首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Amyotrophic lateral sclerosis (ALS) is a fatal progressive motor neuron disease, for which there are still no diagnostic/prognostic test and therapy. Specific molecular biomarkers are urgently needed to facilitate clinical studies and speed up the development of effective treatments.

Methodology/Principal Findings

We used a two-dimensional difference in gel electrophoresis approach to identify in easily accessible clinical samples, peripheral blood mononuclear cells (PBMC), a panel of protein biomarkers that are closely associated with ALS. Validations and a longitudinal study were performed by immunoassays on a selected number of proteins. The same proteins were also measured in PBMC and spinal cord of a G93A SOD1 transgenic rat model. We identified combinations of protein biomarkers that can distinguish, with high discriminatory power, ALS patients from healthy controls (98%), and from patients with neurological disorders that may resemble ALS (91%), between two levels of disease severity (90%), and a number of translational biomarkers, that link responses between human and animal model. We demonstrated that TDP-43, cyclophilin A and ERp57 associate with disease progression in a longitudinal study. Moreover, the protein profile changes detected in peripheral blood mononuclear cells of ALS patients are suggestive of possible intracellular pathogenic mechanisms such as endoplasmic reticulum stress, nitrative stress, disturbances in redox regulation and RNA processing.

Conclusions/Significance

Our results indicate that PBMC multiprotein biomarkers could contribute to determine amyotrophic lateral sclerosis diagnosis, differential diagnosis, disease severity and progression, and may help to elucidate pathogenic mechanisms.  相似文献   

2.
3.
4.
It has been postulated that a proportion of recurrent miscarriage (RM) might be due to immune causes. The objective was to determine whether cytokine expression in peripheral blood mononuclear cell is altered in patients with a history of RM. We compared the levels of IL-2, IL-4, IL-10, IL-13, TGFbeta1 and IFNgamma in the supernatant of Phytohemagglutinin stimulated mononuclear cells in 21 women with RM at the time of 3rd or higher abortion (group I), 32 women who were at least 3 months past their 3rd or higher abortion (group II) and 32 pregnant women with no history of abortion (group III). Gestational age was matched between groups I and III. Group I had higher level of IL-2 than group III (P=0.001). Group II showed higher level of IL-2 (P=0.001) and IFNgamma (P=0.015) than group III. The production of IL-10 by mononuclear cells of group III was higher than both group I (P=0.002) and group II (P=0.001). There was no difference in the levels of IL-2, IL-10 and IFNgamma between groups I and II. Also, the levels of IL-4, IL-13, and TGFbeta1 were similar among the groups. The data indicate an elevation of Th1 cytokines in women with RM as compared to normal pregnant women, and IL-10 is an important cytokine in the maintenance of pregnancy.  相似文献   

5.
We evaluated the spontaneous IL17, IFNgamma and IL10 production by peripheral blood mononuclear cells from patients affected by clinically isolated syndromes (CIS) suggestive of multiple sclerosis (MS) both in acute phase and in remission, relapsing remitting MS (RRMS) both in relapse and in remission, not-relapsing secondary progressive MS (SPMS) and controls. We observed higher IL17 levels in CIS patients both in acute phase and in remission than in SPMS patients and controls. On the contrary no difference in IL17 production was observed among RRMS patients and CIS, SPMS patients and controls. IFNgamma levels were significantly higher in CIS patients in acute phase than in CIS and RRMS patients in remission, SPMS patients and controls. Moreover, we observed higher IFNgamma spontaneous production in relapsing RRMS patients than in remitting RRMS and SPMS patients and controls. IL10 levels were significantly higher in remitting CIS and in relapsing RRMS patients than in SPMS patients and controls. There was no difference in IFNgamma, IL10 and IL17 levels between SPMS patients and controls. Our data suggest that IL17 might play a crucial role mainly in the early phase of MS, while IFNgamma seems to be involved both in the early phase and in the following relapses of the disease.  相似文献   

