首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new assay for tRNA aminoacylation kinetics.   总被引:3,自引:1,他引:2       下载免费PDF全文
An improved quantitative assay for tRNA aminoacylation is presented based on charging of a nicked tRNA followed by separation of an aminoacylated 3'-fragment on an acidic denaturing polyacrylamide gel. Kinetic parameters of tRNA aminoacylation by Escherichia coli AlaRS obtained by the new method are in excellent agreement with those measured by the conventional method. This assay provides several advantages over the traditional methods of measuring tRNA aminoacylation: (1) the fraction of aminoacyl-tRNA is measured directly; (2) data can be obtained at saturating amino acid concentrations; and (3) the assay is significantly more sensitive.  相似文献   

2.
Conservation of a tRNA core for aminoacylation   总被引:3,自引:1,他引:2       下载免费PDF全文
The core region of Escherichia coli tRNA(Cys)is important for aminoacylation of the tRNA. This core contains an unusual G15:G48 base pair, and three adenosine nucleotides A13, A22 and A46 that are likely to form a 46:[13:22] adenosine base triple. We recently observed that the 15:48 base pair and the proposed 46:[13:22] triple are structurally and functionally coupled to contribute to aminoacylation. Inspection of a database of tRNA sequences shows that these elements are only found in one other tRNA, the Haemophilus influenzae tRNA(Cys). Because of the complexity of the core, conservation of sequence does not mean conservation of function. We here tested whether the conserved elements in H. influenzae tRNA(Cys)were also important for aminoacylation of H. influenzae tRNA(Cys). We cloned and purified a recombinant H. influenzae cysteine-tRNA synthe-tase and showed that it depends on 15:48 and 13, 22 and 46 in a relationship analogous to that of E. coli cysteine-tRNA synthetase. The functional conservation of the tRNA core is correlated with sequence conservation between E.coli and H.influenzae cysteine-tRNA synthetases. As the genome of H. influenzae is one of the smallest and may approximate a small autonomous entity in the development of life, the dependence of this genome on G15:G48 and its coupling with the proposed A46:[A13:A22] triple for aminoacylation with cysteine suggests an early role of these motifs in the evolution of decoding genetic information.  相似文献   

3.
The specificity of transfer RNA aminoacylation by cognate aminoacyl-tRNA synthetase is a crucial step for synthesis of functional proteins. It is established that the aminoacylation identity of a single tRNA or of a family of tRNA isoacceptors is linked to the presence of positive signals (determinants) allowing recognition by cognate synthetases and negative signals (antideterminants) leading to rejection by the noncognate ones. The completion of identity sets was generally tested by transplantation of the corresponding nucleotides into one or several host tRNAs which acquire as a consequence the new aminoacylation specificities. Such transplantation experiments were also useful to detect peculiar structural refinements required for optimal expression of a given aminoacylation identity set within a host tRNA. This study explores expression of the defined yeast aspartate identity set into different tRNA scaffolds of a same specificity, namely the four yeast tRNA(Arg) isoacceptors. The goal was to investigate whether expression of the new identity is similar due to the unique specificity of the host tRNAs or whether it is differently expressed due to their peculiar sequences and structural features. In vitro transcribed native tRNA(Arg) isoacceptors and variants bearing the aspartate identity elements were prepared and their aminoacylation properties established. The four wild-type isoacceptors are active in arginylation with catalytic efficiencies in a 20-fold range and are inactive in aspartylation. While transplanted tRNA(1)(Arg) and tRNA(4)(Arg) are converted into highly efficient substrates for yeast aspartyl-tRNA synthetase, transplanted tRNA(2)(Arg) and tRNA(3)(Arg) remain poorly aspartylated. Search for antideterminants in these two tRNAs reveals idiosyncratic features. Conversion of the single base-pair C6-G67 into G6-C67, the pair present in tRNA(Asp), allows full expression of the aspartate identity in the transplanted tRNA(2)(Arg), but not in tRNA(3)(Arg). It is concluded that the different isoacceptor tRNAs protect themselves from misaminoacylation by idiosyncratic pathways of antidetermination.  相似文献   

