首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.

Background  

Standard graphs, where each edge links two nodes, have been extensively used to represent the connectivity of metabolic networks. It is based on this representation that properties of metabolic networks, such as hierarchical and small-world structures, have been elucidated and null models have been proposed to derive biological organization hypotheses. However, these graphs provide a simplistic model of a metabolic network's connectivity map, since metabolic reactions often involve more than two reactants. In other words, this map is better represented as a hypergraph. Consequently, a question that naturally arises in this context is whether these properties truly reflect biological organization or are merely an artifact of the representation.  相似文献   

4.
Genome sequencing has revealed that signal transduction in bacteria makes use of a limited number of different devices, such as two-component systems, LuxI-LuxR quorum-sensing systems, phosphodiesterases, Ser-Thr (serine-threonine) kinases, OmpR-type regulators, and sigma factor-anti-sigma factor pathways. These systems use modular proteins with a large variety of input and output domains, yet strikingly conserved transmission domains. This conservation might lead to redundancy of output function, for example, via crosstalk (i.e. phosphoryl transfer from a non-cognate sensory kinase). The number of similar devices in a single cell, particularly of the two-component type, might amount to several dozen, and most of these operate in parallel. This could bestow bacteria with cellular intelligence if the network of two-component systems in a single cell fulfils the requirements of a neural network. Testing these ideas poses a great challenge for prokaryotic systems biology.  相似文献   

5.
6.
7.
Macroalgae harbor microbial communities whose bacterial biodiversity remains largely uncharacterized. The goals of this study were 1) to examine the composition of the bacterial community associated with Porphyra umbilicalis Kützing from Schoodic Point, ME, 2) determine whether there are seasonal trends in species diversity but a core group of bacteria that are always present, and 3) to determine how the microbial community associated with a laboratory strain (P.um.1) established in the presence of antibiotics has changed. P. umbilicalis blades (n = 5, fall 2010; n = 5, winter 2011; n = 2, clonal P.um.1) were analyzed by pyrosequencing over two variable regions of the 16 S rDNA (V5–V6 and V8; 147,880 total reads). The bacterial taxa present were classified at an 80% confidence threshold into eight phyla (Bacteroidetes, Proteobacteria, Planctomycetes, Chloroflexi, Actinobacteria, Deinococcus-Thermus, Firmicutes, and the candidate division TM7). The Bacteroidetes comprised the majority of bacterial sequences on both field and lab blades, but the Proteobacteria (Alphaproteobacteria, Gammaproteobacteria) were also abundant. Sphingobacteria (Bacteroidetes) and Flavobacteria (Bacteroidetes) had inverse abundances on natural versus P.um.1 blades. Bacterial communities were richer and more diverse on blades sampled in fall compared to winter. Significant differences were observed between microbial communities among all three groups of blades examined. Only two OTUs were found on all 12 blades, and only one of these, belonging to the Saprospiraceae (Bacteroidetes), was abundant. Lewinella (as 66 OTUs) was found on all field blades and was the most abundant genus. Bacteria from the Bacteroidetes, Proteobacteria and Planctomycetes that are known to digest the galactan sulfates of red algal cell walls were well-represented. Some of these taxa likely provide essential morphogenetic and beneficial nutritive factors to P. umbilicalis and may have had unexpected effects upon evolution of macroalgal form as well as function.  相似文献   

8.
9.
10.
Metabarcoding data generated using next-generation sequencing (NGS) technologies are overwhelmed with rare taxa and skewed in Operational Taxonomic Unit (OTU) frequencies comprised of few dominant taxa. Low frequency OTUs comprise a rare biosphere of singleton and doubleton OTUs, which may include many artifacts. We present an in-depth analysis of global singletons across sixteen NGS libraries representing different ribosomal RNA gene regions, NGS technologies and chemistries. Our data indicate that many singletons (average of 38 % across gene regions) are likely artifacts or potential artifacts, but a large fraction can be assigned to lower taxonomic levels with very high bootstrap support (∼32 % of sequences to genus with ≥90 % bootstrap cutoff). Further, many singletons clustered into rare OTUs from other datasets highlighting their overlap across datasets or the poor performance of clustering algorithms. These data emphasize a need for caution when discarding rare sequence data en masse: such practices may result in throwing the baby out with the bathwater, and underestimating the biodiversity. Yet, the rare sequences are unlikely to greatly affect ecological metrics. As a result, it may be prudent to err on the side of caution and omit rare OTUs prior to downstream analyses.  相似文献   

