首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Escherichia coli B mutant strain CL1136 accumulates glycogen at a 3.4- to 4-fold greater rate than the parent E. coli B strain and contains an ADPglucose synthetase with altered kinetic and allosteric properties. The enzyme from CL1136 is less dependent on the allosteric activator, fructose 1,6-bisphosphate, for activity and less sensitive to inhibition by AMP than the parent strain enzyme. The structural gene, glgC, for the allosteric mutant enzyme was selected by colony hybridization and cloned into the bacterial plasmid pBR322 by insertion of the chromosomal DNA at the PstI site. One recombinant plasmid, designated pKG3, was isolated from the genomic library of CL1136 containing glgC. The cloned ADPglucose synthetase from the mutant CL1136 was expressed and characterized with respect to kinetic and allosteric properties and found to be identical to the enzyme purified from the CL1136 strain. The mutant glgC was then subcloned into pUC118/119 for dideoxy sequencing of both strands. The mutant glgC sequence was found to differ from the wild-type at the deduced amino acid residue 67 where a single point mutation resulted in a change from arginine to cysteine.  相似文献   

2.
An Escherichia coli B mutant, SG14, accumulates glycogen at 28% the rate observed for the parent E. coli B strain. The glycogen accumulated in the mutant is similar to the glycogen isolated from the parent strain with respect to alpha- and beta-amylosis, chain length determination, and I2-complex absorption spectra. The SG14 mutant contains normal glycogen synthase and branching enzyme activity but has an ADP-glucose pyrophosphorylase with altered kinetic and allosteric properties. The mutant enzyme has been partially purified and requires a 12-fold higher concentration of fructose-P2 or a 26 fold higher concentration of pyridoxal-P than the parent type enzyme for 50% of maximal allosteric activation. TPNH, an effective activator of the E. coli B enzyme, does not activate the SG14 ADP-glucose pyrophosphorylase. Other studies show that for the SG14 enzyme the concentrations of ATP and Mg2+ in the synthesis direction and the concentrations of ADP-glucose and PPi in the pyrophosphorolysis direction required to give 50% of maximal activity are 3- to 6-fold higher than those observed for the parent E. coli B ADP-glucose pyrophosphorylase. The Km for alpha-glucose-1-P at saturating to half-saturating concentrations of the activator, fructose-P2, are about the same for both enzymes. However, in the presence of no activator, the concentration of glucose-1-P required for half-maximal activity is about 1.8-fold higher for the SG14 enzyme. Thus SG14 ADP-glucose pyrophosphorylase has lower affinity for its substrates than does the parent enzyme. Previously the SG14 enzyme had been shown to be less sensitive to inhibition by 5'-AMP than the E. coli B enzyme. This ensensitivity to inhibition renders the SG14 enzyme less responsive to energy charge than the E. coli B ADP-glucose pyrophosphorylase. On the basis of the above results and taking into account the reported concentrations of fructose-P2, of pyridoxal-P, and of the adenine nucleotide pool and its energy charge in E. coli strains, it is concluded that furctose-P2 is the important physiological allosteric activator of E. coli ADP-glucose pyrophosphorylase. Furthermore, the 1.7-fold increased rate of accumulation of glycogen observed when E. coli B or SG14 shifts from exponential phase to stationary phase of growth in nitrogen-limiting media can be accounted for by the 2.4-fold increase of the levels of the glycogen biosynthetic enzymes, glycogen synthase, and ADP-glucose pyrophosphorylase. Thus both allosteric regulation of the ADP-glucose pyrophosphorylase as well as the genetic regulation of the biosynthesis of the glycogen biosynthetic enzymes are involved in the regulation of glycogen accumulation in E. coli B.  相似文献   

3.
A mutant strain of Escherichia coli K-12, designated 618, accumulates glycogen at a faster rate than wild-type strain 356. The mutation affects the ADPglucose pyrophosphorylase regulatory properties (N. Creuzat-Sigal, M. Latil-Damotte, J. Cattaneo, and J. Puig, p. 647-680, in R. Piras and H. G. Pontis, ed., Biochemistry of the Glycocide Linkage, 1972). The enzyme is less dependent on the activator, fructose 1,6 bis-phosphate for activity and is less sensitive to inhibition by the inhibitor, 5'-AMP. The structural gene, glgC, for this allosteric mutant enzyme was cloned into the bacterial plasmid pBR322 by inserting the chromosomal DNA at the PstI site. The glycogen biosynthetic genes were selected by cotransformation of the neighboring asd gene into an E. coli mutant also defective in branching enzyme (glgB) activity. Two recombinant plasmids, pEBL1 and pEBL3, that had PstI chromosomal DNA inserts containing glgC and glgB were isolated. Branching enzyme and ADPglucose pyrophosphorylase activities were increased 240- and 40-fold, respectively, in the asd glgB mutant, E. coli K-12 6281. The E. coli K-12 618 mutant glgC gene product was characterized after transformation of an E. coli B ADPglucose pyrophosphorylase mutant with the recombinant plasmid pEBL3. The kinetic properties of the cloned ADPglucose pyrophosphorylase were similar to those of the E. coli K-12 618 enzyme. The inserted DNA in pEBL1 was arranged in opposite orientation to that in pEBL3.  相似文献   