4.
Fluorescent tRNAs species with formycine in the 3'-terminal position (tRNA-CCF) were derived from Escherichia coli tRNA(Val). Thermus thermophilus tRNA(Aap) and Thermus thermophilus tRNA(Phe). The fluorescence of formycine was used to monitor the conformational changes at the 3'-terminus of tRNA caused by aminoacylation and hydrolysis of aminoacyl residue from aminoacyl-tRNAs. An increase of about 15% in the fluorescence intensity was observed after aminoacylation of the three tRNA-CCF. This change in fluorescence amplitude that is reversed by hydrolysis of the aminoacyl residue, does not depend on the structure of the amino acid or tRNA sequence. A local conformational change at the 3'-terminal formycine probably involving a partial destacking of the base moiety in the ACCF end takes place as a consequence of aminoacylation. A structural change at the 3'-terminus of tRNA induced by attachment and detachment of the acyl residue may be important in controlling the substrate/product relationship in reactions in which tRNA participates during protein biosynthesis.  相似文献   

5.
6.
7.
The accuracy of protein biosynthesis rests on the high fidelity with which aminoacyl-tRNA synthetases discriminate between tRNAs. Correct aminoacylation depends not only on identity elements (nucleotides in certain positions) in tRNA (1), but also on competition between different synthetases for a given tRNA (2). Here we describe in vivo and in vitro experiments which demonstrate how variations in the levels of synthetases and tRNA affect the accuracy of aminoacylation. We show in vivo that concurrent overexpression of Escherichia coli tyrosyl-tRNA synthetase abolishes misacylation of supF tRNA(Tyr) with glutamine in vivo by overproduced glutaminyl-tRNA synthetase. In an in vitro competition assay, we have confirmed that the overproduction mischarging phenomenon observed in vivo is due to competition between the synthetases at the level of aminoacylation. Likewise, we have been able to examine the role competition plays in the identity of a non-suppressor tRNA of ambiguous identity, tRNA(Glu). Finally, with this assay, we show that the identity of a tRNA and the accuracy with which it is recognized depend on the relative affinities of the synthetases for the tRNA. The in vitro competition assay represents a general method of obtaining qualitative information on tRNA identity in a competitive environment (usually only found in vivo) during a defined step in protein biosynthesis, aminoacylation. In addition, we show that the discriminator base (position 73) and the first base of the anticodon are important for recognition by E. coli tyrosyl-tRNA synthetase.  相似文献   

8.
9.
Purpuromycin, an antibiotic produced by Actinoplanes ianthinogenes, had been reported previously to inhibit protein synthesis. In the present report, we demonstrate that the mechanism of action of this antibiotic is quite novel in that it binds with fairly high affinity to all tRNAs, inhibiting their acceptor capacity. Although more than one molecule of purpuromycin is bound to each tRNA molecule, the inhibitory activity of this antibiotic was found to be selective for the tRNA acceptor function; in fact, after the aminoacylation step, purpuromycin was found to affect none of the other tested functions of tRNA (interaction with the ribosomal P- and A-sites and interaction with translation factors). Accordingly, purpuromycin was found to inhibit protein synthesis only when translation depended on the aminoacylation of tRNA and not when the system was supplemented with pre-formed aminoacyl-tRNAs. Because purpuromycin did not interfere with the ATP-PPi exchange reaction of the synthetase or with the initial interaction of the enzyme with its tRNA substrate, the basis for the inhibition of aminoacylation is presumably the formation of a nonproductive synthetase-tRNA complex in the presence of purpuromycin in which the tRNA is unable to be charged with the corresponding amino acid.  相似文献   

10.
Zhang CM  Hou YM 《Biochemistry》2005,44(19):7240-7249
Aminoacyl-tRNA synthetases form complexes with tRNA to catalyze transfer of activated amino acids to the 3' end of tRNA. The tRNA synthetase complexes are roughly divided into the activation and tRNA-binding domains of synthetases, which interact with the acceptor and anticodon ends of tRNAs, respectively. Efficient aminoacylation of tRNA by Escherichia coli cysteinyl-tRNA synthetase (CysRS) requires both domains, although the pathways for the long-range domain-domain communication are not well understood. Previous studies show that dissection of tRNA(Cys) into acceptor and anticodon helices seriously reduces the efficiency of aminoacylation, suggesting that communication requires covalent continuity of the tRNA backbone. Here we tested if communication requires the continuity of the synthetase backbone. Two N-terminal fragments and one C-terminal fragment of E. coli CysRS were generated. While the N-terminal fragments were active in adenylate synthesis, they were severely defective in the catalytic efficiency and specificity of tRNA aminoacylation. Conversely, although the C-terminal fragment was not catalytically active, it was able to bind and discriminate tRNA. However, addition of the C-terminal fragment to an N-terminal fragment in trans did not improve the aminoacylation efficiency of the N-terminal fragment to the level of the full-length enzyme. These results emphasize the importance of covalent continuity of both CysRS and tRNA(Cys) for efficient tRNA aminoacylation, and highlight the energetic costs of constraining the tRNA synthetase complex for domain-domain communication. Importantly, this study also provides new insights into the existence of several natural "split" synthetases that are now identified from genomic sequencing projects.  相似文献   

