首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The 51-residue N-terminal cyanogen bromide fragment from the Aα chain of human fibrinogen was isolated, and the Michaelis-Menten constants, Km and kcat, for its hydrolysis by bovine thrombin were determined. The measured values of Km and kcat are 4.7 × 10?5m and 4.8 × 10?10m [(NIH U/liter) sec]?1, respectively. Since these values are similar to those for fibrinogen, it appears that the N-terminal CNBr fragment contains all amino acid residues whose interactions with thrombin account for the high specificity of this enzyme for fibrinogen.  相似文献   

2.
The following peptides were synthesized by classical methods in solution: Ac-Gly-Gly- Val-Arg-Gly-Pro-Arg-Val-Val-Glu-Arg-NHCH3 (A), Ac-Ala-Glu-Gly-Gly-Gly-Val- Arg-Gly-Pro-Arg-Val-Val-Glu-Arg-NHCH3 (B), and Ac-Phe-Leu-Ala-Glu-Gly-Gly- Gly-Val-Arg-Gly-Pro-Arg-Val-Val-Glu-Arg-NHCH3 (C). The rates of hydrolysis of the Arg-Gly bond of these three peptides by thrombin were measured, and the values of kcatKm were found to be 0.05 × 10?7 (A), 0.02 × 10?7 (B), and 1.6 × 10?7 (C) [(NIH units/ liter)s]?1. The value ofkcatKm for peptide C is less than 1% of that for fibrinogen [although the value of kcat itself, for peptide C (but not for A or B), is comparable to that for fibrinogen]. These results indicate that phenylanine and leucine at positions P9 and P8, respectively, play a key role in the reaction of thrombin with fibrinogen. The data also show that factors outside of the 16 residues of peptide C are important in determining the rate of hydrolysis of fibrogen by thrombin.  相似文献   

3.
Leukotriene A4 hydrolase (LTA4H––EC 3.3.2.6) is a bifunctional zinc metalloenzyme, which processes LTA4 through an epoxide hydrolase activity and is also able to trim one amino acid at a time from N-terminal peptidic substrates via its aminopeptidase activity. In this report, we have utilized a library of 130 individual proteinogenic and unnatural amino acid fluorogenic substrates to determine the aminopeptidase specificity of this enzyme. We have found that the best proteinogenic amino acid recognized by LTA4H is arginine. However, we have also observed several unnatural amino acids, which were significantly better in terms of cleavage rate (k cat/K m values). Among them, the benzyl ester of aspartic acid exhibited a k cat/K m value that was more than two orders of magnitude higher (1.75 × 105 M?1 s?1) as compared to l-Arg (1.5 × 103 M?1 s?1). This information can be used for design of potent inhibitors of this enzyme, but may also suggest yet undiscovered functions or specificities of LTA4H.  相似文献   

4.
Alpha-Chymotrypsin was found to show a 119% increase in activity after three phase partitioning. The kcat/Km of the partitioned enzyme (TPP-C) for hydrolysis of Bz-Tyr-OEt in aqueous medium at 25°C was found to be 48.3×104 mM?1 min?1 as compared to the corresponding value of 17.7×104 mM?1 min?1 for the untreated control (C). The λmax of the fluorescence emission spectrum of TPP-C showed 178% increase in the quantum yield when compared to C. TPP-C showed a 2.94 and 3.58 fold increase (as compared to C) in initial rates for formation of the ester Ac-Phe-OEt (from Ac-Phe and ethanol) in low water containing toluene and n-octane, respectively. It was found that TPP-C also showed the phenomenon of pH memory. At 5% (v v?1) water (in t-amyl alcohol), while no esterification was observed with C, TPP-C still showed significant level of esterification activity.

Bz-Tyr-OEt, Benzoyl tyrosine ethyl ester; Ac-Phe, N-acetyl phenylalanine; Ac-Phe-OEt, N-acetyl phenylalanine ethyl ester; TPP, Three phase partitioning; C, Untreated α-chymotrypsin; TPP-C, α-Chymotrypsin subjected to TPP; kcat, Catalytic efficiency; Km, Michaelis constant  相似文献   

