首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of E.coli formylmethionine tRNA with sodium bisulfite produces six C → U base changes in the tRNA structure. Four of these modifications have no effect on the ability of tRNAfMet to be aminoacylated or formylated. Prior to bisulfite treatment, Met-tRNAfMet is not able to form a ternary complex with bacterial T factor and GTP, as measured by Sephadex G-50 gel filtration. After bisulfite treatment, a large portion of the modified tRNA is bound as T-GTP-Met-tRNAfMet. Formylation of bisulfite-modified Met-tRNAfMet completely eliminates T factor binding. Unmodified tRNAfMet is unique among the tRNAs sequenced to date in having a non-hydrogen-bonded base at the 5′ terminus. Bisulfite-catalyzed conversion of this unpaired C1 to U1 results in formation of a normal U1-A73 base pair at the end of the acceptor stem. It is likely that this structural alteration is responsible for the recognition of bisulfite-modified Met-tRNAfMet by T factor.  相似文献   

2.
Transfer RNA with methionine acceptor activity isolated from two distinct physiological stages of the developing posterior silkgland of the silkworm, Bombyx mori, was examined. The tRNA from both stages could be fractionated on benzoylated DEAE-cellulose colum into two iso-accepting species, tRNA1Met and tRNA2Met. The molar quantity per gland of tRNA1Met species, which was also formylatable with the E. coli enzymes, increased twelve-fold as the gland differentiates to produce a large amount of a single protein, silk-fibroin. Since methionine is not a part of silk-fibroin, the preferential increase in tRNA1Met content would reflect the increased biological activity and the rapid rate of protein synthesis during the terminal differentiation of posterior silkgland.  相似文献   

3.
The effect of formylation on the chromatographic behavior of Met-tRNAfMet on BD-cellulose has been investigated. Under conditions comparable to those routinely employed in analytical BD-cellulose chromatography, formylated Met-tRNAfMet was observed to elute at a significantly higher salt concentration than unformylated Met-tRNAfMet. Unformylated Met-tRNAfMet elutes well before Met-tRNAmMet, whereas fMet-tRNAfMet elutes slightly after Met-tRNAmMet; thus the net effect of formylation is an apparent inversion of the elution order of the isoaccepting methionyl tRNA species, tRNAfMet and tRNAmMet. Although aminoacylated tRNAfMet and tRNAmMet elute slightly later than their respective unacylated forms, aminoacylation alone does not produce the inverted elution order observed upon formylation of Met-tRNAfMet.  相似文献   

4.
A combination of hydrophobic chromatography on phenyl-Sepharose and reversed phase HPLC was used to purify individual tRNAs with high specific activity. The efficiency of chromatographic separation was enhanced by biochemical manipulations of the tRNA molecule, such as aminoacylation, formylation of the aminoacyl moiety and enzymatic deacylation. Optimal combinations are presented for three different cases. (i) tRNAPhe from Escherichia coli. This species was isolated by a combination of low pressure phenyl-Sepharose hydrophobic chromatography with RP-HPLC. (ii) tRNAIle from E.coli. Aminoacylation increases the retention time for this tRNA in RP-HPLC. The recovered acylated intermediate is deacylated by reversion of the aminoacylation reaction and submitted to a second RP-HPLC run, in which deacylated tRNAIle is recovered with high specific activity. (iii) tRNAiMet from Saccharomyces cerevisiae. The aminoacylated form of this tRNA is unstable. To increase stability, the aminoacylated form was formylated using E.coli enzymes and, after one RP-HPLC step, the formylated derivative was deacylated using peptidyl-tRNA hydrolase from E.coli. The tRNAiMet recovered after a second RP-HPLC run exhibited electrophoretic homogeneity and high specific activity upon aminoacylation. These combinations of chromatographic separation and biochemical modification can be readily adapted to the large-scale isolation of any particular tRNA.  相似文献   

