首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An instrument that measures the temperature dependence of fluorescence polarisation and intensity directly and continuously is described. The behaviour of four fluorescent probes bound to a number of well characterised model systems was then examined. The motional properties of the probes were determined from the polarisation and intensity data and were found to be sensitive to the crystalline-liquid crystalline phase transitions in phospholipid vesicles of dimyristoly and dipalmitoly phosphatidylcholine. Binary mixture of dilauroyl and dipalmitoyl phosphatidylcholine show lateral phase separation and in this system the probes parition preferentially into the more 'fluid' phase. In systems that have been reported to contain 'short range order' or 'liquid clustering', such as dioleoyl phosphatidylcholine and liquid paraffin, the motion of the probes was found to have anomalous Arrhenius behaviour consistent with the idea that homogeneous phases were not being sampled. The significance of these findings for the interpretation of the behaviour of fluorescent probes bound to natural membranes is discussed.  相似文献   

2.
Time dependence of fluorescence enhancement of probes after addition to lipid vesicles has been used to investigate the position of chromophores in the lipid bilayer. Incorporation studies of a series of n-(9-anthroyloxy) fatty acids (n = 2, 2, 12 and 16) and 1,6-diphenylhexatriene in dipalmitoyl phosphatidylcholine vesicles are described. The activation energies for incorporation of these several lipid-mimic type fluorescent probes have been measured. Results show that the activation energy is a function of the distance of the anthracene moiety (chromophore) from the polar end of the probe and the length of the acyl portion of the probe. An average insertion energy of 0.6 kcal/carbon is seen for these fatty acid probes. The activation energy of 1,6-diphenylhexatriene, a factor of 2 greater than that of 16-(9-anthroyloxy)palmitic acid, is consistent with locating 1,6-diphenyl-hexatriene in the middle of the bilayer.  相似文献   

3.
Dipalmitoyl phosphatidylcholine vesicles incubated in the presence of increasing amounts of myristic acid showed a progressive translocation of phospholipid molecules across a dialysis membrane. The rate of phospholipid translocation increased abruptly at a ‘critical’ value of myristic acid concentration. The translocation rate of mixed dipalmitoyl phosphatidylcholine/myristic acid vesicles obtained by cosonicating the two components was also dependent on a ‘critical’ fatty acid concentration. A marked release of K+ and different responses of fluorescent probes to the fatty acid addition were observed at this concentration.  相似文献   

4.
Synthesis and physical properties of a new anthracene fatty acid, 9-(2-anthryl)nonanoic acid, and the corresponding anthracene-phosphatidylcholines which were obtained by condensing the acid with sn-1-palmitoyl-lysophosphatidylcholine (PAPC) and with egg lysophosphatidylcholine (EAPC) are described. Differential scanning calorimetry experiments show that these lipids can undergo a liquid-crystal to gel phase transition at temperatures of 15°C and 18°C for EAPC and PAPC, respectively. In monolayers, PAPC exhibits a compression curve nearly superimposable to that of dipalmitoylphosphatidylcholine (DPPC), with a molecular area of 0.48 nm2 at π = 30 mN m?1. The data indicate that in these lipids, the anthracene group is only slightly more bulky than a normal acyl chain and that it does not significantly affect the regular phospholipid molecular packing. In ethanol solutions or when incorporated into egg phosphatidylcholine liposomes in a molar ratio of 1%, these lipids display UV absorption spectra and fluorescence emission spectra similar to those of 2-methyl anthracene. For EAPC liposomes, a broad and structureless fluorescence emission spectrum centered at around 450 nm, was recorded, suggesting the occurrence of anthracene excimers. As ascertained by UV spectrophotometry, differential scanning calorimetry, fluorescence polarization and anthracene photodimerization experiments, EAPC displays good miscibility properties with lipids in the liquid state (egg phosphatidylcholine) or in the gel state (distearoylphosphatidylcholine (DSPC)). The potential of these anthracene derivatives for studying the dynamics and the topological distribution of lipids in biomembranes is discussed.  相似文献   

