共查询到20条相似文献,搜索用时 0 毫秒
1.
为了探明热排放对近海生态的影响,选用我国东海近海主要桡足类,采用热升温实验方法对其半致死温度进行研究.结果表明,不同生物在相同适温条件下和同种生物在不同适温条件下的热耐受能力均存在差异.自然适应水温为13.5 ℃,中华哲水蚤(Calanus sinicus)和细巧华哲水蚤(Sinocalanus tenellus)的24 h半致死温度值分别为26.9 ℃和25.4 ℃;自然适应水温为14.2 ℃,中华异水蚤(Acartiella sinensis)和近缘大眼剑水蚤(Corycaeus affinis)的24 h半致死温度值分别为26.7 ℃和30.5 ℃;自然适应水温为28.0 ℃,背针胸刺水蚤(Centropages dorsispinatus)、强额拟哲水蚤(Paracalanus crassirostris)、刺尾纺锤水蚤(Acartia spinicauda)和尖额真猛水蚤(Euterpina acutifrons)的24 h半致死温度值分别为34.0 ℃、34.3 ℃、35.7 ℃和36.0 ℃.细巧华哲水蚤在自然适应水温分别为13.5 ℃和23.5 ℃下的24 h半致死温度值为25.4 ℃和33.0 ℃. 相似文献
2.
Abstract. The temperatures at which liposomes prepared from membrane phospholipids begin to phase separate were compared to the temperatures at which intact plants were damaged. Woody perennials tolerated temperatures below which their membrane phospholipids began to phase separate. By contrast, rye and wheat seedlings were damaged about 25°C above their phase separation temperature. Differences in tolerance among cultivars pre-hardened to frost were reflected by changes of the phase separation temperature. The results support the notion that alterations in membrane lipid composition are associated with frost hardening. A correlation between the temperature of phase separation and frost tolerance suggests that lipid properties may influence freezing tolerance of cereals; however, the lethal event is apparently not phase separation of the membrane phospholipids. 相似文献
3.
Chlorophyll fluorescence parameters (Fv/Fm, RFd) of nine bryophyte and one lichen species were investigated after prolonged exposure to elevated UV-B radiation. The majority of the investigated bryophytes showed a prompt or inducible tolerance to increase UV-B irradiation. Among the investigated species high degree of UV-tolerance coincides with strong desiccation tolerance. 相似文献
4.
Upper lethal temperature tolerance was determined for 26–81 mm, age 0 black crappie Pomoxis nigromaculatus of three size classes using both a rapid transfer and slow heating protocol. Rapid transfer protocols determined 24 LT50 values of 33–8, 35–1 and 31–5° C for size classes with mean total lengths of 30–2, 45–6 and 74–9 mm. A predictive model was generated from the slow heating protocols that relates lethal temperature to acclimation temperature, total length, and condition factor (K) as predictors. 相似文献
5.
Acute food shortage due to the inability to protectand preserve crops fromquality and quantity deteriora-tion arising from microbial,vertebrate and insect pestinfestations has been a pri mordial problem confrontingNigeria and other developing countries in the tropics(Talukder&Howse,1994;Adedire,2001).Insect pests cause a great deal of losses of storedfood products,especially in the tropics where foodproducts usually are susceptible to attack during thestorage phase of the crops(Sighamony et a… 相似文献
6.
Xiaoyi Wang Tao Wang Hui Guo Dan Liu Yutong Zhao Taotao Zhang Qiang Liu Shilong Piao 《Global Change Biology》2018,24(4):1651-1662
Although seasonal snow is recognized as an important component in the global climate system, the ability of snow to affect plant production remains an important unknown for assessing climate change impacts on vegetation dynamics at high‐latitude ecosystems. Here, we compile data on satellite observation of vegetation greenness and spring onset date, satellite‐based soil moisture, passive microwave snow water equivalent (SWE) and climate data to show that winter SWE can significantly influence vegetation greenness during the early growing season (the period between spring onset date and peak photosynthesis timing) over nearly one‐fifth of the land surface in the region north of 30 degrees, but the magnitude and sign of correlation exhibits large spatial heterogeneity. We then apply an assembled path model to disentangle the two main processes (via changing early growing‐season soil moisture, and via changing the growth period) in controlling the impact of winter SWE on vegetation greenness, and suggest that the “moisture” and “growth period” effect, to a larger extent, result in positive and negative snow–productivity associations, respectively. The magnitude and sign of snow–productivity association is then dependent upon the relative dominance of these two processes, with the “moisture” effect and positive association predominating in Central, western North America and Greater Himalaya, and the “growth period” effect and negative association in Central Europe. We also indicate that current state‐of‐the‐art models in general reproduce satellite‐based snow–productivity relationship in the region north of 30 degrees, and do a relatively better job of capturing the “moisture” effect than the “growth period” effect. Our results therefore work towards an improved understanding of winter snow impact on vegetation greenness in northern ecosystems, and provide a mechanistic basis for more realistic terrestrial carbon cycle models that consider the impacts of winter snow processes. 相似文献
7.