11.
Reports of nuclear tRNA aminoacylation and its role in tRNA nuclear export (Lund and Dahlberg, 1998; Sarkar et al., 1999; Grosshans et al., 20001) have led to the prediction that there should be nuclear pools of aminoacyl-tRNA synthetases. We report that in budding yeast there are nuclear pools of tyrosyl-tRNA synthetase, Tys1p. By sequence alignments we predicted a Tys1p nuclear localization sequence and showed it to be sufficient for nuclear location of a passenger protein. Mutations of this nuclear localization sequence in endogenous Tys1p reduce nuclear Tys1p pools, indicating that the motif is also important for nucleus location. The mutations do not significantly affect catalytic activity, but they do cause defects in export of tRNAs to the cytosol. Despite export defects, the cells are viable, indicating that nuclear tRNA aminoacylation is not required for all tRNA nuclear export paths. Because the tRNA nuclear exportin, Los1p, is also unessential, we tested whether tRNA aminoacylation and Los1p operate in alternative tRNA nuclear export paths. No genetic interactions between aminoacyl-tRNA synthetases and Los1p were detected, indicating that tRNA nuclear aminoacylation and Los1p operate in the same export pathway or there are more than two pathways for tRNA nuclear export.  相似文献   

12.
M Pak  L Pallanck  L H Schulman 《Biochemistry》1992,31(13):3303-3309
The role of the anticodon and discriminator base in aminoacylation of tRNAs with tryptophan has been explored using a recently developed in vivo assay based on initiation of protein synthesis by mischarged mutants of the Escherichia coli initiator tRNA. Substitution of the methionine anticodon CAU with the tryptophan anticodon CCA caused tRNA(fMet) to be aminoacylated with both methionine and tryptophan in vivo, as determined by analysis of the amino acids inserted by the mutant tRNA at the translational start site of a reporter protein containing a tryptophan initiation codon. Conversion of the discriminator base of tRNA(CCA)fMet from A73 to G73, the base present in tRNA(Trp), eliminated the in vivo methionine acceptor activity of the tRNA and resulted in complete charging with tryptophan. Single base changes in the anticodon of tRNA(CCA)fMet containing G73 from CCA to UCA, GCA, CAA, and CCG (changes underlined) essentially abolished tryptophan insertion, showing that all three anticodon bases specify the tryptophan identity of the tRNA. The important role of G73 in tryptophan identity was confirmed using mutants of an opal suppressor derivative of tRNA(Trp). Substitution of G73 with A73, C73, or U73 resulted in a large loss of the ability of the tRNA to suppress an opal stop codon in a reporter protein. Base pair substitutions at the first three positions of the acceptor stem of the suppressor tRNA caused 2-12-fold reductions in the efficiency of suppression without loss of specificity for aminoacylation of the tRNA with tryptophan.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The discriminator nucleotide (position 73) in tRNA has long been thought to play a role in tRNA identity as it is the only variable single-stranded nucleotide that is found near the site of aminoacylation. For this reason, a complete mutagenic analysis of the discriminator in three Escherichia coli amber suppressor tRNA backgrounds was undertaken; supE and supE-G1C72 glutamine tRNAs, gluA glutamate tRNA and supF tyrosine tRNA. The effect of mutation of the discriminator base on the identity of these tRNAs in vivo was assayed by N-terminal protein sequencing of E. coli dihydrofolate reductase, which is the product of suppression by the mutated amber suppressors, and confirmed by amino acid specific suppression experiments. In addition, suppressor efficiency assays were used to estimate the efficiency of aminoacylation in vivo. Our results indicate that the supE glutamine tRNA context can tolerate multiple mutations (including mutation of the discriminator and first base-pair) and still remain predominantly glutamine-accepting. Discriminator mutants of gluA glutamate tRNA exhibit increased and altered specificity probably due to the reduced ability of other synthetases to compete with glutamyl-tRNA synthetase. In the course of these experiments, a glutamate-specific mutant amber suppressor, gluA-A73, was created. Finally, in the case of supF tyrosine tRNA, the discriminator is an important identity element with partial to complete loss of tyrosine specificity resulting from mutation at this position. It is clear from these experiments that it may not be possible to assign a specific role in tRNA identity to the discriminator. The identity of a tRNA in vivo is determined by competition among aminoacyl-tRNA synthetases, which is in turn modulated by the nucleotide substitution as well as the tRNA context.  相似文献   