5.
Crude E. coli tRNA or enriched methionine acceptor tRNA can be separated into three stiecies on a column of arginine-agarose. The first peak eluted is tRNAMet and the latter two peaks are two forms of tRNAMet f. From crude tRNA, tRNAMet m is obtained in approximately 50% purity. Arginine-agarose separates enriched methionine accepting tRNA into three homogeneous fractions.  相似文献   

6.
The 0.5M KCl wash of rabbit reticulocyte ribosomes (I fraction) catalyzes the deacylation of Met-tRNAfMet. Upon DEAE-cellulose column chromatography, the deacylase activity elutes with the 0.1M KCl wash of the column (f1) and is well-resolved from the peptide chain initiation factors (1–3). The deacylase activity is specific for Met-tRNAfMet (retic., E.coli). Other aminoacyl tRNAs tested including fMet-tRNAfMet (retic., E.coli), Phe-tRNA (E.coli), Val-tRNA (retic.), and Arg-tRNA (retic.) are completely resistant to the action of the deacylase. In the presence of the peptide chain initiation factor (IF1) and GTP, retic. Met-tRNAfMet forms the initiation complex Met-tRNAfMet:IF1:GTP (2), and in this ternary complex Met-tRNAfMet is not degraded by the deacylase. E.coli Met-tRNAfMet binds to IF1 independent of GTP, and in this complex, this Met-tRNAfMet is degraded by the deacylase.Prior incubation of f1 with Met-tRNAfMet (retic.) strongly inhibited protein synthesis initiation, presumably due to deacylation of the initiator tRNA. This inhibition by f1 was completely prevented when Met-tRNAfMet (retic.) was pre-incubated with peptide chain initiation factors.  相似文献   

7.
A chloroplast tRNAmMet species from Scenedesmusobliquus is very poorly 5′-end [32P] labelled using [γ-32P]ATP and T4 polynucleotide kinase. In sequencing the tRNA using standard 5′-labelled methods a very minor contaminating tRNA is preferentially labelled. The partial tRNA sequence determined by this method has an anticodon (CUC) for tRNAGlu.  相似文献   

8.
Total mammalian tRNAs contain on the average less than one mole of ribothymidine per mole of tRNA. Mammalian tRNAs can be grouped into at least four classes, depending upon their ribothymidine content at position 23 from the 3′ terminus. Class A contains tRNA in which a nucleoside other than uridine replaces ribothymidine (tRNAiMet); Class B contains tRNA in which one mole of a modified uridine (rT, ψ, or 2′-O-methylribothymidine) is found per mole of tRNA (tRNASer, tRNATrp, and tRNALys, respectively). Class C contains tRNA in which there is a partial conversion of uridine to ribothymidine (tRNAPhe, tRNA1Gly, tRNA2Gly); Class D contains tRNA which totally lacks ribothymidine (tRNAVal). Only those tRNAs in Class C are acceptable substrates for E.coli uridine methylase, under the conditions used in these studies. These observations cannot be adequately explained solely on the basis of the presence or absence of a specific “universal” nucleoside other than U or rT at position 23 from the 3′ terminus. However, correlations can be made between the ribothymidine and 5-methylcytosine content of eucaryotic tRNA. We postulate that the presence of one or more 5-methylcytosines in and adjacent to loop III (minor loop) in individual tRNAs act to regulate the amount of ribothymidine formed by uridine methylase. Several experiments are proposed as tests for this hypothesis.  相似文献   

9.
Nucleotide sequence comparison of tRNAs aminoacylated by yeast phenylalanyl tRNA synthetase (PRS) have lead to the proposal that the specific nucleotides of the dihydrouridine (diHU) stem region and adenosine at the fourth position from the 3′ end are involved in the PRS recognition site. Kinetic analysis and enzymatic methylation have shown that the size of the diHU loop and the methylation of guanine at position 10 from the 5′ end both directly affect the PRS aminoacylation kinetics. E. coli tRNA1A1a, which is aminoacylated by PRS, should therefore have 1- the specific nucleotides of the diHU stem region and, 2- adenosine at position 4 from the 3′ end. The PRS aminoacylation kinetics of this tRNA indicates that this molecule 3- has a diHU loop of 8 nucleotides and 4- has an unmethylated guanine at position 10 from the 5′ end. We report here the complete sequence of E. coli tRNA1A1a and confirmation of each of these four predictions.  相似文献   

