of the acid. The proton uptake is linearly related to the amount of fixed acid (4 protons per molecule of acid) as long as the amount of silicotungstic acid does not exceed 200 nmoles/mg of chlorophyll.In the same conditions silicotungstic acid partly restores ferricyanide reduction and O2 evolution in chloroplasts suspensions supplemented with DCMU. These photoreactions are observed only with chloroplasts and these chloroplasts must have an unimpaired water-splitting mechanism.Silicotungstic acid does not impair DCMU fixation on the specific sites. More likely in its presence the properties of the membrane change and ferricyanide can accept electrons from a part of the electron transport chain, between the Photosystem II reaction center and the block of the electron flow by DCMU.  相似文献   

11.
1. Incubation of chloroplasts with HgCl2 at a molar ratio of HgCl2 to chlorophyll of about unity, induced a complete inhibition of the methyl viologen Hill reaction, as well as methyl viologen photoreduction with reduced 2,6-dichlorophenolindophenol (DCIP) as electron donor. Photooxidation of cytochrome ? was similarly sensitive towards HgCl2, whereas photooxidation of P700 was resistant to the poison. Photoreduction of cytochrome ? and light-induced increase in fluorescence yield were enhanced by the HgCl2 treatment of chloroplasts.  相似文献   

12.
Taka-Aki Ono  Norio Murata 《BBA》1978,502(3):477-485
Thylakoid membranes were prepared from the blue-green alga, Anacystis nidulans with lysozyme treatment and a short period of sonic oscillation. The thylakoid membrane preparation was highly active in the electron transport reactions such as the Hill reactions with ferricyanide and with 2,6-dichlorophenolindophenol, the Mehler reaction mediated by methyl viologen and the system 1 reaction with methyl viologen as an electron acceptor and 2,6-dichlorophenolindophenol and ascorbate as an electron donor system. The Hill reaction with ferricyanide and the system 1 reaction was stimulated by the phosphorylating conditions. The cyclic and non-cyclic phosphorylation was also active.These findings suggest that the preparation of thylakoid membranes retained the electron transport system from H2O to reaction center 1, and that the phosphorylation reaction was coupled to the Hill reaction and the system 1 reaction.  相似文献   

13.
Gerald T. Babcock  Kenneth Sauer 《BBA》1975,376(2):329-344
Rapid light-induced transients in EPR Signal IIf (F?+) are observed in 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated, Tris-washed chloroplasts until the state F P680 Q? is reached. In the absence of exogenous redox mediators several flashes are required to saturate this photoinactive state. However, the Signal IIf transient is observed on only the first flash following DCMU addition if an efficient donor to Signal IIf, phenylenediamine or hydroquinone, is present. Complementary polarographic measurements show that under these conditions oxidized phenylenediamine is produced only on the first flash of a series. The DCMU inhibition of Signal IIf can be completely relieved by oxidative titration of a one-electron reductant with E08.0 = +480 mV. At high reduction potentials the decay time of Signal IIf is constant at about 300 ms, whereas in the absence of DCMU the decay time is longer and increases with increasing reduction potential.A model is proposed in which Q?, the reduced Photosystem II primary acceptor, and D, a one-electron 480 mV donor endogenous to the chloroplast suspension, compete in the reduction of Signal IIf (F?+). At high potentials D is oxidized in the dark, and the (Q? + F?+) back reaction regenerates the photoactive F P680 Q state. The electrochemical and kinetic evidence is consistent with the hypothesis that the Signal IIf species, F, is identical with Z, the physiological donor to P680.  相似文献   

14.
B. A. Diner  D. C. Mauzerall 《BBA》1971,226(2):492-497
A cell-free preparation has been isolated from Phormidium luridum that evolves oxygen when coupled to one-electron oxidants, that is insensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea, and that yields oxygen at a rate dependent on redox potential. In this preparation the Hill oxidant couples closer to the oxygen-producing apparatus than in any other cell-free system. Light saturation curve data for the cell-free preparation shows a stabilization, by the Hill oxidant, of intermediates in oxygen synthesis. In whole cells coupled to CO2 or to K3 Fe(CN)6 no such stabilization occurs and a 2nd order light intensity dependence of the oxygen-production rate is observed.  相似文献   

15.
16.
Raymond P. Cox 《BBA》1975,387(3):588-598

1. 1. Chloroplasts can be suspended in aqueous/organic mixtures which are liquid at sub-zero temperatures with a good retention of the ability to reduce artificial electron acceptors. The reduction of ferricyanide and 2,6-dichlorophenolindophenol at temperatures above 0δC is about 50% inhibited by 50% (v/v) ethylene glycol. Higher concentrations cause more extensive inhibition.

2. 2. Different solvents were compared on the basis of their ability to cause a given depression of the freezing point of an aqueous solution. Ethylene glycol caused less inhibition of electron transport than glycerol, which in its turn was found to be superior to methanol.

3. 3. The reduction of oxidised 2,3,5,6-tetramethyl-p-phenylenediamine could be measured at −25δC in 40% (v/v) ethylene glycol. Using an acceptor with a high extinction coefficient, methyl purple (a derivative of 2,6-dichlorophenolindophenol) it was possible to observe electron flow at temperatures as low as −40δC in 50% (v/v) ethylene glycol.

4. 4. From studies of the effects of the inhibitors 3(3,4-dichlorophenyl)-1,1-dimethylurea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone it is suggested that electron flow from the donor side of Photosystem II to the acceptor side of Photosystem I can occur at temperatures at least as low as −25δC. The ultimate electron donor is presumably water but it was not possible to demonstrate this directly.