6.
Under conditions of extreme heat stress, the process of autophagy has previously been shown to protect human cells, but the exact body temperature at which autophagic activation occurs is largely unknown. Further, the interplay between autophagy, the heat shock response (HSR), inflammation, and apoptosis have yet to be examined together under temperature conditions representative of human internal body temperatures at rest (37 °C) or under severe heat stress conditions (41 °C). Thus, the purpose of this study was to examine threshold changes in autophagy, the HSR, inflammation, and apoptosis to increasing levels of ex vivo heat stress. Whole blood was collected from 20 young (23 ± 4 years; 10 men, 10 women) physically active participants. Peripheral blood mononuclear cells (PBMCs) were isolated immediately (baseline) and after 90-min of whole blood heating in 37, 39, and 41 °C water baths, representative of normal resting (non-heat stress) as well as moderate and severe heat stress conditions in humans, respectively. At 37 °C, increased autophagic activity was demonstrated, with no change in the HSR, and inflammation. Subsequently, responses of autophagy, the HSR, and inflammation increased with a moderate heat stress (39 °C), with further increases in only autophagy and the HSR under a severe heat stress of 41 °C. We observed no increase in apoptosis under any temperature condition. Our findings show that in human PBMCs, the autophagy and HSR systems may act cooperatively to suppress apoptotic signaling following heat stress, which may in part be mediated by an acute inflammatory response.  相似文献   

7.
8.

Background

Most patients with relapsing-remitting multiple sclerosis (RRMS) eventually enter a secondary progressive (SPMS) phase, characterized by increasing neurological disability. The mechanisms underlying transition to SPMS are unknown and effective treatments and biomarkers are lacking. Vascular endothelial growth factor-A (VEGF-A) is an angiogenic factor with neuroprotective effects that has been associated with neurodegenerative diseases. SPMS has a prominent neurodegenerative facet and we investigated a possible role for VEGF-A during transition from RRMS to SPMS.

Methodology/Principal Findings

VEGF-A mRNA expression in peripheral blood mononuclear (PBMC) and cerebrospinal fluid (CSF) cells from RRMS (n = 128), SPMS (n = 55) and controls (n = 116) were analyzed using real time PCR. We demonstrate reduced expression of VEGF-A mRNA in MS CSF cells compared to controls (p<0.001) irrespective of disease course and expression levels are restored by natalizumab treatment(p<0.001). VEGF-A was primarily expressed in monocytes and our CSF findings in part may be explained by effects on relative monocyte proportions. However, VEGF-A mRNA expression was also down regulated in the peripheral compartment of SPMS (p<0.001), despite unchanged monocyte counts, demonstrating a particular phenotype differentiating SPMS from RRMS and controls. A possible association of allelic variability in the VEGF-A gene to risk of MS was also studied by genotyping for six single nucleotide polymorphisms (SNPs) in MS (n = 1114) and controls (n = 1234), which, however, did not demonstrate any significant association between VEGF-A alleles and risk of MS.

Conclusions/Significance

Expression of VEGF-A in CSF cells is reduced in MS patients compared to controls irrespective of disease course. In addition, SPMS patients display reduced VEGF-A mRNA expression in PBMC, which distinguish them from RRMS and controls. This indicates a possible role for VEGF-A in the mechanisms regulating transition to SPMS. Decreased levels of PBMC VEGF-A mRNA expression should be further evaluated as a biomarker for SPMS.  相似文献   

9.
Piperine, an amide isolated from Piper species (Piperaceae), has been reported to exhibit central nervous system depression, anti-pyretic and anti-inflammatory activity. Immunomodulatory and anti-tumor activity of piperine has been demonstrated in mouse carcinomas. However, there is little information available concerning the effect of piperine on humans. We evaluated the immunopharmacological activity of this compound in human immune cells. Human peripheral blood mononuclear cells (PBMCs) were exposed to piperine, and cell proliferation was determined by the MTS assay. Piperine significantly inhibited phytohemagglutinin-stimulated human PBMC proliferation after exposure for 72 h. This compound inhibited PBMC activity, with an IC(50) of 100.73 ± 11.16 μg/mL. Production of interleukin-2 (IL-2) and interferon-γ (IFN-γ) was measured using an ELISA assay and RT-PCR. Piperine inhibited IL-2 and IFN-γ production in the PBMCs. RT-PCR data indicated that IL-2 and IFN-γ mRNA expression in PBMCs is suppressed by piperine. This compound significantly inhibited the production of these two cytokines by activated PBMCs in a dose-dependent manner. In conclusion, piperine appears to have potential as an immunomodulatory agent for immune system suppression.  相似文献   