14.
tRNA isodecoders share the same anticodon but have differences in their body sequence. An unexpected result from genome sequencing projects is the identification of a large number of tRNA isodecoder genes in mammalian genomes. In the reference human genome, more than 270 isodecoder genes are present among the approximately 450 tRNA genes distributed among 49 isoacceptor families. Whether sequence diversity among isodecoder tRNA genes reflects functional variability is an open question. To address this, we developed a method to quantify the efficiency of tRNA isodecoders in stop-codon suppression in human cell lines. First, a green fluorescent protein (GFP) gene that contains a single UAG stop codon at two distinct locations is introduced. GFP is only produced when a tRNA suppressor containing CUA anticodon is co-transfected with the GFP gene. The suppression efficiency is examined for 31 tRNA isodecoders (all contain CUA anticodon), 21 derived from four isoacceptor families of tRNASer genes, 7 from five families of tRNALeu genes, and 3 from three families of tRNAAla genes. We found that isodecoder tRNAs display a large difference in their suppression efficiency. Among those with above background suppression activity, differences of up to 20-fold were observed. We were able to tune tRNA suppression efficiency by subtly adjusting the tRNA sequence and inter-convert poor suppressors into potent ones. We also demonstrate that isodecoder tRNAs with varying suppression efficiencies have similar stability and exhibit similar levels of aminoacylation in vivo. Our results indicate that naturally occurring tRNA isodecoders can have large functional variations and suggest that some tRNA isodecoders may perform a function distinct from translation.  相似文献   

15.
The selection of tRNAs by their cognate aminoacyl-tRNA synthetases is critical for ensuring the fidelity of protein synthesis. While nucleotides that comprise tRNA identity sets have been readily identified, their specific role in the elementary steps of aminoacylation is poorly understood. By use of a rapid kinetics analysis employing mutants in tRNA(His) and its cognate aminoacyl-tRNA synthetase, the role of tRNA identity in aminoacylation was investigated. While mutations in the tRNA anticodon preferentially affected the thermodynamics of initial complex formation, mutations in the acceptor stem or the conserved motif 2 loop of the tRNA synthetase imposed a specific kinetic block on aminoacyl transfer and decreased tRNA-mediated kinetic control of amino acid activation. The mechanistic basis of tRNA identity is analogous to fidelity control by DNA polymerases and the ribosome, whose reactions also demand high accuracy.  相似文献   

16.
The effects of chronic ethanol ingestion on the in vivo aminoacylation of brain transfer RNA (tRNA) were examined in C57BL/6J mice. A pronounced inhibition in the formation of [14C]leucy]-tRNA and [14C]phenylalanyl-tRNA was observed in the ethanol drinking mice. Properties of aminoacyl-tRNA synthetases and tRNA were examined following their separation and isolation on a DEAE-cellulose column. Synthesis of [14C]leucyl-tRNA was found to have a complete dependence on ATP and Mg2+. Incubations were carried out by cross-matching tRNA from control rat brain with synthetases obtained from the brains of control or ethanol-drinking mice. Under these conditions, a decreased ability for aminoacylation could be demonstrated when the source of enzyme was derived from ethanol-treated brain. The data indicate that the major effect of ethanol ingestion on the aminoacylation reaction is exerted on aminoacyl-tRNA synthetases.  相似文献   