Abstract. 1. When first instar nymphs and adults of the grain aphid Sitobion avenae (Fabricius) (Hemiptera: Aphidiae) were maintained in long-term cultures (>6 months) at 20 °C and 10 °C, the LT50 decreased from −8 and −8.8 °C to −16.0 and −13.5 °C, respectively.
2. When aphids from the 20 °C culture were transferred to 10 °C, there was a progressive increase in cold tolerance through three successive generations. Transfer of newly moulted pre-reproductive adults reared at 10 °C for three generations back to 20 °C resulted in a rapid loss of cold hardiness in their nymphal offspring.
3. In all generations reared at 10 °C, first born nymphs were more cold hardy than those born later in the birth sequence. The LT50 of nymphs produced on the first day of reproduction in the first, second and third generations maintained at 10 °C were −14.8, −17.0 and −16.6 °C, respectively. Thereafter, nymphal cold hardiness decreased over the subsequent 14 days of reproduction in each generation at 10 °C with mean LT50 values of −10.3, −12.6 and −14.8 °C, respectively. By contrast, the cold tolerance of first born nymphs of aphids reared continuously at 20 °C did not differ in comparison with later born siblings. The LT50 of adult aphids was also unaffected by ageing.
4. The ecological relevance of these findings is discussed in relation to the overwintering survival of aphids such as S. avenae . 相似文献
2. When aphids from the 20 °C culture were transferred to 10 °C, there was a progressive increase in cold tolerance through three successive generations. Transfer of newly moulted pre-reproductive adults reared at 10 °C for three generations back to 20 °C resulted in a rapid loss of cold hardiness in their nymphal offspring.
3. In all generations reared at 10 °C, first born nymphs were more cold hardy than those born later in the birth sequence. The LT
4. The ecological relevance of these findings is discussed in relation to the overwintering survival of aphids such as S. avenae . 相似文献
8.
We compared the responses of sun and shade acclimated saplings of Picea abies and Pinus cembra to excess photosynthetic photon flux density (PPFD) equivalently exceeding the level for saturating net photosynthetic rate
(P
N). Exposure for 2 h up to 2000 μmol(photon) m−2 s−1 did not affect radiant energy saturated P
N. Photoinhibition of photosynthesis was indicated by a small (10 %) reduction of the potential efficiency of photosystem 2
as derived from measurements of chlorophyll fluorescence (FV/FM). However, the extent of FV/FM reduction and half-time for recovery were similar in sun and shade acclimated saplings of both species. Furthermore, the
effect on FV/FM was not stronger when the plants were exposed to excess PPFD at 5 °C instead of 15 °C. Frost-hardening of plants increased
slightly their resistance to excess PPFD. Establishment of these conifer saplings usually acclimated to shade in their natural
habitat may hardly be endangered by a sudden increase of PPFD, e.g., by gap formation.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
9.
全球气候变化导致极端气候发生频率和强度增加,探究植被对极端气候的响应与适应是评估区域植被脆弱性和制定适应性经营策略的重要前提。以2008年中国南方极端冰冻事件为例,利用2003-2009年日光诱导叶绿素荧光(SIF)遥感数据提取植被物候,探讨了极端冰冻事件对不同植被类型物候的影响,并采用地理探测器分析各环境因子及其交互作用对植被物候变化的贡献度。结果表明:(1)极端冰冻事件导致植被生长季开始期(SOS)提前2.96 d、生长季结束期(EOS)推迟10.47 d和生长季长度(LOS)延长12.79 d,其中常绿阔叶林物候变化趋势最大,而落叶阔叶林物候变化趋势最小。(2)研究区水热条件的空间分异性影响了植被物候空间变化格局,如东南部水热条件充足区的物候变化趋势更明显,而西北部山区植被物候变化与整体变化趋势相反,即呈现SOS推迟和EOS提前趋势。(3)降水、气温、相对湿度、土壤类型和植被类型是影响植被物候的主导因子,其中气温和降水对植被EOS的解释力最高,分别为0.6522和0.5280。(4)各因子交互作用结果均表现为双因子增强或非线性增强效应,其中气候因子间的交互作用最强,而气候因子与土壤类型、植被类型、冰冻天数的交互效应次之。 相似文献
10.