5.
Size enlargement of dipalmitoyl phosphatidylcholine vesicles was greatly accelerated in the range of the phase-transition temperatures, when fatty acid concentration was above a threshold level (‘critical’ concentration). This ‘critical’ concentration varied with the length of the fatty acid chain. The size enlargement process had second-order kinetics dependent on the vesicle concentration. Alkaline pH and low ionic strength inhibited the rate of size enlargement.Phospholipid exchange between dimyristoyl and dipalmitoyl phosphatidylcholine vesicles increased abruptly above a ‘critical’ fatty acid concentration. The donor vesicles were those vesicles in which fatty acids reached the ‘critical’ concentration. The phospholipid exchange occurred both in fluid- and in solid-state vesicles. The ‘critical’ fatty acid concentration accelerating the phospholipid exchange process was lower than that accelerating the size enlargement process.The phospholipid exchange process explained in terms of a diminished hydrophobic attraction among the phospholipid molecules of the bilayer occurs via a free phospholipid molecule transfer through the aqueous phase. The size enlargement process is interpreted in terms of high fatty acid concentration in the membrane fluid domains. The membrane structure is locally perturbed inducing vesicle sticking after collision.  相似文献   

6.
7.
8.
The lipid dynamics of the adrenocortical microsomal membranes was studied by monitoring the fluorescence anisotropy and excited state lifetime of a set of anthroyloxy fatty acid probes (2-, 7-, 9- and 12-(9-anthroyloxy)-stearic acid (AP) and 16-(9-anthroyloxy)palmitic acid (AS). It was found that a decreasing polarity gradient from the aqueous membrane interface to the membrane interior, was present. This gradient was not modified by the proteins, as evidenced by comparison of complete membranes and derived liposomes, suggesting that the anthroyloxy probes were not in close contact with the proteins. An important change of the value of the mean rotational relaxation time as a function of the position of the anthroyl ring along the acyl chain was evidenced. In the complete membranes, a relatively more fluid medium was evidenced in the C16 as compared to the C2 region, while the rotational motion appeared to be the most hindered at the C7–C9 level. In the derived liposomes, a similar trend was observed but the mobility was higher at all levels. The decrease of the mean rotational relaxation time was more important for 12-AS and 16-AP. Temperature dependence of the mean rotational relaxation time of 2-AS, 12-AS and 16-AP in the complete membranes revealed the existence of a lipid reorganization occurring around 27°C and concerning mainly the C16 region. The extent to which the acyl chain reacted to this perturbation at the C12 level depended on pH. The presence of proteins increased the apparent magnitude of this reorganization and also modified the critical temperature from approx. 23°C in the derived liposomes to approx. 27°C in the complete membranes. Thermal dependence of the maximum velocity of the 3-oxosteroid Δ54-isomerase, the second enzyme in the enzymatic sequence, responsible for the biosynthesis of the 3-oxo4-steroids in the adrenal cortex microsomes, was studied. The activation energy of the catalyzed reaction was found to be low and constant (2–5 kcal · mol?1) in the temperature range 16–40°C at pH 7.5, 8.5 and 9, corresponding to the minimum, intermediate and maximum rate, respectively. A drastic increase of the activation energy (20 kcal · mol?1) was observed at temperature below 16°C at pH 7.5. A correlated change of the pKESapp as function of temperature was detected; at 36°C pKESapp = 8.3 while at 13°C the value shifted to 8.7. The pH range of the group ionization was narrower at 13°C. In contrast with the behaviour of the 3β-hydroxy5-steroid dehydrogenase, the 3-oxosteroid Δ54-isomerase was apparently unaffected by the lipid reorganization at 27°C. It is suggested that this enzyme possesses a different and more fluid lipid environment than the bulk lipids.  相似文献   

9.
Film studies at the air-water interface have been carried out for pure films of 2,2′-(vinylenedi-p-phenylene)bisbenzoxazole (VPBO), d-3-aminodesoxy-equlenin (EQ) and N-octadecylnapthyl-2-amino-6-sulfonic acid (ONS), and for mixed films with tetradecanoic acid for the first two fluorescent probes. Pure film isotherms indicate highly rigid non-monomolecular films for both VPBO and EQ, revealing the presence of strong intermolecular forces. In mixed films with tetradecanoic acid VPBO rapidly segregates with resultant film loss over a wide concentration range. EQ, however, can be stabilized by the host-lipid at low concentrations. This, coupled with an ability to only slightly affect the host-lipid liquid-condensed/liquid-expanded phase change, suggests that EQ can be regarded as “non-perturbing” and should be retained in condensed lipid phases.ONS, because of its unusual polar headgroup, resembled hexadecanoic acid more than octadecanoic acid. While difficulties in spreading ONS precluded the study of mixed films, the indications are that it would be a satisfactory expanded lipid state probe if mixing can be brought about.  相似文献   