10.
11.
12.
Peripheral blood mononuclear cells (MNCs) are accessible through blood collection and represent a useful source for investigations on disease mechanisms and treatment response. Aiming to build a reference proteome database, we generated three proteome data sets from MNCs using a combination of SDS‐PAGE and nanoflow LC‐MS. Experiments were performed in triplicates and 514 unique proteins were identified by at least two non‐redundant peptides with 95% confidence for all replicates. Identified proteins are associated with a range of dermatologic, inflammatory and neurological conditions as well as molecular processes, such as free radical scavenging and cellular growth and proliferation. Mapping the MNC proteome provides a valuable resource for studies on disease pathogenesis and the identification of therapeutic targets.  相似文献   

13.
14.
Substance P (SP), a neuropeptide widely distributed in the organism, has been shown to stimulate lymphocyte proliferation and immunoglobulin synthesis. However, the effect of SP on specific lymphokines is unknown. Therefore we investigated the influence of SP on mitogen-induced interferon-gamma (IFN-gamma) production in vitro. Peripheral blood mononuclear cells (PBMC) of healthy donors were isolated by density gradient centrifugation and cultured in supplemented RPMI 1640 medium with phytohemagglutinin (PHA) or pokeweed mitogen (PWM), 0.125 and 0.25 mg/liter each, and varying concentrations of SP (10(-12) to 10(-6) M). After 24 and 48 h, IFN-gamma was measured in the supernatant using radioimmunoassay. Results were expressed as percent change of controls. SP alone had no relevant IFN-gamma inducing properties. It enhanced the IFN-gamma production of PWM-stimulated cells significantly up to 18%. The maximal effect was observed at 10(-8) M. PHA-stimulated cells also increased their IFN-gamma production after addition of SP. However, due to great interindividual variations this effect did not attain statistical significance. Stimulation of IFN-gamma production by SP might be of physiological importance, since the effect was seen at concentrations comparable to those found in the body. Our data lend further support to the immunoregulatory functions of SP.  相似文献   

15.
The possible role for a defective mitochondrial functionality in the pathogenesis of vitiligo was investigated by measuring intracellular levels of reactive oxygen species and of antioxidants, the activity of Krebs cycle enzymes, as well as the effects of inhibitors of the electron transport chain, in peripheral blood mononuclear cells from patients with active or stable disease vs. normal subjects. Plasma glyoxal levels were also determined in the same groups of subjects as an index of systemic oxidative stress. In patients with vitiligo in active phase, we observed an increased intracellular production of reactive oxygen species with a consequent imbalance of the prooxidant/antioxidant equilibrium, whereas plasma did not show apparent alterations in glyoxal levels, ruling out a systemic oxidative stress. In patients with stable disease, the balance between pro-oxidants and anti-oxidants seems to be maintained. Moreover, a marked increase in the expression of mitochondrial malate dehydrogenase activity and a specific sensitivity to electron transport chain complex I inhibitor were observed. Overall, these data provide further evidence for an altered mitochondrial functionality in vitiligo patients.  相似文献   

16.
17.
18.
Summary Levels of chemiluminescence were measured in peripheral blood mononuclear cells (PBMC) from normal subjects and from solid tumor cancer patients. Patients with advanced malignant disease were found to have significantly elevated baseline chemiluminescence activity in their resting PBMC as compared to normal subjects or to cancer patients with, at most, minimum residual disease. Patients with either advanced disease or minimum residual disease, however, were found to exhibit significantly elevated activation of chemiluminescence by treatment of cells with phorbol myristic acetate (PMA). Treatment of surgically resected stage I lung cancer patients with Freund's complete adjuvant alone or emulsified with extracted lung cancer antigens was found to elevate chemiluminescence levels in patient PBMC. Serum from those vaccinated patients was found to elevate chemiluminescence levels of resting PBMC from normal subjects. That serum activity did net correlate with levels of immune complexes measurable in the Clq or Raji cell assay.  相似文献   