4.
Regulation of bacterial glycogen synthesis   总被引:4,自引:0,他引:4  
The formation of the alpha 1,4 glucosidic linkages of bacterial glycogen occurs first by synthesis of ADPglucose from ATP and alpha glucose 1-P and then transfer of the glucose moiety from the formed sugar nucleotide to a pre-existing glucan primer. Unlike mammalian glycogen synthesis, regulation occurs at the synthesis of the sugar nucleotide. Generally glycolytic intermediates activate ADPglucose synthesis while AMP, ADP and/or Pi inhibit ADPglucose synthesis. A variation of activator specificity is is seen when the enzyme is isolated from different bacteria and is thought to be related to the predominant type of carbon assimilation or dissimilation pathways present in the particular organism. Evidence indicating that the allosteric activation effects observed in vitro are physiologically pertinent for the regulation of glycogen synthesis is reviewed. The recent experiments in identifying the allosteric activator site of the Escherichia coli ADPglucose pyrophosphorylase as well as other chemical modification studies identifying amino acid residues essential for allosteric activation and for catalytic activity are discussed. Evidence is also presented for the covalent modification of the Rhodopseudomonas sphaeroides ADPglucose pyrophosphorylase by bromopyruvate at its allosteric activator site. Regulation of the biosynthesis of glycogen also occurs at the genetic level and the current evidence for the existence of a glycogen operon is presented. In addition the current studies concerning the cloning of the DNA region containing the Escherichia coli structural genes coding for the glycogen biosynthetic enzymes as well as the nucleotide sequence of the E. coli ADPglucose pyrophosphorylase are presented.  相似文献   

5.
Fructose-1,6-bisphosphate activates ADP-glucose pyrophosphorylase and the synthesis of glycogen in Escherichia coli. Here, we show that although pyruvate is a weak activator by itself, it synergically enhances the fructose-1,6-bisphosphate activation. They increase the enzyme affinity for each other, and the combination increases V max, substrate apparent affinity, and decreases AMP inhibition. Our results indicate that there are two distinct interacting allosteric sites for activation. Hence, pyruvate modulates E. coli glycogen metabolism by orchestrating a functional network of allosteric regulators. We postulate that this novel dual activator mechanism increases the evolvability of ADP-glucose pyrophosphorylase and its related metabolic control.  相似文献   

6.
Pyridoxal-P can be covalently linked to E. coli B ADPglucose pyrophosphorylase by reduction with sodium borohydride. The modified enzyme is almost fully active when less than 1 mole of pyridoxal-P is incorporated per mole of enzyme subunit and is no longer dependent on the presence of allosteric activators in reaction mixtures for high activity. The allosteric activators, fructose-P2 or hexanediol 1,6 bisphosphate, decrease the incorporation of pyridoxal-P into enzyme suggesting that the pyridoxal-P is linked at or near the allosteric activator binding site. Acid hydrolysis of the modified enzyme yields pyridoxyllysine suggesting that the epsilon amino group of lysine is functional in the binding of the allosteric activators of the enzyme.  相似文献   

7.
Previous reports implicate UDPglucose as an active glucosyl donor for the unprimed reaction and “glucoprotein” formation in glycogen biosynthesis in Escherichia coli. Results presented here indicate that UDPglucose and GDPglucose are glucosyl donors in the primed and unprimed reactions catalyzed by purified E. coli B glycogen synthase at less than 5% the rate observed when ADPglucose is the donor. The unprimed reaction is stimulated by 0.25 m citrate and a high molecular weight product is formed similar to that produced when ADPglucose is the glucosyl donor. Physiological amounts of branching enzyme and high concentrations of glycogen inhibit transfer from UDPglucose and GDPglucose. In addition, transfer from UDPglucose is inhibited by ADPglucose. These results strongly suggest that ADPglucose is the physiological donor in both the primed and unprimed reactions. Furthermore, these and previously reported results suggest that one enzyme is involved in the catalysis of the primed, unprimed, and TCA-insoluble product formation reactions. Antiserum prepared against purified E. coli B glycogen synthase inactivates transfer of glucose from either ADPglucose or UDPglucose in the above reactions catalyzed by E. coli B crude extracts. Purified E. coli B glycogen synthase preparations contain significant amounts of α-glucan primer. Evidence shows that this glucan is not covalently attached to the enzyme. Results presented show that formation of material insoluble in TCA and previously considered to be due to “glucoprotein” formation, is in fact due to the generation of long chain length glucan molecules intrinsically acid insoluble. The data suggest that previous results purported to be de novo synthesis of glycogen are due to glucan associated with the glycogen synthase and not to formation of a “glucoprotein” intermediate which then acts as primer for further oligosaccharide synthesis.  相似文献   