10.
Summary We have determined the partition coefficient of the fluorescent molecule perylene between liquid crystalline and crystalline regions of vesicle membranes formed from binary mixtures of several lipids. We measured the fluorescence intensity of perylene in these vesicles as a function of temperature and used the intensity profiles, together with a theory developed in a previous paper, to determine the partition coefficient defined as the ratio of the concentration of perylene in the liquid-crystalline (fluid) regions of the membrane to the concentration in the crystalline (solid) phase. In vesicles composed of dipalmitoyl phosphatidylcholine/distearoyl phosphatidylcholine (dppc/dspc) mixtures and of dipalmitoyl phosphatidylcholine/dipalmitoyl phosphatidylethanolamine (dppc/dppe) mixtures, the partition coefficient is close to unity. Its value is 1.04±0.18 for dppc/dsp mixtures and 1.10±0.26 for dppc/dppe mixtures. In vesicles composed of dimyristoyl phosphatidylcholine/distearoyl phosphatidylcholine mixtures, the partition coefficient was more difficult to determine and its value ranged from 0.3 to 7.  相似文献   

11.
Vesicles of phosphatidylcholine/cholesterol mixtures show a wide composition range with coexistence of two fluid phases, the 'liquid disordered' (cholesterol-poor) and 'liquid ordered' (cholesterol-rich) phases. These systems have been widely used as models of membranes exhibiting lateral heterogeneity (membrane domains). The distributions of two fluorescent probes (a fluorescent cholesterol analog, NBD-cholesterol, and a lipophilic rhodamine probe, octadecylrhodamine B) in dimyristoylphosphatidylcholine/cholesterol vesicles were studied, at 30 degrees C and 40 degrees C. The steady-state fluorescence intensity of both probes decreases markedly with increasing cholesterol concentration, unlike the fluorescence lifetimes. The liquid ordered to liquid disordered phase partition coefficients K(p) were measured, and values much less than unity were obtained for both probes, pointing to preference for the cholesterol-poor phase. Globally analyzed time-resolved energy transfer results confirmed these findings. It is concluded that, in particular, NBD-cholesterol is not a suitable cholesterol analog and its distribution behavior in phosphatidylcholine/cholesterol bilayers is in fact opposite to that of cholesterol.  相似文献   

12.
Interaction of filipin and amphotericin B with sterols in phosphatidylcholine membranes has been studied using various spin probes; epiandrosterone, cholestanone, phosphatidylcholine with 12-nitroxide or 5-nitroxide stearate attached to 2 position and also with tempocholine at the head group. Filipin caused increase in the fluidity of cholesterol-containing phosphatidylcholine membranes near the center, while it rather decreased the fluidity near the polar surface. On the other hand, amphotericin B did not apparently affect the fluidity. In the electron spin resonance spectrum of steroid spin probes in the antibiotic-containing membranes, both bound and free signals were observed and the association constant was calculated from the siganal intensity. In the binding of steroids with filipin, both 3 and 17 positions were involved, while the 17 position was less involved in the binding with amphotericin B. Phase change in the host membrane markedly affected the interaction of filipin with epiandrosterone probe. The bound fraction jumped from 0.4 to 0.8 on going to the crystalline state and increased further with decrease in temperature. The overall splitting of the bound signal also increased on lowering the temperature below phase transition. This change was attributed to aggregate formation of filipin-steroid complexes in the crystalline state. On the other hand, effect of phase transition was much smaller on the interaction of amphotericin B with the steroid probe.  相似文献   

13.
The fluorescence of chlorophyll a incorporated into liposomes of mixtures of phosphatidylcholines and phosphatidylethanolamines is reported. Plots of fluorescence intensities against temperature show breaks at characteristic temperatures which can be attributed to the onset and completion of solid phase lipid formation. These temperatures can be plotted to give diagrams analogous to the phase diagrams obtained for macroscopic systems. Complications due to "small-system effects" are discussed, and the experimental diagrams are compared with theoretical phase diagrams calculated for ideal mixing. Introduction of cholesterol leads to a reduction in fluorescence intensity, most readily explained by a 1:1 lipid:cholesterol interaction with exclusion of monomeric, fluorescent, chlorophyll a. Interaction of divalent ions with mixtures of dipalmitoyl phosphatidylcholine and dipalmitoyl phosphatidylserine leads to exclusion of chlorophyll a from the phosphatidylserine.  相似文献   