J. C. Soto‐Correa C. Senz‐Romero R. Lindig‐Cisneros E. de la Barrera 《Plant biology (Stuttgart, Germany)》2013,15(3):607-610
Considering that their distribution is limited to altitudinal gradients along mountains that are likely to become warmer and drier, climate change poses an increased threat to temperate forest species from tropical regions. We studied whether the understorey shrub Lupinus elegans, endemic to temperate forests of west‐central Mexico, will be able to withstand the projected temperature increase under seven climate change scenarios. Seeds were collected along an altitudinal gradient and grown in a shade‐house over 7 months before determining their temperature tolerance as electrolyte leakage. The plants from colder sites tolerated lower temperatures, i.e. the temperature at which half of the maximum electrolyte leakage occurred (LT50), ranged from −6.4 ± 0.7 to −2.4 ± 0.3 °C. In contrast, no pattern was found for tolerance to high temperature (LT50 average 42.8 ± 0.3 °C). The climate change scenarios considered here consistently estimated an increase in air temperature during the present century that was higher for the maximum air temperature than for the mean or minimum. In particular, the anomaly from the normal maximum air temperature at the study region ranged from 2.8 °C by 2030 to 5.8 °C by 2090. In this respect, the inability of L. elegans to adapt to increasingly higher temperatures found here, in addition to a possible inhibition of reproduction caused by warmer winters, may limit its future distribution. 相似文献
11.
The effects of different cadmium concentrations [17 mg(Cd) kg−1(soil) and 72 mg(Cd) kg− 1(soil)] on Cannabis sativa L. growth and photosynthesis were examined. Hemp roots showed a high tolerance to Cd, i.e. more than 800 mg(Cd) kg−1(d.m.) in roots had no major effect on hemp growth, whereas in leaves and stems concentrations of 50 – 100 mg(Cd) kg−1(d.m.) had a strong effect on plant viability and vitality. For control of heavy metal uptake and xylem loading in hemp roots, the soil pH plays a central role. Photosynthetic performance and regulation of light energy consumption were analysed using chlorophyll fluorescence analysis. Seasonal changes in photosynthetic performance were visible in control plants and plants growing on soil with 17 mg(Cd) kg−1(soil). Energy distribution in photosystem 2 is regulated in low and high energy phases that allow optimal use of light and protect photosystem 2 from overexcitation, respectively. Photosynthesis and energy dissipation were negatively influenced by 72 mg(Cd) kg−1(soil). Cd had detrimental effects on chlorophyll synthesis, water splitting apparatus, reaction centre, antenna and energy distribution of PS 2. Under moderate cadmium concentrations, i.e. 17 mg(Cd) kg−1(soil), hemp could preserve growth as well as the photosynthesis apparatus, and long-term acclimation to chronically Cd stress occurred. 相似文献
12.
Tereza V. Dan Sankaran KrishnaRaj Praveen K. Saxena 《International journal of phytoremediation》2000,2(1):91-104
The ability of scented geraniums (Pelargonium sp. Frensham) to tolerate metal stress was assessed using chlorophyll a fluorescence kinetics. The effects of various concentrations of cadmium and nickel in the culture solution on photosynthetic efficiency in scented geranium was evaluated in comparison to two well-established metal accumulators, the Indian mustard (Brassica juncea), and the sunflower (Helianthus annuus), under greenhouse conditions. The efficiency of the photosynthetic apparatus was affected to varying degrees at all metal concentrations for the plants tested. High concentrations of cadmium (1000 mg L-1) did not significantly affect the efficiency of photosystem II activity, expressed as the ratio of variable fluorescence to maximal fluorescence (Fv/Fm), which remained high (0.738) in scented geraniums, but decreased significantly (P < 0.05) in Indian mustard (0.089) and sunflower (0.026) plants following 4 days of metal exposure. Similar trends were observed for nickel treatments. Also, the number and size of active photosynthetic reaction centers, as measured by the Fv/Fo ratio, was not significantly affected by metal exposure in scented geranium plants, while the ratio significantly decreased in Indian mustard and sunflower seedlings. The results suggest that scented geranium plants were able to overcome metal stress through (1) maintaining an efficient photosystem II activity, which is required for plant metabolism and physiological functions, as well as to overcome metal ion mediated stress, and (2) restricting damage to the photosynthetic apparatus (reaction centers) by metal ions. 相似文献
13.