8.
A mechanism of initiation of glycogen biosynthesis in Escherichia coli has been previously postulated: In a first step, the glucosyl groups would be transferred into an acceptor protein from UDPglucose or ADPglucose by two glucosyl transferases, distinct from the glycogen synthase. In this work, the activity of transfer from UDPglucose into a methanol-insoluble fraction could not be found in the crude extracts of six independently isolated glycogen synthase-deficient mutants of E. coli K-12. Purified E. coli K-12 glycogen synthase was able to catalyze the unprimed reaction from ADPglucose and UDPglucose but at a very low rate; the rate with UDPglucose is 6–7% the rate observed with ADPglucose. With these two substrates, the unprimed reaction was strongly stimulated by the simultaneous presence of salts and branching enzyme. However the activity with UDPglucose increased rapidly at low concentrations of branching enzyme and was inhibited at physiological concentrations whereas the activity with ADPglucose reached a maximum only at these concentrations. Consequently, the relative activities found with ADPglucose and UDPglucose varied with the branching enzyme concentration. Transfer from UDPglucose was inhibited by low concentrations of ADPglucose and high concentrations of glycogen. These results suggest that the same enzyme, namely the glycogen synthase, catalyzes the unprimed transfer from ADPglucose and UDPglucose and that ADPglucose is probably the most important physiological donor in glycogen biosynthesis in E. coli.  相似文献   

9.
A mutant of Arabidopsis thaliana lacking ADPglucose pyrophosphorylase activity (EC 2.7.7.27) was isolated (from a mutagenized population of plants) by screening for the absence of leaf starch. The mutant grows as vigorously as the wild type in continuous light but more slowly than the wild type in a 12 hours light/12 hours dark photoperiod. Genetic analysis showed that the deficiency of both starch and ADPglucose pyrophosphorylase activity were attributable to a single, nuclear, recessive mutation at a locus designated adg1. The absence of starch in the mutant demonstrates that starch synthesis in the chloroplast is entirely dependent on a pathway involving ADPglucose pyrophosphorylase. Analysis of leaf extracts by two-dimensional polyacrylamide gel electrophoresis followed by Western blotting experiments using antibodies specific for spinach ADPglucose pyrophosphorylase showed that two proteins, present in the wild type, were absent from the mutant. The heterozygous F1 progeny of a cross between the mutant and wild type had a specific activity of ADPglucose pyrophosphorylase indistinguishable from the wild type. These observations suggest that the mutation in the adg1 gene in TL25 might affect a regulatory locus.  相似文献   

10.
11.
The intercellular localization of enzymes involved in starch metabolism and the kinetic properties of ADPglucose pyrophosphorylase were studied in mesophyll protoplasts and bundle sheath strands separated by cellulase digestion of Zea mays L. leaves. Activities of starch synthase, branching enzyme, and ADPglucose pyrophosphorylase were higher in the bundle sheath, whereas the degradative enzymes, starch phosphorylase, and amylase were more evenly distributed and slightly higher in the mesophyll. ADPglucose pyrophosphorylase partially purified from the mesophyll and bundle sheath showed similar apparent affinities for Mg2+, ATP, and glucose-1-phosphate. The pH optimum of the bundle sheath enzyme (7.0-7.8) was lower than that of the mesophyll enzyme (7.8-8.2). The bundle sheath enzyme showed greater activation by 3-phosphoglycerate than did the mesophyll enzyme, and also showed somewhat higher apparent affinity for 3-phosphoglycerate and lower apparent affinity for the inhibitor, orthophosphate. The observed activities of starch metabolism pathway enzymes and the allosteric properties of the ADPglucose pyrophosphorylases appear to favor the synthesis of starch in the bundle sheath while restricting it in the mesophyll.  相似文献   