19.
Summary.  The effect of taurine (Tau) and taurine chloramine (Tau-Cl) on the production of TNF-α, IL-1β, and IL-6 by peripheral blood mononuclear cells of healthy volunteers was examined. Cells were stimulated with bacterial lipopolysaccharide (LPS) in the presence of either Tau or Tau-Cl. After 24 h culture the cytokine concentrations were measured in both culture supernatants (secreted) and cell lysates (cell-associated) using ELISA. In LPS-stimulated cells Tau-Cl inhibited both the secreted and cell-associated IL-1β and IL-6, while exerted dual effect on TNF-α production: raising it slightly at low and reducing at higher concentration. By contrast, Tau had no significant effect on the cytokine production. These results indicate that Tau-Cl modulates synthesis of pro-inflammatory cytokines, and therefore it may play a role in the initiation and propagation of immune response. Received November 29, 2001 Accepted January 18, 2002 Published online August 30, 2002 Acknowledgments This research was supported by grants from the State Committee for Scientific Research of Poland (No 4 P05B 01018) and the Institute of Rheumatology (No I/14). The Institute of Rheumatology is supported by a core grant from the State Committee for Scientific Research of Poland. Authors' address: Ewa Kontny, Ph.D., Department of Pathophysiology and Immunology, Institute of Rheumatology, Spartanska 1, 02-637 Warsaw, Poland, E-mail: zpatiir@warman.com.pl Abbreviations: Tau, taurine; Tau-Cl, taurine chloramine; LPS, lipopolysaccharide; TNF-α, tumor necrosis factor-α; IL-1β, interleukin 1β; IL-6, interleukin 6; PBMC, peripheral blood mononuclear cells  相似文献   

20.

Introduction

Recent accumulating evidence indicates a crucial involvement of macrophage lineage in the pathogenesis of systemic sclerosis (SSc). To analyze the assembly of the monocyte/macrophage population, we evaluated the expression of CD163 and CD204 and various activated macrophage markers, in the inflammatory cells of the skin and in the peripheral blood mononuclear cells (PBMCs) derived from patients with SSc.

Methods

Skin biopsy specimens from 6 healthy controls and 10 SSc patients (7 limited cutaneous SSc and 3 diffuse cutaneous SSc) were analyzed by immunohistochemistry using monoclonal antibody against CD68 (pan-macrophage marker), CD163 and CD204. Surface and/or intracellular protein expression of CD14 (marker for monocyte lineage), CD163 and CD204 was analysed by flow cytometry in PBMCs from 16 healthy controls and 41 SSc patients (26 limited cutaneous SSc and 15 diffuse cutaneous SSc). Statistical analysis was carried out using Mann-Whitney U test for comparison of means.

Results

In the skin from SSc patients, the number of CD163+ cells or CD204+ cells between the collagen fibers was significantly larger than that in healthy controls. Flow cytometry showed that the population of CD14+ cells was significantly greater in PBMCs from SSc patients than that in healthy controls. Further analysis of CD14+ cells in SSc patients revealed higher expression of CD163 and the presence of two unique peaks in the CD204 histogram. Additionally, we found that the CD163+ cells belong to CD14brightCD204+ population.

Conclusions

This is the first report indicating CD163+ or CD204+ activated macrophages may be one of the potential fibrogenic regulators in the SSc skin. Furthermore, this study suggests a portion of PBMCs in SSc patients abnormally differentiates into CD14brightCD163+CD204+ subset. The subset specific to SSc may play an important role in the pathogenesis of this disease, as the source of CD163+ or CD204+ macrophages in the skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号