共查询到20条相似文献,搜索用时 0 毫秒
1.
Lih‐Chiann Wang Chi‐Tsong Chen Hsiao‐Yuan Lee Shou‐Hsien Li Jihn‐Tsair Lir Shin‐Chien Chin Chang‐En Pu Ching‐Ho Wang 《Zoo biology》2007,26(5):425-431
Identifying the sex of a bird is important to ensure successful breeding strategies and effective conservation programs. Sex may be identified from the intron size of the CHD1 gene located on the avian sex chromosomes Z and W. However, because of the great nucleotide diversity across different avian species, no given intron is in widespread use without ambiguous results. Complicated modifications of the reaction condition are required to suit different species. Two CHD1 introns were used with a unified reaction condition in this study to simplify the procedure. Consequently, genders of 73 avian species covering 19 families were successfully identified based on this two‐intron approach. This means the ability to sex a wider range of avian species using a simplified procedure, greatly assisting in population management at zoos. Zoo Biol 26:425–431, 2007. © 2007 Wiley‐Liss, Inc. 相似文献
2.
Many bird species are sexually monomorphic and cannot be sexed based on phenotypic traits. Rapid sex determination is often a necessary component of avian studies focusing on behavior, ecology, evolution, and conservation. While PCR‐based methods are the most common technique for molecularly sexing birds in the laboratory, a simpler, faster, and cheaper method has emerged, which can be used in the laboratory, but importantly also in the field. Herein, we used loop‐mediated isothermal amplification (LAMP) for rapid sex determination of blood samples from juvenile European blackcaps, Sylvia atricapilla, sampled in the wild. We designed LAMP primers unique to S. atricapilla based on the sex chromosome‐specific gene, chromo‐helicase‐DNA‐binding protein (CHD), optimized the primers for laboratory and field application, and then used them to test a subset of wild‐caught juvenile blackcaps of unknown gender at the time of capture. Sex determination results were fast and accurate. The advantages of this technique are that it allows researchers to identify the sex of individual birds within hours of sampling and eliminates the need for direct access to a laboratory if implemented at a remote field site. This work adds to the increasing list of available LAMP primers for different bird species and is a new addition within the Passeriformes order. 相似文献
3.
Until recently, analyses of gender-dependent differences in viability selection and the ontogeny of sexual size dimorphism have been plagued by difficulties in determining the sex of nestling birds on the basis of morphology. Recently, this problem was overcome using molecular sex identification to report for the first time body-size-mediated antagonistic selection on the viability of male and female collared flycatchers. We used molecular sex identification to analyse natural selection on fledgling viability, sexual size dimorphism and effects of parasites in relation to gender in a Mediterranean population of the related pied flycatcher Ficedula hypoleuca. There was directional positive selection on fledgling weight but no selection on tarsus length. Fledgling weight was the most important determinant of fledgling survival, with heavier fledglings having increased viability. Although selective trends were of the same sign for both sexes, only among female fledglings were selection differentials and gradients statistically significant. Therefore, similar trends in selection were revealed in analyses of a data set where sex was ignored and in separate analyses using same-sex sibship trait means. Mite nest ectoparasites negatively affected fledgling weight, and the effects were stronger in female than male fledglings. There was no effect of parasitism on the tarsus length in males, as previously reported in retrospective analyses performed without knowledge of sex until recruitment. Overall, selection on fledgling viability on the basis of morphological traits and hatching date was not confounded by an individual's gender. 相似文献
4.
PCR‐based methods are the most common technique for sex determination of birds. Although these methods are fast, easy and accurate, they still require special facilities that preclude their application outdoors. Consequently, there is a time lag between sampling and obtaining results that impedes researchers to take decisions in situ and in real time considering individuals’ sex. We present an outdoor technique for sex determination of birds based on the amplification of the duplicated sex‐chromosome‐specific gene Chromo‐Helicase‐DNA binding protein using a loop‐mediated isothermal amplification (LAMP). We tested our method on Griffon Vulture (Gyps fulvus), Egyptian Vulture (Neophron percnopterus) and Black Kite (Milvus migrans) (family Accipitridae). We introduce the first fieldwork procedure for sex determination of animals in the wild, successfully applied to raptor species of three different subfamilies using the same specific LAMP primers. This molecular technique can be deployed directly in sampling areas because it only needs a voltage inverter to adapt a thermo‐block to a car lighter and results can be obtained by the unaided eye based on colour change within the reaction tubes. Primers and reagents are prepared in advance to facilitate their storage at room temperature. We provide detailed guidelines how to implement this procedure, which is simpler (no electrophoresis required), cheaper and faster (results in c. 90 min) than PCR‐based laboratory methods. Our successful cross‐species application across three different raptor subfamilies posits our set of markers as a promising tool for molecular sexing of other raptor families and our field protocol extensible to all bird species. 相似文献
5.