10.
We have noticed that during a long storage and handling, the plant methionine initiator tRNA is spontaneously hydrolyzed within the anticodon loop at the C34-A35 phosphodiester bond. A literature search indicated that there is also the case for human initiator tRNAMet but not for yeast tRNAMet i or E. coli tRNAMet f. All these tRNAs have an identical nucleotide sequence of the anticodon stems and loops with only one difference at position 33 within the loop. It means that cytosine 33 (C33) makes the anticodon loop of plant and human tRNAMet i susceptible to the specific cleavage reaction. Using crystallographic data of tRNAMet f of E. coli with U33, we modeled the anticodon loop of this tRNA with C33. We found that C33 within the anticodon loop creates a pocket that can accomodate a hydrogen bonded water molecule that acts as a general base and catalyzes a hydrolysis of C-A bond. We conclude that a single nucleotide change in the primary structure of tRNAMet i made changes in hydration pattern and readjustment in hydrogen bonding which lead to a cleavage of the phosphodiester bond.  相似文献   

11.
Recognition strategies for tRNA aminoacylation are ancient and highly conserved, having been selected very early in the evolution of the genetic code. In most cases, the trinucleotide anticodons of tRNA are important identity determinants for aminoacylation by cognate aminoacyl-tRNA synthetases. However, a degree of ambiguity exists in the recognition of certain tRNAIle isoacceptors that are initially transcribed with the methionine-specifying CAU anticodon. In most organisms, the C34 wobble position in these tRNAIle precursors is rapidly modified to lysidine to prevent recognition by methionyl-tRNA synthetase (MRS) and production of a chimeric Met-tRNAIle that would compromise translational fidelity. In certain bacteria, however, lysidine modification is not required for MRS rejection, indicating that this recognition strategy is not universally conserved and may be relatively recent. To explore the actual distribution of lysidine-dependent tRNAIle rejection by MRS, we have investigated the ability of bacterial MRSs from different clades to differentiate cognate tRNACAUMet from near-cognate tRNACAUIle. Discrimination abilities vary greatly and appear unrelated to phylogenetic or structural features of the enzymes or sequence determinants of the tRNA. Our data indicate that tRNAIle identity elements were established late and independently in different bacterial groups. We propose that the observed variation in MRS discrimination ability reflects differences in the evolution of genetic code machineries of emerging bacterial clades.  相似文献   

12.
Alterations in rat liver transfer RNA (tRNA) methyltransferase activities have been observed after liver damage by various chemicals or by partial hepatectomy. The qualitative and quantitative nature of these activity changes and the time course for their induction have been studied. Since homologous tRNAs are essentially fully modified in vivo, E. coli tRNAs were used as in vitro substrates for the rat liver enzymes in these studies. Each of the liver-damaging agents tested rapidly caused increases in activities of the enzyme(s) catalyzing methyl group transfer to tRNAs that have an unmodified guanine at position 26 from the 5′ end of the molecule. This group of tRNAs includes E. coli tRNANfmet, tRNAAla1, tRNALeu1, or Leu2, and tRNASer3 (Group 1). In each case N2-methylguanine and N2,N2-dimethylguanine represented 90% or more of the products of these in vitro methylations. The product and substrate specificity observed are characteristic of N2-guanine methyltransferase II (S-adenosyl-L-methionine:tRNA (guanine-2)-methyltransferase, EC 2.1.1.32). In crude and partially purified preparations derived from livers of both control and treated animals this enzyme activity was not diminished significantly by exposure to 50°C for 10 min. The same liver-damaging agents induced little or no change in the activities of enzymes that catalyze methyl group transfer to various other E. coli tRNAs that do not have guanine at position 26 (Group 2). The results of mixing experiments appear to rule out the likelihood that the observed enzyme activity changes are due to stimulatory or inhibitory materials present in the enzyme preperations from control or treated animals. Thus, our experiments indicate that liver damage by each of several different methods, including surgery or administration of chemicals that are strong carcinogens, hepatotoxins, or cancer-promoting substances, all produce changes in liver tRNA methyltransferase activity that represent a selective increase in activity of N2-guanine tRNA methyltransferase II. It is proposed that the specificity of this change is not fortuitous, but is the manifestation of an as yet unidentified regulatory process.  相似文献   