5.
We used quench flow to study how N6-methylated adenosines (m6A) affect the accuracy ratio between kcat/Km (i.e. association rate constant (ka) times probability (Pp) of product formation after enzyme-substrate complex formation) for cognate and near-cognate substrate for mRNA reading by tRNAs and peptide release factors 1 and 2 (RFs) during translation with purified Escherichia coli components. We estimated kcat/Km for Glu-tRNAGlu, EF-Tu and GTP forming ternary complex (T3) reading cognate (GAA and Gm6AA) or near-cognate (GAU and Gm6AU) codons. ka decreased 10-fold by m6A introduction in cognate and near-cognate cases alike, while Pp for peptidyl transfer remained unaltered in cognate but increased 10-fold in near-cognate case leading to 10-fold amino acid substitution error increase. We estimated kcat/Km for ester bond hydrolysis of P-site bound peptidyl-tRNA by RF2 reading cognate (UAA and Um6AA) and near-cognate (UAG and Um6AG) stop codons to decrease 6-fold or 3-fold by m6A introduction, respectively. This 6-fold effect on UAA reading was also observed in a single-molecule termination assay. Thus, m6A reduces both sense and stop codon reading accuracy by decreasing cognate significantly more than near-cognate kcat/Km, in contrast to most error inducing agents and mutations, which increase near-cognate at unaltered cognate kcat/Km.  相似文献   

6.
A modified trypsin (AA-trypsin, acetylated with acetic acid N-hydroxysuccinimide ester) gave increased yields of Bzl-Arg-Leu-NH2 dipeptide (90% versus 59% for native trypsin) when used in 95% acetonitrile. AA-Trypsin had decreased Km and increased kcat values for amide and ester substrates. kcat/Km also increased for each substrate upon modification. AA-Trypsin showed enhanced esterase activity in hydrophilic solvents compared with native enzyme.  相似文献   

7.
Arthrobacter sialophilus neuraminidase catalyzes the hydration of 5-acetamido-2,6-anhydro-3, 5-dideoxy-d-glycero-d-galacto-non-2-enonic acid (2,3-dehydro-AcNeu) with Km and kcat values of 8.9 × 10?4m and 6.40 × 10?4 s?1, respectively. The methyl ester of 2,3-dehydro-AcNeu as well as 2,3-dehydro-4-epi-AcNeu are also hydrated by the enzyme. The product resulting from the enzymatic hydration of 2,3-dehydro-AcNeu is N-acetylneuraminic acid. A series of derivatives of 2,3-dehydro-AcNeu (KI 1.60 × 10?6m) including 2,3-dehydro-4-epi-AcNeu (2.10 × 10?4m) and 2,3-dehydro-4-keto-AcNeu (KI = 6.10 × 10?5 m) were each competitive inhibitors of the enzyme. The methyl esters of these ketal derivatives were also competitive enzyme inhibitors. Dissociation constants for these ketals were determined independently by fluorescence enzyme titrations which gave values similar to those found kinetically. These six relatives of 2,3-dehydro-AcNeu were also competitive inhibitors for the influenza viral neuraminidases. For the viral neuraminidases, the dissociation constant for 2,3-dehydro-AcNeu and its methyl ester were 2.40 × 10?6 and 1.17 × 10?3m, respectively. The interpretation placed upon the KI values determined for these ketals against the Arthrobacter versus influenza neuraminidases is that the bacterial enzyme has a more flexible glycone binding site.  相似文献   

8.
The hydrolysis reaction of N α-benzoyl-L-arginine ethyl ester catalyzed by trypsin from pig pancreas was comparatively studied in an aqueous buffer solution and in the system of reversed micelles of Aerosol OT in octane (pH 8.5) to determine the mechanisms of influence of the enzyme microenvironment on the rate constants of the elementary stages of the enzymatic reaction. The temperature dependences of the catalytic constant k cat and the rate constant of the second order k cat/K m (s, catalysis efficiency) allowed the determination of the rate constants and the activation energy of elementary stages of the enzymatic reaction. It was revealed that a decrease in the efficiency of catalytic action of trypsin in reverse micelles in comparison with an aqueous solution is first of all determined by a decrease in the rate constant of formation of the enzyme-substrate complex k 1. Possible mechanisms of the effect of the microenvironment on the elementary stages of catalytic action of the enzyme are discussed.  相似文献   

9.
根据过渡态理论设计和合成了能诱导产生催化选择性水解布洛芬甲酯的催化抗体的四面体硫酸盐半抗原,并与牛血清白蛋白(BSA)偶联制备成免疫源,通过免疫手段成功筛选出具有加速选择性水解生成S-布洛芬的特异性催化抗体.其Kcat,app/Kuncat,app达1.6x104.进一步地将催化抗体运用到W/O微乳体系(反胶束)中进行布洛芬酯的选择性水解研究,其动力学研究证明其催化过程同样遵循Michaelis.Menten方程.考察了pH值和温度对催化初速度影响,Wo(体系中水和琥珀酸二辛酯磺酸钠(AOT)的摩尔比)对催化初速度影响呈现为钟罩型,最适的Wo.为21.  相似文献   