Molecular techniques for identifying sex of birds utilize length differences between CHD-Z and CHD-W introns, but in some cases these methods can lead to sexing errors. Here we show that an additional W-specific primer can be used in conjunction with a pre-existing sexing primer pair to dramatically improve the reliability of molecular sexing methods. We illustrate the approach with American coots (Fulica americana), a species with CHD-Z polymorphism that could not be accurately sexed using traditional methods. We developed a reverse primer GWR2 designed to sit within the intron of the W chromosome and amplify a distinctively small DNA fragment that serves as a W-specific marker. Analysis of known-sex individuals indicates that this W-specific primer provides an efficient and reliable protocol to identify the sex of F. americana. The development of such sex-specific primers will likely increase the reliability of molecular sexing methods in other birds as well. Comparisons between CHD-Z alleles of coots and common moorhens (Gallinula chloropus) revealed that CHD-Z polymorphism evolved separately in these two closely related species. We discuss the implications of repeated evolution of CHD-Z polymorphisms among birds. 相似文献
6.
Sequence information from 28 CHD1 gene fragments reveals that a primary source of variability in CHD1‐W genes is a variable intron microsatellite; a single‐codon deletion was found in the 3′ exon in one species. Sequence variation of CHD1‐Z genes was detected in males that altered polymerase chain reaction (PCR) fragment length. Three sets of CHD1‐based primers were evaluated for sex determination in 12 endemic and 8 alien Hawaiian species, including one of the last po’o‐uli. Combined, these primers provide a reliable means of sex determination in most species (including the po’o‐uli), and have produced a valuable reference database for future expanded population‐level studies. 相似文献
7.
Ayaka Yano Barbara Nicol Elodie Jouanno Edwige Quillet Alexis Fostier Ren Guyomard Yann Guiguen 《Evolutionary Applications》2013,6(3):486-496
All salmonid species investigated to date have been characterized with a male heterogametic sex‐determination system. However, as these species do not share any Y‐chromosome conserved synteny, there remains a debate on whether they share a common master sex‐determining gene. In this study, we investigated the extent of conservation and evolution of the rainbow trout (Oncorhynchus mykiss) master sex‐determining gene, sdY (sexually dimorphic on the Y‐chromosome), in 15 different species of salmonids. We found that the sdY sequence is highly conserved in all salmonids and that sdY is a male‐specific Y‐chromosome gene in the majority of these species. These findings demonstrate that most salmonids share a conserved sex‐determining locus and also strongly suggest that sdY may be this conserved master sex‐determining gene. However, in two whitefish species (subfamily Coregoninae), sdY was found both in males and females, suggesting that alternative sex‐determination systems may have also evolved in this family. Based on the wide conservation of sdY as a male‐specific Y‐chromosome gene, efficient and easy molecular sexing techniques can now be developed that will be of great interest for studying these economically and environmentally important species. 相似文献
8.
J. Corso N. I. Mundy N. J. R. Fagundes T. R. O. de Freitas 《Journal of evolutionary biology》2016,29(12):2530-2538
In the last decades, researchers have been able to determine the molecular basis of some phenotypes, to test for evidence of natural selection upon them, and to demonstrate that the same genes or genetic pathways can be associated with convergent traits. Colour traits are often subject to natural selection because even small changes in these traits can have a large effect on fitness via camouflage, sexual selection or other mechanisms. The melanocortin‐1 receptor locus (MC1R) is frequently associated with intraspecific coat colour variation in vertebrates, but it has been far harder to demonstrate that this locus is involved in adaptive interspecific colour differences. Here, we investigate the contribution of the MC1R gene to the colour diversity found in toucans (Ramphastidae). We found divergent selection on MC1R in the clade represented by the genus Ramphastos and that this coincided with the evolution of darker plumage in members of this genus. Using phylogenetically corrected correlations, we show significant and specific relationships between the rate of nonsynonymous change in MC1R (dN) and plumage darkness across Ramphastidae, and also between the rate of functionally significant amino acid changes in MC1R and plumage darkness. Furthermore, three of the seven amino acid changes in MC1R that occurred in the ancestral Ramphastos branch are associated with melanism in other birds. Taken together, our results suggest that the dark colour of Ramphastos toucans was related to nonsynonymous substitutions in MC1R that may have been subject to positive selection or to a relaxation of selective pressure. These results also demonstrate a quantitative relationship between gene and phenotype evolution, representing an example of how MC1R molecular evolution may affect macroevolution of plumage phenotypes. 相似文献
9.