13.
《FEBS letters》1986,202(1):12-18
The digestion of yeast initiator methionine tRNA with mung bean nuclease and U2 ribonuclease yielded 5'- and 3'-fragments, respectively. These two fragments together represent the entire tRNA sequence except for A35, the central nucleotide of the anticodon, and the CCA terminus. Using RNA ligase, a cytosine was added and the anticodon loop having a C35 was reformed. Subsequent treatment of this product with CCA-transferase yielded a full-length methionine tRNA having an arginine CCU anticodon. This recombinant tRNAMet (CCU) was charged with methionine by the yeast tRNA synthetase. Aminoacylation of the recombinant was however less extensive than in the case of native tRNAMet (CAU). After aminoacylation the recombinant tRNA formed an 80 S ribosomal complex.  相似文献   

14.
Lee Johnson  Dieter Sll 《Biopolymers》1971,10(11):2209-2221
Valine specific transfer RNA (tRNAVal) was isolated from Bacillus stearothermophilus and Escherichia coli by chromatography on benzoylated DEAE–cellulose (BD–cellulose). Likewise isoleucine specific transfer RNA (tRNAIle) was isolated from B. stearothermophilus and from Mycoplasma sp. Kid. The thermal denaturation profiles (melting curves) of the two tRNAVal species in the presence of Mg+ + were nearly identical. However, the Tm for the Kid tRNAIle was about 10°C lower than that for the B. stearothermophilus tRNAIle. A nuclease and tRNA-free aminoacyl-tRNA synthetase (AA-tRNA synthetase) preparation from B. stearothermophilus was able to function efficiently at temperatures up to 80°C in the aminoacylation of all four tRNA species. Determination of the amino acid-acceptor activity of each tRNA species as a function of temperature of the aminoacylation reaction showed in each case a strong correlation between the loss of acceptor activity and the thermal denaturation profile of the tRNA. Evidence is presented that the loss in acceptor activity is most likely due to a change in structure of the tRNA as opposed to denaturation of the enzyme. These results further support the idea that correct secondary and/or tertiary structure must be maintained for tRNA to be active as a substrate for the AA-tRNA synthetase.  相似文献   

15.
16.
It is shown that yeast tRNAPhe, chemically coupled by its oxidized 3′CpCpA end behaves exactly as free tRNAPhe in its ability to form a specific complex with E. coli tRNA2Glu having a complementary anticodon. The results support models of tRNA in which the 3′CpCpAOH end and the anticodon are not closely associated in the tertiary structure, and provide a convenient tool of general use to characterize others pairs of tRNA having complementary anticodons, as well as for highly selective purification of certain tRNA species.  相似文献   