10.
Isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate with NAD(P) as a cofactor in the tricarboxylic acid cycle. As a housekeeping protein in Helicobacter pylori, IDH was considered as a possible candidate for serological diagnostics and detection. Here, we identified a new icd gene encoding IDH from H. pylori strain SS1. The recombinant H. pylori isocitrate dehydrogenase (HpIDH) was cloned, expressed, and purified in E. coli system. The enzymatic characterization of HpIDH demonstrates its activity with k cat of 87 s?1, K m of 124 μM and k cat/K m of 7 × 105 M?1s?1 toward isocitrate, k cat of 80 s?1, K m of 176 μM and k cat/K m of 4.5 × 105 M?1s?1 toward NADP. The optimum pH of the enzyme activity is around 9.0, and the optimum temperature is around 50 °C. This current work is expected to help better understand the features of HpIDH and provide useful information for H. pylori serological diagnostics and detection.  相似文献   

11.
Qualitative differences in the active center of rat trypsins 1 and 2 resulted in different ratios of Kcat for N1-tosyl-l-arginine methyl ester vs Kcat for N1-benzoyl-l-arginine ethyl ester. These ratios were 2.5 for trypsin 1 and 1.2 for trypsin 2.Substrate activation with N1-tosyl-l-arginine methyl ester enhanced the catalytic rate constant of rat trypsin 1 2.5-fold and that of rat trypsin 2 only 1.5-fold. The increase in the catalytic rate constant found with N1-benzoyl-l-arginine ethyl ester was the same (1.5-fold) for both trypsins. Consequently, at 20 mm substrate concentration, trypsin 1 catalyzed the esterolysis of N1-tosyl-l-arginine methyl ester 4.5 times faster than that of N1-benzoyl-l-arginine ethyl ester, while trypsin 2 was only 1.3 times more efficient with the first substrate.Furthermore, the activation of both rat enzymes by N-acetyl-l-tyrosine ethyl ester was even more effective than that obtained with the two cationic esters; the maximum rates of hydrolysis of this neutral substrate by trypsins 1 and 2 were enhanced 120- and 50-fold, respectively, by high concentrations of N-acetyl-l-tyrosine ethyl ester.  相似文献   

12.
The Cu(II) or Ni(II) ion-catalyzed hydrolysis of methyl 2-carboxy-6-(2-imidazoleazo)benzoate (1) and the corresponding dimethyl ester (2) was studied kinetically at various pH values. For 2, the ester group located at the o position to the azo substiuent was hydrolyzed. From the rate data obtained at various metal concentrations, the values of kcat and Kf were estimated at each pH value. For the Ni(II)-catalyzed hydrolysis of 1 at pH < 4, kcat increases as pH is lowered, indicating bifunctional catalysis by the carboxyl group and the metal ion. For most of the reactions investigated under other conditions, the ester hydrolysis was subjected to sole catalysis by the metal ions. Detailed analysis of kinetic data obtained for these reactions indicated that the metal-ion catalysis involves the rate-determining breakdown of the tetrahedral intermediates formed by the addition of a water molecule or hydroxide ion. The bifunctional catalysis by the carboxyl group and Ni(II) ion can be considered as a model for carboxypeptidase A. The kinetic data indicate that the bifunctional catalysis proceeds through the nucleophilic attack of the carboxylate ion at the Ni(II)-coordinated carbonyl group.  相似文献   

13.
Comparative studies on human carboxypeptidases B and N   总被引:4,自引:0,他引:4  
A series of dicarboxylic acid bi-product analogs of lysine and arginine have been tested as competitive inhibitors of human pancreatic carboxypeptidase B and human plasma carboxypeptidase N. The most effective derivative was guanidinoethylmercaptosuccinic acid with Kis of 0.5 and 1.0 × 10?6m for Carboxypeptidases B and N, respectively. Values for the all-carbon guanidinopropylsuccinic acid were similar. In addition the kinetic parameters, Km and kcatKm, have been determined for the hydrolysis of benzoyl-alanyl-lysine and benzoylalanyl-arginine by human Carboxypeptidases B and N. These substrates have been proposed for use in improved spectrophotometric assays. An enhanced affinity of these substrates versus benzoyl-glycyl-lysine or benzoyl-glycyl-arginine indicates a significant participation of the penultimate amino acid in catalysis of substrate.  相似文献   