11.
To understand the molecular mechanism of light-driven proton pumps, the structures of the photointermediates of bacteriorhodopsin have been intensively investigated. Low-resolution diffraction techniques have demonstrated substantial conformational changes at the helix level in the M and N intermediates, between which there are noticeable differences. The intermediate structures at atomic resolution have also been solved by x-ray crystallography. Although the crystal structures have demonstrated local structural changes, such as hydrogen bond network rearrangements including water molecules, the large conformational changes at the helix level are not necessarily observed. Furthermore, the two reported crystal structures of an intermediate accumulated using a common method were distinct. To reconcile these apparent discrepancies, low-resolution projection maps were calculated from the crystal structures and compared to the low-resolution intermediate structures obtained using native membranes. The crystal structures can be categorized into three groups, which qualitatively correspond to the low-resolution structures of the M1-type, M2-type, and N-type determined in the native membrane. Based on these results, we conclude that at least three types of intermediate structures play a role during the photocycle.  相似文献   

12.
13.
The fact that bacteria have different shapes is not surprising; after all, we teach the concept early and often and use it in identification and classification. However, why bacteria should have a particular shape is a question that receives much less attention. The answer is that morphology is just another way microorganisms cope with their environment, another tool for gaining a competitive advantage. Recent work has established that bacterial morphology has an evolutionary history and has highlighted the survival value of different shapes for accessing nutrients, moving from one place to another, and escaping predators. Shape may be so important in some of these endeavors that an organism may change its morphology to fit the circumstances. In short, if a bacterium needs to eat, divide or survive, or if it needs to attach, move or differentiate, then it can benefit from adopting an appropriate shape.  相似文献   

14.
Kaiser D 《Current biology : CB》2000,10(21):R777-R780
Forceful retraction of a bacterial pilus has been directly observed for the first time. As retraction clarifies the basic mechanochemistry of single cell twitching and gliding movements, so cell-to-cell signalling by contact clarifies the coordination of multicellular gliding movements.  相似文献   

15.
A functional energy metabolism is one of the most important requirements for survival of all kinds of organisms including bacteria. Therefore, many bacteria actively seek conditions of optimal metabolic activity, a behaviour which can be termed “energy taxis”. Motility, combined with the sensory perception of the internal energetic conditions, is prerequisite for tactic responses to different energy levels and metabolic yields. Diverse mechanisms of energy sensing and tactic response have evolved among various bacteria. Many of the known energy taxis sensors group among the methyl-accepting chemotaxis protein (MCP)-like sensors. This review summarizes recent advances in the field of energy taxis and explores the current concept that energy taxis is an important part of the bacterial behavioural repertoire in order to navigate towards more favourable metabolic niches and to survive in a specific habitat.  相似文献   

16.
17.
Evidence for cell surface protein kinases as possible regulatory factors of cell interaction in Dictyostelium discoideum was examined by incubating intact cells with gamma 32P-ATP in the presence and absence of histone. No significant incorporation of 32P was detected in the absence of histone. In its presence strong phosphorylation not only of the histone but also of endogenous proteins was obtained. This was due to the fact that histone made the cell membranes permeable for substrates and proteinkinases. Histone also preserved protein kinase activities which were otherwise lost during homogenization. The total protein kinase activity in histone treated cells was 5 fold higher than in sonicated cells.  相似文献   

18.
Specific associations of bacteria with phytoplankton have recently been reported in the literature. In our study, we analyzed bacterial communities of microalgal cultures related to algal growth phases. Seven freshly isolated key diatom and dinoflagellate species from Helgoland Roads, North Sea, were investigated. The community composition of associated bacteria as well as the cell numbers, the photosynthetic efficiency of the algae, and the depletion of inorganic nutrients in the medium were recorded over a period of 8 weeks in batch cultures. Diversity and succession of bacterial communities was analyzed by ribosomal intergenic spacer analysis. Phylogenetic analysis of bacterial populations was performed by denaturing gradient gel electrophoresis of 16S rRNA genes followed by DNA sequence analysis. Members of Alphaproteobacteria and Gammaproteobacteria and the Flavobacteria–Sphingobacteria group within the Bacteroidetes phylum predominated in the cultures. Differences in free-living and attached bacterial populations were observed between the phylogenetic groups. Shifts in the bacterial communities could not be correlated to changes of nutrient levels or algal growth phases. Regarding our results, it should not be generalized that the compositions of the bacterial communities are strictly species specific for microalgae. The importance of factors like the composition of exudates is apparent.  相似文献   

19.
E Gerhardt 《Acta anatomica》1991,141(2):132-138
To avoid artifacts, native nerve fibers were investigated by phase contrast light microscopy. It was shown that Ranvier's nodes cannot be seen. At the sites at which they can be produced by thermal and chemical effects, a tight joint of the tube ends of the 'internodes' inverted to the inside are to be found. Some structures of Ranvier's nodes do not exist in intact living nerves. This fact can also be proved by electron micrography.  相似文献   

20.
Is It Real?     
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号