14.
We studied the interaction between an apolipoprotein of pulmonary surfactant and the principal lipid found in this material, dipalmitoyl phosphatidylcholine. The apolipoprotein was extracted from canine surfactant and purified to greater than 90% homogeneity. The apolipoprotein was mixed for 16 h at room temperature with dipalmitoyl phosphatidylcholine dispersed in a buffer containing 0.1 M NaCl and 3mM CaCl2. Unbound lipid, unbound protein, and recombinants of lipid and protein were separated by density gradient centrifugation. 71% of the apolipoprotein was found associated with dipalmitoyl phosphatidylcholine. In comparable experiments using bovine plasma albumin about 13% of the albumin was recovered with the lipid. The physicochemical state of the lipid in the apolipoprotein-lipid complex was modified after binding of the protein. A distinct phase transition at 42 degrees C could no longer be detected, and the rate of adsorption to an air-liquid interface of the apolipoprotein-lipid complex was greater than that of the lipid alone. Surface tension vs. surface area isotherms of the dipalmitoyl phosphatidylcholine-apolipoprotein materials, however, were similar to those exhibited by pure dipalmitoyl phosphatidylcholine. The results suggest a physiological role for this apolipoprotein. It may bind to dipalmitoyl phosphatidylcholine under conditions expected in vivo, and may modify the physical properties of the aggregated dipalmitoyl phosphatidylcholine to form domains of lipid in a liquid-crystalline array. The complex dipalmitoyl phosphatidylcholine and apolipoprotein would have the physical properties necessary for its physiological function, allowing it to absorb to the alveolar interface and reduce its surface tension to less than 10 dynes/cm. Dipalmitoyl phosphatidylcholine, by itself, is in a gel-crystalline array below its phase transition temperature (42 degrees C) and would be incapable of effecting these actions.  相似文献   

15.
Pyrethroid interactions with dipalmitoyl phosphatidylcholine (DPPC) vesicles have been characterized in bilayers having large and small radii of curvature. The abilities of pyrethroids to alter the gel-fluid phase transition profiles were determined by steady state fluorescence anisotropy and phase-modulation lifetime techniques using the fluorescent probes cis- and trans-parinaric acid. Using the geometric isomers of parinaric acid as membrane probes, pyrethroids were found to lower the phase transition temperature (Tc) of DPPC large multilamellar vesicles with the same order of comparative effectiveness as previously reported using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH). Permethrin had a greater depressive effect upon the Tc of DPPC in the small unilamellar vesicle (SUV) system than in the large multilamellar system. Conversely, allethrin was less effective in reducing the Tc of DPPC SUVs. The enhanced effect of permethrin in decreasing the Tc of DPPC SUVs was greatest in regions of more rigid lipid packing, as determined by trans-parinaric acid fluorescence parameters. The results indicate that changes in lipid packing configuration caused by differing bilayer radii of curvature may alter the interactive characteristics of pyrethroids with lipid membranes.  相似文献   

16.
The fluorescence of chloropyll α incorporated into liposomes of mixtures of phosphatidylcholines and phosphatidylethanolamines is reprted. Plots of fluorescence intensities against temperature show breaks at characteristic temperatures which can be attributed to the onset and completion of solid phase lipid formation. These temperatures can be plotted to give diagrams analogous to the phase diagrams obtained for macroscopic systems. Complications due to “small-system effects” are discussed, and the experimental diagrams are compared with theoretical phase digrams calculated for ideal mixing. Introduction of cholesterol leads to a reduction in fluorescence intensity, most readily explained by a1 : 1 lipid :cholesterol interaction with exclution of monomeric, fluorescent, chlorophyll a. Interaction of divalent ions with mixtures of dipalmitoyl phosphatidylcholine and dipalmitoyl phosphatidylserine leads to exclution oc chlorophyll a from the phosphatidylserine.  相似文献   