14.
The xyn10B gene, encoding the endo-1,4-β-xylanase Xyn10B from Thermotoga thermarum, was cloned and expressed in Escherichia coli. The ORF of the xyn10B was 1,095 bp and encoded to mature peptide of 344 amino acids with a calculated MW of 40,531 Da. The recombinant xylanase was optimally active at 80 °C, pH 6.0 and retained approx. 60 % of its activity after 2 h at 75 °C. Apparent K m , k cat and k cat /K m values of the xylanase for beechwood xylan were 1.8 mg ml?1, 520 s?1 and 289 ml mg?1 s?1, respectively. The end products of the hydrolysis of beechwood xylan were mainly oligosaccharides but without xylose after 2 h hydrolysis.  相似文献   

15.
Activation of human plasma prekallikrein by a bacterial metalloendopeptidase, Pseudomonas aeruginosa elastase, was reported (Shibuya et al. (1991) Biochim. Biophys. Acta 1097, 23–27). Details of the activation process were presently studied. The activation accompanied limited proteolysis of a peptide bond inside of a disulfide bridge of prekallikrein molecule. Amino acid sequencing analysis of the newly generated amino-terminal revealed that the cleavage site was Arg371-Ile372 bond which is the scissile bond in the activation of prekallikrein with trypsin-type proteinases. A pentapeptide substrate, 2-aminobenzoyl-Ser-Thr-Ile-Val-4-nitrobenzylamide, which contained the amino acid sequence identical to that around the scissile bond of prekallikrein was synthesized. Pseudomonal elastase, indeed, hydrolyzed the substrate at Arg-Ile bond with the kinetic parameters of Km = 118 μM, kcat = 1.56/s and kcat/Km = 1.33 · 104/s M. These results indicated that the Arg371-Ile372 bond was sensitive not only to trypsin-type serine proteinases, but also a bacterial metalloproteinase. Kinetic analysis of the prekallikrein activation by psuedomonal elastase, however, revealed that the activation rate was show, though the Km values was good enough to expect an occurence of this activation in vivo (Km = 248 nM, k = 6.8 · 10?4/s, and kcat/Km = 2.7 · 103/s M. The activation rate of prekallikrein by pseudomonal elastase in Hageman factor deficient plasma was remarkably improved when the plasma was reconstituted with purified Hageman factor molecule. From the results, a biologuical significance of the proteinase cascade in the plasma kinin generation was also indicated. The present in vitro study might support the hypothesis that the Hageman factor/kallikrein-kinin system plays an important role in bacterial infection including the pseudomonal one.  相似文献   

16.
The introduction of a useful new chromogenic substrate for the determination of elastase (EC 3.4.4.7) activity is described. N-acetyl-L-Ala-L-Ala-L-Ala-p-nitroanilide (AcAla3NA) is a new specific elastase substrate whose hydrolysis can be followed spectrophotometrically at 410 nm in a wide pH range. Its rate of hydrolysis by α-chymotrypsin (EC 3.4.4.5) and trypsin (EC 3.4.4.4.) is 0.02% and 0.001% respectively compared to its rate of hydrolysis by elastase. As little as 0.1 μg elastase/ml can be satisfactorily determined. At pH 8, Km = 0.88 mM and kcat = 11.9 sec?1.  相似文献   

17.
Albumin is generally regarded as an inert protein with no enzyme activity. However, albumin has esterase activity as well as aryl acylamidase activity. A new acetanilide substrate, o-nitrotrifluoroacetanilide (o-NTFNAC), which is more reactive than the classical o-nitroacetanilide, made it possible to determine the catalytic parameters for hydrolysis by fatty-acid free human serum albumin. Owing to the low enzymatic activity of albumin, kinetic studies were performed at high albumin concentration (0.075 mM). The albumin behavior with this substrate was Michaelis-Menten like. Kinetic analysis was performed according to the formalism used for catalysis at high enzyme concentration. This approach provided values for the turnover and dissociation constant of the albumin-substrate complex: kcat = 0.13 ± 0.02 min ? 1 and Ks = 0.67 ± 0.04 mM. MALDI-TOF experiments showed that unlike the ester substrate p-nitrophenyl acetate, o-NTFNAC does not form a stable adduct (acetylated enzyme). Kinetic analysis and MALDI-TOF experiments demonstrated that hydrolysis of o-NTFNAC by albumin is fully rate-limited by the acylation step (kcat = k2). Though the aryl acylamidase activity of albumin is low (kcat/Ks = 195 M? 1min? 1), because of its high concentration in human plasma (0.6–1 mM), albumin may participate in hydrolysis of aryl acylamides through second-order kinetics. This suggests that albumin may have a role in the metabolism of endogenous and exogenous aromatic amides, including drugs and xenobiotics.  相似文献   