17.
Transfer RNA from Escherichia coli C6, a Met, Cys, relA mutant, was previously shown to contain an altered tRNAIle which accumulates during cysteine starvation (Harris, C.L., Lui, L., Sakallah, S. and DeVore, R. (1983) J. Biol. Chem. 258, 7676–7683). We now report the purification of this altered tRNAIle and a comparison of its aminoacylation and chromatographic behavior and modified nucleoside content to that of tRNAIle purified from cells of the same strain grown in the presence of cysteine. Sulfur-deficient tRNAIle (from cysteine-starved cells) was found to have a 5-fold increased Vmax in aminoacylation compared to the normal isoacceptor. However, rates or extents of transfer of isoleucine from the [isoleucyl ∼ AMP · Ile-tRNA synthetase] complex were identical with these two tRNAs. Nitrocellulose binding studies suggested that the sulfur-deficient tRNAIle bound more efficiently to its synthetase compared to normal tRNAIle. Modified nucleoside analysis showed that these tRNAs contained identical amounts of all modified bases except for dihydrouridine and 4-thiouridine. Normal tRNAIle contains 1 mol 4-thiouridine and dihydrouridine per mol tRNA, while cysteine-starved tRNAIle contains 2 mol dihydrouridine per mol tRNA and is devoid of 4-thiouridine. Several lines of evidence are presented which show that 4-thiouridine can be removed or lost from normal tRNAIle without a change in aminoacylation properties. Further, tRNA isolated from E. coli C6 grown with glutathione instead of cysteine has a normal content of 4-thiouridine, but its tRNAIle has an increased rate of aminoacylation. We conclude that the low content of dihydrouridine in tRNAIle from E. coli cells grown in cysteine-containing medium is most likely responsible for the slow aminoacylation kinetics observed with this tRNA. The possibility that specific dihydrouridine residues in this tRNA might be necessary in establishing the correct conformation of tRNAIle for aminoacylation is discussed.  相似文献   

18.
Crystallization of tRNAs as Cetyltrimethylammonium Salts   总被引:2,自引:0,他引:2  
VARIOUS species of transfer RNA have been crystallized by controlled precipitation from aqueous solutions containing organic solvents or ammonium sulphate (reviewed in refs. 1 and 2). These methods have produced a great variety of crystal forms which, with a few exceptions3,4, are usually poorly ordered as judged by X-ray diffraction. This is probably because the interactions between molecules are few and rather nonspecific, making the crystal structure extremely sensitive to the crystallization conditions. For this reason, attempts have been made to crystallize tRNA as the cetyltrimethylammonium (CTA-) salt. The additional interaction between hydrophobic cetyl cations bound to the different molecules may stabilize the crystal lattice and have a positive effect on the crystallization process and therefore on the order of the crystals. We report here the production of crystals of CTA-salts of five different tRNAs; tRNAMetf, tRNAGlu, tRNAPhe, tRNATyr from E. coli and tRNAPhe from yeast. In the case of tRNAMetf, different crystal forms were obtained in the presence of different cations.  相似文献   

19.
Previous studies had shown that two principle forms of tyrosine transfer RNA of Drosophila melanogaster were present in wild-type adult flies but that the second form was virtually absent in a suppressor mutant, su(s)2. Current results are at variance with the previous ones, in that the suppressor mutant has significant amounts of the second form of tRNATyr. A second chromatography system for separating these forms of tRNATyr is described, RPC-5, and is compared to the system used previously, RPC-2. Both systems indicate that wild-type flies contain the two forms of tRNATyr in a ratio of 4060, the suppressor mutant in a ratio of 6040. The difference between current and previous results can be attributed to the procedures used in the preparation of the enzyme that is used as a source of tyrosyl-tRNA ligase. The enzyme activity can be separated into two fractions on DEAE-cellulose chromatography. With suppressor tRNA as substrate, one enzyme fraction charges both forms of tRNATyr but the second enzyme fraction charges the first form preferentially or nearly exclusively in some cases, as was seen in the previous experiments. With wild-type tRNA as substrate both enzyme fractions charge both forms of tRNATyr. Storage results in the loss of the enzyme's ability to discriminate against the second form of tRNATyr from the suppressor mutant, while the enzymatic activity is retained. We postulate that the su(s)+ locus produces an enzyme that modifies the second isoacceptor of tRNATyr and that, when such modification fails to occur (as in the su(s)2 mutant), the tRNA is unable to accept tyrosine from one form of tyrosyl-tRNA ligase. How the discrimination against the second isoacceptor by the ligase may be important metabolically is not apparent.  相似文献   

20.
An extract, prepared from the germinal vesicles of Xenopus oocytes, was capable of transcribing cloned T4 tRNA genes. The major product was identified as tRNASer, with some extra nucleotides from neighboring sequences in the tRNA cluster at both termini.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号