Štěpánka Hrdá Miluše Hroudová Čestmír Vlček Vladimír Hampl 《The Journal of eukaryotic microbiology》2017,64(3):360-369
Prasinophytes are a paraphyletic assemblage of nine heterogeneous lineages in the Chlorophyta clade of Archaeplastida. Until now, seven complete mitochondrial genomes have been sequenced from four prasinophyte lineages. Here, we report the mitochondrial genome of Pyramimonas parkeae, the first representative of the prasinophyte clade I. The circular‐mapping molecule is 43,294 bp long, AT rich (68.8%), very compact and it comprises two 6,671 bp long inverted repeat regions. The gene content is slightly smaller than the gene‐richest prasinophyte mitochondrial genomes. The single identified intron is located in the cytochrome c oxidase subunit 1 gene (cox1). Interestingly, two exons of cox1 are encoded on the same strand of DNA in the reverse order and the mature mRNA is formed by trans‐splicing. The phylogenetic analysis using the data set of 6,037 positions assembled from 34 mtDNA‐encoded proteins of 48 green algae and plants is not in compliance with the branching order of prasinophyte clades revealed on the basis of 18S rRNA genes and cpDNA‐encoded proteins. However, the phylogenetic analyses based on all three genomic elements support the sister position of prasinophyte clades Pyramimonadales and Mamiellales. 相似文献
10.
Hichem Ben Slimen Asma Awadi Zelalem Gebremariam Tolesa Felix Knauer Paulo Célio Alves Mohamed Makni Franz Suchentrunk 《Journal of Zoological Systematics and Evolutionary Research》2018,56(3):428-443
Amino acid changes in mitochondrial (mt) oxidative phosphorylation (OXPHOS) genes have been suggested as a key adaptation to environmental variation. Here, we analyzed 416 sequences of ATPase synthase 6 (MT‐ATP6) and NADH dehydrogenase 2 (MT‐ND2) in 22 different hare (Lepus) species from across a wide range of habitats and climates. We used site‐ and branch‐based methods to test for positive selection on specific codons and lineages. We found four codons in MT‐ATP6 and five in MT‐ND2 under positive selection, affecting several species lineages. We investigated the association of protein variants at each locus with climate zone, using multinomial generalized linear models (glm), including species, regions, historical introgression events, and the co‐occurring protein variant at the other locus as additional explanatory variables. A significant climate effect as based on the “Köppen climate classification” was observed for MT‐ND2 protein variants as translated from our nucleotide sequences. Moreover, MT‐ND2 protein variants were significantly affected by the co‐occurring MT‐ATP6 protein variant in the same mtDNA molecule. Contrary to the expectation for non‐recombining mitochondrial DNA molecules, the presence of an evolutionarily relatively ancestral protein variant at one locus was associated with a relatively derived protein at the other locus in the same mitochondrial molecule, respectively. The relative evolutionary status of a protein variant was evaluated according to its positions relative to the respective out‐group protein variant in a network analysis of nucleotide sequences. All our results suggest a complex effect of various climatic parameters acting on multiple mtOXPHOS genes in a co‐adaptive way, favoring combinations of ancestral and derived variants. 相似文献
11.
Tobias Bidon Christiane Frosch Hans G. Eiken Verena E. Kutschera Snorre B. Hagen Siv G. Aarnes Steven R. Fain Axel Janke Frank Hailer 《Molecular ecology resources》2013,13(3):362-368
We report a new approach for molecular sex identification of extant Ursinae and Tremarctinae bears. Two Y‐specific fragments (SMCY and 318.2) and one X‐specific fragment (ZFX) are amplified in a multiplex PCR, yielding a double test for male‐specific amplification and an internal positive control. The primers were designed and tested to be bear‐specific, thereby minimizing the risk of cross‐amplification in other species including humans. The high sensitivity and small amplicon sizes (100, 124, 160 base pairs) facilitate analysis of non‐invasively obtained DNA material. DNA from tissue and blood as well as from 30 non‐invasively collected hair and faeces yielded clear and easily interpretable results. The fragments were detected both by standard gel electrophoresis and automated capillary electrophoresis. 相似文献
12.