18.
Abstract

Carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β-, γ-, δ- and ζ-CAs are ubiquitous metalloenzymes present in prokaryotes and eukaryotes. CAs started to be investigated in detail only recently in pathogenic bacteria, in the search for antibiotics with a novel mechanism of action, since it has been demonstrated that in many such organisms they are essential for the life cycle of the organism. CA inhibition leads to growth impairment or growth defects in several pathogenic bacteria. The microbiota of the human oral mucosa consists of a myriad of bacterial species, Porphyromonas gingivalis being one of them and the major pathogen responsible for the development of chronic periodontitis. The genome of P. gingivalis encodes for a β- and a γ-CAs. Recently, our group purified the recombinant γ-CA (named PgiCA) which was shown to possess a significant catalytic activity for the reaction that converts CO2 to bicarbonate and protons, with a kcat of 4.1?×?105?s?1 and a kcat/Km of 5.4?×?107?M?1?×?s?1. We have also investigated its inhibition profile with a range of inorganic anions such as thiocyanate, cyanide, azide, hydrogen sulfide, sulfamate and trithiocarbonate. Here, we describe the cloning, purification and kinetic parameters of the other class of CA identified in the genome of P. gingivalis, the β-CA, named PgiCAb. This enzyme has a good catalytic activity, with a kcat of 2.8?×?105?s?1 and a kcat/Km of 1.5?×?107?M?1?×?s?1. PgiCAb was also inhibited by the clinically used sulfonamide acetazolamide, with an inhibition constant of 214?nM. The role of CAs as possible virulence factors of P. gingivalis is poorly understood at the moment but their good catalytic activity and the fact that they might be inhibited by a large number of compounds, which may pave the way for finding inhibitors with antibacterial activity that may elucidate these phenomena and lead to novel antibiotics.  相似文献   

19.
Two esteroproteolytic enzymes (A and D) have been isolated from the mouse submaxillary gland and shown to be pure by ultracentrifugation, immunoelectrophoresis, acrylamide-gel electrophoresis, and amino acid analyses. The enzymes have molecular weights of approximately 30,000 and are structurally and antigenically related. Narrow pH optima between 7.5 and 8.0 are exhibited by both enzymes. The “pK1's” are between 6.0 and 6.5 and the “pK2's” are near 9.0. A marked preference for arginine-containing esters is shown by both enzymes. The maximum specific activity of enzyme A on p-tosylarginine methyl ester (TAME) at pH 8 was 2500–3000 μm min?1 mg?1 and for enzyme D, 400–600 μm min?1 mg?1. With TAME as substrate, the Km for enzyme A was 8 × 10?4m at 25 °C and 6 × 10?4m at 37 °C. For D, Km was 3 × 10?4 at 25 °C and 2 × 10?4m at 37 °C.An apparent activation of enzyme D by tosylarginine (TA), a product of TAME hydrolysis, and all α-amino acids examined was due to removal of an inhibitor by chelation. This effect could be duplicated by 8-hydroxyquinoline and diethyldithiocarbamate but not by EDTA. Enzyme A was not affected by these substances to any remarkable extent. Several divalent ions proved to be potent inhibitors of enzyme D. Both enzymes are inactivated by the active site reagents diisopropyl phosphofluoridate and tosyllysine chloromethylketone but much less rapidly than is trypsin. Nitrophenyl-4-guanidionobenzoate reacts with a burst of nitrophenol liberation but with a rapid continuing hydrolysis. One active site per molecule is indicated. Enzyme D is inactivated by urea, reversibly at 10 m and with maximal permanent losses at 6 m. Autolysis of the unfolded form by the native enzyme when they coexist at intermediate urea concentrations appears to occur.Identity of enzyme D and the epithelial growth factor binding protein is demonstrated.  相似文献   

20.
Steady-state and pre-steady-state kinetics for the hydrolysis of p-nitrophenyl esters of N-α-carbobenzoxy(-l-)amino acids catalyzed by leucine-proteinase were determined between pH 5 and 10 (I = 0.1 molar) at 23 ± 0.5°C. For the substrates considered: (a) the acylation step is rate-limiting in catalysis; (b) the pH profiles of kcat and kcat/Km reflect the ionization of two groups with pKa values ranging between 6.5 and 6.9, and 8.1 and 8.3 (probably, the histidine residue involved in the catalytic triad and the N-terminus, respectively); and (c) values of Km are pH independent. Among the substrates examined, N-α-carbobenzoxy-l-leucine-p-nitrophenyl ester shows the most favorable catalytic parameters and allows to determine an enzyme concentration as low as 5 × 10−10 molar at the optimum pH value (approximately 7.5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号