Abbreviations: DCIP, 2,6-dichlorophenolindophenol; DAD, 2,3,5,6-tetramethyl-p-phenylenediamine; DCMU, 3(3,4-dichlorophenyl)-1,1-dimethylurea; DBMIB, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone; DMSO, dimethylsulphoxide  相似文献   


17.
P.C. Brandon  O. Elgersma 《BBA》1973,292(3):753-762
Reactions at the reducing side of Photosystem II in spinach chloroplasts are modified by α-benzyl-α-bromo-malodinitrile (BBMD).On addition of 50 μM BBMD to chloroplasts the following phenomena can be observed: (1) electron flow to an acceptor like 2,6-dichlorophenolindophenol is partly deflected to electron flow to oxygen; (2) the electron flow to oxygen is carbonyl cyanide m-chlorophenylhydrazone sensitive but 3-(3,4-dichlorophenyl)-1,1-dimethylurea insensitive; (3) variable fluorescence is abolished but basal fluorescence is not altered; (4) a strong photobleaching of carotenoids is induced. BBMD seems a very efficient acceptor for electrons from the primary electron acceptor of Photosystem II, resulting in a BBMD-mediated electron transport from this primary acceptor to oxygen.On pretreatment of chloroplasts with 50 μM BBMD the effects are different; (1) electron flow to 2,6-dichlorophenolindophenol, ferricyanide, or NADP is almost completely inhibited and is not restored by addition of artificial electron donors: (2) no electron flow to oxygen is observable unless BBMD again is added to reaction media; (3) no variable fluorescence is observable but basal fluorescence is not affected; (4) there is no photobleaching of carotenoids unless BBMD again is added; (5) no reduction of C-550 can be recorded. Pretreatment of chloroplasts with BBMD seems to induce an intense cycling of electrons around Photosystem II and only anew added BBMD can interrupt this cycling.  相似文献   

18.
J.A. Van Best  P. Mathis 《BBA》1978,503(1):178-188
Absorption changes (ΔA) at 820 nm, following laser flash excitation of spinach chloroplasts and Chlorella cells, were studied in order to obtain information on the reduction time of the photooxidized primary donor of Photosystem II at physiological temperatures.In the microsecond time range the difference spectrum of ΔA between 750 and 900 nm represents a peak at 820 nm, attributable to a radical-cation of chlorophyll a. In untreated dark-adapted material the signal can be attributed solely to P+?700; it decays in a polyphasic manner with half-times of 17 μs, 210 μs and over 1 ms. The oxidized primary donor of Photosystem II (P+II) is not detected with a time resolution of 3 μs. After treatment with 3–10 mM hydroxylamine, which inhibits the donor side of Photosystem II, P+II is observed and decays biphasically (a major phase with t12 = 20–40 μs, and a minor phase with t12 ? 200 μs), probably by reduction by an accessory electron donor.In the nanosecond range, which was made accessible by a new fast-response flash photometer operating at 820 nm, it was found the P+II is reduced with a half-time of 25–45 ns in untreated dark-adapted chloroplasts. It is assumed that the normal secondary electron donor is responsible for this fast reduction.  相似文献   

19.
The kinetics of fluorescence yield inChlorella pyrenoidosa and spinach chloroplasts were studied in the time range of 0.5 μs to several hundreds of microseconds in the presence of hydroxylamine. Fluorescence was excited with a just-saturating xenon flash with a halfwidth of 13 μs (λ = 420 nm). The fast rise of the fluorescence yield which was limited by the rate of light influx, was, in the presence of 10−3–10−2 M hydroxylamine, replaced by a slow component which had a half risetime of 25 μs in essence independent of light intensity. This slow fluorescence yield increase reflects a dark reaction on the watersplitting side of Photosystem II. Simultaneous oxygen evolution measurements suggested that a fast fluorescence component is only present in organisms with intact O2-evolving system, whereas a slow rise predominantly occurs in organisms with the watersplitting system irreversibly inhibited by hydroxylamine.

The results can be explained by the following hypotheses: (a) The primary donor of Photosystem II in its oxidized state, P+, is a fluorescence quencher. (b) Hydroxylamine prevents the secondary electron donor Z from reducing the oxidized reaction center pigment P+ rapidly. This inhibition is dependent on hydroxylamine concentration and is complete at a concentration of 10−2 M. (c) A second donor (not transporting electrons from water) transfers electrons to P+ with a half time of roughly 25 μs.  相似文献   


20.
The effects of magnesium and chloride ions on photosynthetic electron transport were investigated in membrane fragments of a blue-green alga, Nostoc muscorum (Strain 7119), noted for their stability and high rates of electron transport from water or reduced dichlorophenolindophenol to NADP+. Magnesium ions were required not only for light-induced electron transport from water to NADP+ but also for protection in the dark of the integrity of the water-photooxidizing system (Photosystem II). Membrane fragments suspended in the dark in a medium lacking Mg2+ lost the capacity to photoreduce NADP+ with water on subsequent illumination. Chloride ions could substitute, but less effectively, for each of these two effects of magnesium ions. By contrast, the photoreduction of NADP+ by DCIPH2 was independent of Mg2+ (or Cl?) for the protection of the electron transport system in the dark or during the light reaction proper. Furthermore, high concentrations of MgCl2 produced a strong inhibition of NADP+ photoreduction with DCIPH2 without significantly affecting the rate of NADP+ photoreduction with water. The implications of these findings for the differential involvement of Photosystem I and Photosystem II in the photoreduction of NADP+ with different electron donors are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号