Liselotte M. Takken Beijersbergen 《Acta zoologica》2017,98(4):340-361
The results of a detailed morphological and pathological study on reindeer bones (Rangifer tarandus) from four medieval hunting stations on Hardangervidda are presented. As intensive marrow collecting left almost no bones intact, traditional sexing methods could only sparsely be applied. Alternative methods had to be explored to successfully assign the fragments to a sex. Employing linear discriminant analysis (LDA) on early‐ and non‐fusing skeletal elements, I have shown that (incomplete) calcanei, metapodia and phalanges I and II can be used successfully to assign a specimen to a sex and should no longer be excluded from osteometric analyses. Differences in the demographic compositions of the taphocoenoses lead to the assumption that hunters in the 11th century AD targeted large reindeer bucks, while at the 13th‐century sites, the complete biocoenose is represented, albeit in a different ratio. There seems to have been a shift in hunting technique: from selective hunting to mass hunting. Size wise, the reindeer from Hardangervidda were smaller than reindeer from contemporary assemblages from the Dovre area (central Norway), a population that is genetically different. Few pathologically affected bones were encountered in the material, but some cases of infections, bone lesions and a progressed osteosarcoma are described. 相似文献
13.
Mit mutations that disrupt function of the mitochondrial electron transport chain can, inexplicably, prolong Caenorhabditis elegans lifespan. In this study we use a metabolomics approach to identify an ensemble of mitochondrial‐derived α‐ketoacids and α‐hydroxyacids that are produced by long‐lived Mit mutants but not by other long‐lived mutants or by short‐lived mitochondrial mutants. We show that accumulation of these compounds is dependent on concerted inhibition of three α‐ketoacid dehydrogenases that share dihydrolipoamide dehydrogenase (DLD) as a common subunit, a protein previously linked in humans with increased risk of Alzheimer's disease. When the expression of DLD in wild‐type animals was reduced using RNA interference we observed an unprecedented effect on lifespan – as RNAi dosage was increased lifespan was significantly shortened, but, at higher doses, it was significantly lengthened, suggesting that DLD plays a unique role in modulating length of life. Our findings provide novel insight into the origin of the Mit phenotype. 相似文献
14.
15.
Tong Geon Lee Indrajit Kumar Brian W. Diers Matthew E. Hudson 《Molecular ecology》2015,24(8):1774-1791
The soybean cyst nematode (SCN) resistance locus Rhg1 is a tandem repeat of a 31.2 kb unit of the soybean genome. Each 31.2‐kb unit contains four genes. One allele of Rhg1, Rhg1‐b, is responsible for protecting most US soybean production from SCN. Whole‐genome sequencing was performed, and PCR assays were developed to investigate allelic variation in sequence and copy number of the Rhg1 locus across a population of soybean germplasm accessions. Four distinct sequences of the 31.2‐kb repeat unit were identified, and some Rhg1 alleles carry up to three different types of repeat unit. The total number of copies of the repeat varies from 1 to 10 per haploid genome. Both copy number and sequence of the repeat correlate with the resistance phenotype, and the Rhg1 locus shows strong signatures of selection. Significant linkage disequilibrium in the genome outside the boundaries of the repeat allowed the Rhg1 genotype to be inferred using high‐density single nucleotide polymorphism genotyping of 15 996 accessions. Over 860 germplasm accessions were found likely to possess Rhg1 alleles. The regions surrounding the repeat show indications of non‐neutral evolution and high genetic variability in populations from different geographic locations, but without evidence of fixation of the resistant genotype. A compelling explanation of these results is that balancing selection is in operation at Rhg1. 相似文献
16.
Sulaiman S. Ibrahim Miranda Ndula Jacob M. Riveron Helen Irving Charles S. Wondji 《Molecular ecology》2016,25(14):3436-3452
17.
Tong Geon Lee Brian W. Diers Matthew E. Hudson 《The Plant journal : for cell and molecular biology》2016,88(1):143-153
Copy number variation (CNV) is implicated in important traits in multiple crop plants, but can be challenging to genotype using conventional methods. The Rhg1 locus of soybean, which confers resistance to soybean cyst nematode (SCN), is a CNV of multiple 31.2‐kb genomic units each containing four genes. Reliable, high‐throughput methods to quantify Rhg1 and other CNVs for selective breeding were developed. The CNV genotyping assay described here uses a homeologous gene copy within the paleopolyploid soybean genome to provide the internal control for a single‐tube TaqMan copy number assay. Using this assay, CNV in breeding populations can be tracked with high precision. We also show that extensive CNV exists within Fayette, a released, inbred SCN‐resistant soybean cultivar with a high copy number at Rhg1 derived from a single donor parent. Copy number at Rhg1 is therefore unstable within a released variety over a relatively small number of generations. Using this assay to select for individuals with altered copy number, plants were obtained with both increased copy number and increased SCN resistance relative to control plants. Thus, CNV genotyping technologies can be used as a new type of marker‐assisted selection to select for desirable traits in breeding populations, and to control for undesirable variation within cultivars. 相似文献
18.