17.
The accuracy of protein biosynthesis rests on the high fidelity with which aminoacyl-tRNA synthetases discriminate between tRNAs. Correct aminoacylation depends not only on identity elements (nucleotides in certain positions) in tRNA (1), but also on competition between different synthetases for a given tRNA (2). Here we describe in vivo and in vitro experiments which demonstrate how variations in the levels of synthetases and tRNA affect the accuracy of aminoacylation. We show in vivo that concurrent overexpression of Escherichia coli tyrosyl-tRNA synthetase abolishes misacylation of supF tRNATyr with glutamine in vivo by overproduced glutaminyl-tRNA synthetase. In an in vitro competition assay, we have confirmed that the overproduction mischarging phenomenon observed in vivo is due to competition between the synthetases at the level of aminoacylation. Likewise, we have been able to examine the role competition plays in the identity of a non-suppressor tRNA of ambiguous identity, tRNAGlu. Finally, with this assay, we show that the identity of a tRNA and the accuracy with which it is recognized depend on the relative affinities of the synthetases for the tRNA. The in vitro competition assay represents a general method of obtaining qualitative information on tRNA identity in a competitive environment (usually only found in vivo) during a defined step in protein biosynthesis, aminoacylation. In addition, we show that the discriminator base (position 73) and the first base of the anticodon are important for recognition by E. coli tyrosyl-tRNA synthetase.  相似文献   

18.
Treatment of rats with ethionine was found to cause severe impairment in the aminoacylation capacity of tRNA. This effect was only observed when assayed in injected oocytes, while invitro assays of aminoacylation failed to detect differences between normal tRNA and tRNA from ethionine treated animals. The effect of ethionine on the tRNA population was not uniform and differed for various amino acid specific tRNAs. Thus liver tRNA from ethionine treated rats showed a decreased capacity for phenylalanine aminoacylation, while no change was found in the case of leucine. On the other hand, the level of histidine aminoacylation was higher for tRNA from ethionine treated animals. An even more complex response was observed with methionine aminoacylation where tRNA from ethionine treated animals showed an initially faster rate than control tRNA. With more prolonged incubation periods, the methionyl-tRNA from ethionine treated animals was deacylated at an accelerated rate while the level of normal methionyl-tRNA remained almost constant.In addition to the aminoacylation reaction, the participation of aminoacyl-tRNA in protein synthesis was severely impaired. In this case, both the injected oocyte system and the cell-free wheat germ assay revealed these differences which were manifested with various mRNA and viral RNA preparations.  相似文献   

19.
The fidelity of tRNA aminoacylation is dependent in part on amino acid editing mechanisms. A hydrolytic activity that clears mischarged tRNAs typically resides in an active site on the tRNA synthetase that is distinct from its synthetic aminoacylation active site. A second pre-transfer editing pathway that hydrolyzes the tRNA synthetase aminoacyl adenylate intermediate can also be activated. Pre- and post-transfer editing activities can co-exist within a single tRNA synthetase resulting in a redundancy of fidelity mechanisms. However, in most cases one pathway appears to dominate, but when compromised, the secondary pathway can be activated to suppress tRNA synthetase infidelities.  相似文献   

20.
The extreme halophile Halobacterium species NRC-1 overcomes external near-saturating salt concentrations by accumulating intracellular salts comparable to those of the medium. This raises the fundamental question of how halophiles can maintain the specificity of protein-nucleic acid interactions that are particularly sensitive to high salts in mesophiles. Here we address the specificity of the essential aminoacylation reaction of the halophile, by focusing on molecular recognition of tRNA(Cys) by the cognate cysteinyl-tRNA synthetase. Despite the high salt environments of the aminoacylation reaction, and despite an unusual structure of the tRNA with an exceptionally large dihydrouridine loop, we show that aminoacylation of the tRNA proceeds with a catalytic efficiency similar to that of its mesophilic counterparts. This is manifested by an essentially identical K(m) for tRNA to those of the mesophiles, and by recognition of the same nucleotide determinants that are conserved in evolution. Interestingly, aminoacylation of the halophile tRNA(Cys) is more closely related to that of bacteria than eukarya by placing a strong emphasis on features of the tRNA tertiary core. This suggests an adaptation to the highly negatively charged tRNA sugar-phosphate backbone groups that are the key elements of the tertiary core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号