以2008年南方冰雪灾害中受到严重损害的木荷为对象,在浙江江郎山设置5个400m2样地,通过Li-6400光合仪人工控制光强和CO2浓度测定相关光合参数,采用指数方程对不同受害类型木荷(倒木和断木)的光合生理响应曲线进行拟合,并结合叶绿素荧光参数分析了不同部位萌枝叶片的光合能力。结果表明:(1)光响应曲线中,木荷断木不同部位萌枝叶片在初始阶段(光照强度0~200μmol.mol-1)较陡,随着光强的增大,断木相对于倒木较早达到光饱和点,但其最大净光合速率较倒木低;CO2响应曲线中,倒木和断木在起始阶段(CO2浓度在0~200μmol.mol-1)的斜率较接近,随着CO2浓度增加,各条拟合曲线趋势相似。(2)不同受害类型木荷之间比较,倒木的光饱和最大净光合速率(PLmax)、CO2饱和最大净光合速率(PCmax)、光补偿点(LCP)、光饱和点(LSP)、有效光化学效率(Fv′/Fm′)分别比断木高22.03%、5.22%、13.73%、52.48%、22.53%,且二者间的PLmax、LSP、Fv′/Fm′均差异显著。(3)相同受害类型木荷的不同部位之间比较,倒木不同部位的PLmax、PCmax、PSⅡ最大光化学效率(Fv/Fm)、Fv′/Fm′、PSⅡ潜在活性(Fv/F0)、电子传递速率(ETR)均表现为底部>中部>顶部,而断木不同部位则表现为顶部和中部大于底部,但未达到显著水平。研究发现,遭受冰雪灾害的木荷倒木的光合作用能力高于断木,且倒木底部和断木顶部的光合作用能力高于其它部位。 相似文献
14.
15.
在季节性积雪地区,冬季气候变暖导致积雪变薄、积雪不连续、融雪提前及雪盖面积缩小等现象。然而相较于氮沉降、增温、降水变化等全球变化因子,目前尚缺乏积雪因子对陆地生态系统过程和功能影响的系统报道。为加深人们对积雪特征变化生态后果的认知,综述了积雪深度和融雪时间变化对植被物候和群落组成、凋落物分解、土壤碳氮过程、温室气体排放和土壤微食物网(土壤动物和微生物)的影响。由于模拟积雪变化手段不同和复杂的气候、土壤背景,生态系统各要素对积雪特征变化的响应规律存在较大的分异和不确定性。例如,在未来气候变暖导致积雪变薄和融雪提前情景下,植被物候提前,生长季延长,导致生产力增加和凋落物数量增加,禾草比例减少导致凋落物质量增加,早春温度高刺激微生物活性,凋落物分解速率高,促进土壤碳氮周转过程。但积雪减少和融雪提前导致的早春低温和夏季干旱也可能引起植被生产力下降,凋落物数量减少质量降低,土壤微生物活性低,分解速率低,从而减缓碳氮周转过程。此外,积雪特征变化对植被特征和土壤碳氮过程影响相关研究目前还存在以下问题:1)积雪深度和融雪时间对生态系统的影响是否存在交互效应仍缺乏关注,且积雪变化对后续生长季是否存在持续... 相似文献
16.
17.
中国狗牙根[Cynodon dactylon (L.) Pers.]耐寒性及其变化规律 总被引:20,自引:1,他引:20
将49份具有代表性的我国狗牙根〔Cynodondactylon(L.)Pers.〕种源的离体叶片进行模拟低温处理,用电导法测其电导率,将电导率拟合Logistic方程,计算出狗牙根各种源叶片的半致死温度(LT50)。回归分析的结果表明:各种源的LT50与其所在的经纬度呈显著的线性关系,线性回归方程分别为Y=-31.3797 0.1478X和Y=-10.7982-0.1420X。依据LT50的变化,可将这49份狗牙根种源分为3大类,即低温敏感型(LT50≥-10℃)、过渡型(-18℃相似文献
18.