Hong Chang Lim Suh Nih Tan Sing Tung Teng Nina Lundholm Emma Orive Helena David Sonia Quijano‐Scheggia Sandric Chee Yew Leong Matthias Wolf Stephen S. Bates Po Teen Lim Chui Pin Leaw 《Journal of phycology》2018,54(2):234-248
Analyses of the mitochondrial cox1, the nuclear‐encoded large subunit (LSU), and the internal transcribed spacer 2 (ITS2) RNA coding region of Pseudo‐nitzschia revealed that the P. pseudodelicatissima complex can be phylogenetically grouped into three distinct clades (Groups I–III), while the P. delicatissima complex forms another distinct clade (Group IV) in both the LSU and ITS2 phylogenetic trees. It was elucidated that comprehensive taxon sampling (sampling of sequences), selection of appropriate target genes and outgroup, and alignment strategies influenced the phylogenetic accuracy. Based on the genetic divergence, ITS2 resulted in the most resolved trees, followed by cox1 and LSU. The morphological characters available for Pseudo‐nitzschia, although limited in number, were overall in agreement with the phylogenies when mapped onto the ITS2 tree. Information on the presence/absence of a central nodule, number of rows of poroids in each stria, and of sectors dividing the poroids mapped onto the ITS2 tree revealed the evolution of the recently diverged species. The morphologically based species complexes showed evolutionary relevance in agreement with molecular phylogeny inferred from ITS2 sequence–structure data. The data set of the hypervariable region of ITS2 improved the phylogenetic inference compared to the cox1 and LSU data sets. The taxonomic status of P. cuspidata and P. pseudodelicatissima requires further elucidation. 相似文献
19.
Esperanza S. Ferrer Vicente García‐Navas Juan José Sanz Joaquín Ortego 《Ecology and evolution》2016,6(24):8857-8869
The extent of inbreeding depression and the magnitude of heterozygosity–fitness correlations (HFC) have been suggested to depend on the environmental context in which they are assayed, but little evidence is available for wild populations. We combine extensive molecular and capture–mark–recapture data from a blue tit (Cyanistes caeruleus) population to (1) analyze the relationship between heterozygosity and probability of interannual adult local recruitment and (2) test whether environmental stress imposed by physiologically suboptimal temperatures and rainfall influence the magnitude of HFC. To address these questions, we used two different arrays of microsatellite markers: 14 loci classified as neutral and 12 loci classified as putatively functional. We found significant relationships between heterozygosity and probability of interannual local recruitment that were most likely explained by variation in genomewide heterozygosity. The strength of the association between heterozygosity and probability of interannual local recruitment was positively associated with annual accumulated precipitation. Annual mean heterozygosity increased over time, which may have resulted from an overall positive selection on heterozygosity over the course of the study period. Finally, neutral and putatively functional loci showed similar trends, but the former had stronger effect sizes and seemed to better reflect genomewide heterozygosity. Overall, our results show that HFC can be context dependent, emphasizing the need to consider the role of environmental heterogeneity as a key factor when exploring the consequences of individual genetic diversity on fitness in natural populations. 相似文献
20.
Bettina Thalinger Johannes Oehm Christiane Zeisler Julia Vorhauser Michael Traugott 《Ecology and evolution》2018,8(17):8985-8998
Piscivorous birds frequently display sex‐specific differences in their hunting and feeding behavior, which lead to diverging impacts on prey populations. Cormorants (Phalacrocoracidae), for example, were previously studied to examine dietary differences between the sexes and males were found to consume larger fish in coastal areas during autumn and winter. However, information on prey partitioning during breeding and generally on sex‐specific foraging in inland waters is missing. Here, we assess sex‐specific prey choice of Great Cormorants (Phalacrocorax carbo) during two subsequent breeding seasons in the Central European Alpine foreland, an area characterized by numerous stagnant and flowing waters in close proximity to each other. We developed a unique, noninvasive approach and applied it to regurgitated pellets: molecular cormorant sexing combined with molecular fish identification and fish‐length regression analysis performed on prey hard parts. Altogether, 364 pellets delivered information on both, bird sex, and consumed prey. The sexes differed significantly in their overall prey composition, even though Perca fluviatilis, Rutilus rutilus, and Coregonus spp. represented the main food source for both. Albeit prey composition did not indicate the use of different water bodies by the sexes, male diet was characterized by higher prey diversity within a pellet and the consumption of larger fish. The current findings show that female and male cormorants to some extent target the available prey spectrum at different levels. Finally, the comprehensive and noninvasive approach has great potential for application in studies of other piscivorous bird species. 相似文献