17.
We report here on a series of studies aimed at characterization of the structural and dynamical properties of the synthetic lipid diphytanoyl phosphatidylcholine, in multilamellar dispersions and vesicle suspensions.This lipid exhibits no detectable gel to liquid crystalline phase transition over a large temperature range (?120°C to +120°C).Examination of proton nuclear magnetic resonance (NMR) free induction decays obtained from multilayer dispersions of diphytanoyl phosphatidylcholine provided an estimate of the methylene proton order parameter. The estimated magnitude of 0.21 is comparable to those determined for other phospholipids.Sonication of aqueous dispersions of diphytanoyl phosphatidylcholine led to formation of bilayer vesicles as determined by the measurement of the outer/inner choline methyl proton resonances, vesicle sizes in electron micrographs, and comparison of proton NMR linewidths between multilayer and sonicated dispersions. Ultracentrifugation studies of diphytanoyl phosphatidylcholine vesicles in H2O and 2H2O media yielded a value of 1.013 ± 0.026 ml/g for the partial specific volume of this lipid.We have measured spin lattice relaxation rates for the methyl and methylenemethyne protons of the hydrocarbon chains of diphytanoyl phosphatidylcholine in bilayer vesicles over a range of temperatures and at two NMR frequencies (100 and 220 MHz). The observed relaxation rates for the methylene protons in this system were approximately twice those previously reported for dipalmitoyl phosphatidylcholine at comparable temperatures and resonance frequencies, whereas the relaxation rates measured for the methyl protons were greater than those of the straight chain lipid by an order of magnitude.Measurement of the spin lattice relaxation rates of the hydrocarbon protons of the diphytanoyl phosphatidylcholine in a 10 mol% mixture of the branched-chain lipid in a deuterated host lipid, diperdeuteropalmitoyl phosphatidylcholine, showed a discontinuity in the temperature dependence of the proton NMR longitudinal relaxation rates of the branched-chain lipid in the region of the gel to liquid crystalline phase transition temperature of the deuterated dipalmitoyl phosphatidylcholine host lipid. This result may be taken as evidence of lateral phase separation of a liquid cyrstalline phase enriched in diphytanoyl phosphatidylcholine from a gel phase enriched in diperdeuteropalmitoyl phosphatidylcholine at temperatures below the phase transition temperature of deuterated host lipid. This conclusion is supported by the observation of an abrupt change in the hydrocarbon methylene linewidth (at 100 MHz) of 10 mol% diphytanoyl phosphatidylcholine in diperdeuteropalmitoyl phosphatidylcholine over the temperature range where lateral phase separation is taking place according to differential thermograms.  相似文献   

18.
Dynamic quenching of fluorophores and quenchers in lipid micelles and bilayers can yield information about the bimolecular rate constant for the quenching reaction, and hence information about the microviscosity of the fluorophore-quencher environment. When the fluorophore and quencher have relatively fixed transverse positions in the bilayer, the analysis of Sikaris et al. (Chem. Phys. Lipids. 29 (1981) 23) can be used to separate the microviscosity and proximity contributions to quenching. We now extend this method to show explicitly the effect of static quenching on the analysis. We show by simulation and experiment that a correction factor must be included when static quenching contributes to the observed quenching efficiency.  相似文献   

19.
Phloretin and phloretin-like dipolar non-electrolytes strongly quench the fluorescence of several membrane-bound probes, including 1,6-diphenylhexa-1,3,5-triene and anthroyl derivatives of long-chain fatty acids. Fluorescence intensity measurements therefore provide a simple and sensitive method to study the equilibrium binding properties and permeability of phloretin-like molecules in biological and artificial membrane systems. The dissociation constants for the binding of phloretin and naringenin to phosphatidylcholine vesicle membranes are determined, assuming the Stern-Volmer relation, from the fluorescence intensity of intramembrane probes as a function of phloretin and naringenin concentrations. Results (phloretin, 9 ± 1 μM; naringenin, 21 ± 4 μM) agree with the dissociation constants obtained using absorption titration performed in the absence of fluorescent probes. Fluorescence nanosecond lifetime measurements show that the mechanism of quenching of diphenylhexatriene and 16-anthroylpalmitic acid by phloretin and naringenin is largely diffusional in nature. The transmembrane movement of phloretin through phosphatidylcholine vesicles was observed by the stopped-flow technique, in which phloretin is mixed rapidly with a vesicle solution containing a membrane-bound fluorescent probe. The time course obtained by fluorescence measurements was identical to that obtained in a parallel measurement of the time course of optical absorption of phloretin. Stopped-flow data for the permeability of phosphatidylcholine liposomes and red blood cell membranes are also presented. The use of a membrane-bound indicator greatly extends the range of concentrations and pH values as well as the types of systems which can be characterized by optical means.  相似文献   

20.
The interaction of hashish compounds, Δ1-tetrahydrocannabinol and cannabidiol, with dipalmitoyl phosphatidylcholine was investigated using differential scanning calorimetry. Both drugs affect the transition of dipalmitoyl phosphatidylcholine from the gel to liquid crystalline state, decreasing both the melting temperature and the enthalpy of melting. At a drug to dipalmitoyl phosphatidylcholine ratio of approx. 1:5, two peaks appear in the transition profile, suggesting a phase separation in the drug dipalmitoyl phosphatidylcholine mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号