The fluorescence yield at room temperature of the lichens Ramalina maciformis and Peltigera rufescens, containing either green or blue-green algae (Cyanobacteria) as phycobionts, has been investigated during rehydration of the dry lichens by water vapor uptake or by wetting with liquid water. In the dry state the fluorescence yield with all reaction centers open, Fo, was low and no variable fluorescence could be induced with both species. Whereas R. maciformis, containing green algae, regained normal fluorescence behavior during water vapor uptake, the photosynthetic apparatus of the blue-green algae-containing P. rufescens stayed inhibited and could be reactivated only by addition of liquid water. During stepwise rehydration at increasing air humidities, a pattern was established for the recovery of the different fluorescence parameters in R. maciformis. At a dry-weight related water content between 30 and 40%, Fo rose sharply. Maximal variable fluorescence yield expressed as (Fv)m/Fo, strongly increased in the same range of water content and remained constant above a water content of 50%. Non-photochemical fluorescence quenching, qNP, determined at the end of a period of actinic illumination, decreased with increasing water vapor uptake. While spraying the lichen with liquid water did not induce a further decrease of qNP, slow dehydration at lowered air humidity led to a minimal value of qNP at a water content of 65 % indicating optimal photosynthetic rate under these conditions. These results extend the conclusions drawn from earlier gas exchange experiments that blue-green algae-containing lichens are unable to reactivate photosynthesis by water vapor uptake. During a re- and de-hydration cycle, no hysteresis in the hydration dependence of the fluorescence parameters was found. From this and the presence of a stable and low Fo value at prolonged incubation in nearly water vapor saturated air, we conclude that the reactivation of photosynthesis in blue-green algae-containing lichens is not prevented through high diffusion resistances for water. 相似文献
19.
Photoinhibition and recovery kinetics after short exposure to solar radiation following three different irradiance treatments
of irradiances (PAR, PAR+UVA and PAR+UVA+UVB) was assessed in two intertidal species of the genus Gelidium, Gelidium sesquipedale
and G. latifolium, collected from Tarifa (southern Spain) using in vivo chlorophyll fluorescence (PAM fluorometry). After
3 h UV radiation exposure, optimal quantum efficiency (Fv/Fm) in G. sesquipedale decreased between 25 and 35% relative to
the control. Under PAR alone, values decreased to 60%. In G. latifolium, photoinhibition did not exceed 40%. Similar results
were found for the effective quantum yield (ΔF/Fm′), however, no marked differences in relation to light treatments were seen.
When plants were shaded for recovery from stress, only in G. latifolium a significant increase in photosynthesis was observed
(between 80 and 100% of control). In contrast, photosynthesis of G. sesquipedale suffered a chronic photoinhibition or photodamage
under the three light irradiances. Full solar radiation (PAR+UVA+UVB) affected also the electron transport rate in both species.
Here, initial slopes of electron transport vs. irradiance curves decreased up to 60% of controls. Although the recovery kinetic
under PAR+UVA+UVB conditions was delayed in G. latifolium, after 24 h recovery this species reached significantly higher than
G. sesquipedale. PAR impaired electron trasport only in G. sesquipedale. Overall, both species are characterized by different
capacity to tolerate enhanced solar radiation. G. latifolium is a sun adapted plant, well suited to intertidal light conditions,
whereas G. sesquipedale, growing at shaded sites in the intertidal zone, is more vulnerable to enhanced UV radiation.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
20.
用体内叶绿素a荧光诱导动力学鉴定番茄的抗冷性 总被引:23,自引:0,他引:23
研究了冷害温度对具有不同抗冷性品种的番茄叶片的体内叶绿素a荧光诱导动力曲线的影响。实验结果指出,在低温处理(8℃,5℃,2℃下,暗中24小时)后,番茄叶片的体内叶绿素a荧光诱导动力学曲线有了明显的改变,Fv/Fo值、Rfd值降低了,光系统Ⅱ原初光能转换效率和潜在的光合活力均受到抑制。我们在苗期和开花期得到的实验结果均表明,在番茄叶片的叶绿素a荧光诱导动力学曲线和这些荧光参数改变的程度与该品种的已知抗冷性之间呈现较好的相关性。我们认为,体内叶绿素a荧光诱导动力学方法是鉴定番茄抗冷性的一个快速、灵敏和可靠的方法,并可用于其他绿色植物的抗冷性鉴定中 相似文献