12.
The properties of the enzymes involved in the initiation of glycogen biosynthesis in Escherichia coli were studied.It was found that the enzymic activities which transfer the glycosyl residues from UDPglucose or ADPglucose for the glucoprotein synthesis had differing stabilities upon storage at 4°C.The small amount of glycogen and the saccharide firmly bound to the membrane preparation, were degraded during the storage period.The activity measured in fresh and in stored preparations gave different time dependence curves. The stored preparation had a lag period which could be due to the transfer of the first glucose units to the protein.Both UDPglucose and ADPglucose: protein glucosyltransferases were affected in different ways by detergents.Based on the results presented, it may be concluded that both enzymatic activities are due to different enzymes. Furthermore, both enzymatic activities are different from that which transfers glucose from ADPglucose to glycogen.The following mechanism for the de novo synthesis is suggested. Glycogen in E. coli could be initiated by two different enzymes which transfer glucose to a protein acceptor either from UDPglucose or ADPglucose. Once the saccharide linked to the protein has reached a certain size it is almost exclusively enlarged by another ADPglucose-dependent enzyme. The participation of branching enzyme will produce a polysaccharide with the characteristics of glycogen.  相似文献   

13.
A starch deficient mutant of Arabidopsis thaliana (L.) Heynh. has been isolated in which leaf extracts contain only about 5% as much activity of ADPglucose pyrophosphorylase (EC 2.7.7.27) as the wild type. A single, nuclear mutation at a previously undescribed locus designated adg2 is responsible for the mutant phenotype. Although the mutant contained only 5% as much ADPglucose pyrophosphorylase activity as the wild type, it accumulated 40% as much starch when grown in a 12 hour photoperiod. The mutant also contained about 40% as much starch as the wild type when grown in continuous light, suggesting that the rate of synthesis regulates its steady state accumulation. Immunological analysis of leaf extracts using antibodies against the spinach 54 and 51 kilodalton (kD) ADPglucose pyrophosphorylase subunits indicated that the mutant is deficient in a cross-reactive 54 kD polypeptide and has only about 4% as much as the wild type of a cross-reactive 51 kD polypeptide. This result and genetic studies suggested that adg2 is a structural gene which codes for the 54 kD polypeptide, and provides the first functional evidence that the 54 kD polypeptide is a required component of the native ADPglucose pyrophosphorylase enzyme.  相似文献   

14.
ADPglucose pyrophosphorylase (EC 2.7.7.27) from the cyanobacteriumSynechocystis PCC 6803 was desensitized to the effects of allosteric ligands by treatment with the arginine reagent, phenylglyoxal. Enzyme modification by phenylglyoxal resulted in inactivation when the enzyme was assayed under 3P-glycerate-activated conditions. There was little loss of the catalytic activity assayed in the absence of activator. Pi, 3P-glycerate, and pyridoxal-P were able to protect the enzyme from inactivation, whereas substrates gave minimal protection. The protective effect exhibited by Pi and 3P-glycerate was dependent on effector concentration. MgCl2 enhanced the protection afforded by 3P-glycerate. The enzyme partially modified by phenylglyoxal was more resistant to 3P-glycerate activation and Pi inhibition than the unmodified form.V max at saturating 3P-glycerate concentrations and the apparent affinity of the enzyme toward Pi were decreased upon phenylglyoxal modification. Incorporation of labeled phenylglyoxal into the enzyme was proportional to the loss of activity. Pi and 3P-glycerate nearly completely prevented incorporation of the reagent to the protein. Results suggest that one arginine residue per mol of enzyme subunit is involved in the binding of allosteric effector in the cyanobacterial ADPglucose pyrophosphorylase.  相似文献   

15.
ADPglucose pyrophosphorylase from developing endosperm tissue of starchy maize (Zea mays) was purified 88-fold to a specific activity of 34 micromoles α-glucose-1-P produced per minute per milligram protein. Rabbit antiserum to purified spinach leaf ADPglucose pyrophosphorylase was able to inhibit pyrophosphorolysis activity of the purified enzyme by up to 90%. The final preparation yielded four major protein staining bands following sodium dodecyl sulfate polyacrylamide gel electrophoresis. When analyzed by Western blot hybridization only the fastest migrating, 54 kilodaltons, protein staining band cross-reacted with affinity purified rabbit antispinach leaf ADPglucose pyrophosphorylase immunoglobulin. The molecular mass of the native enzyme was estimated to be 230 kilodaltons. Thus, maize endosperm ADPglucose pyrophosphorylase appears to be comprised of four subunits. This is in contrast to the respective subunit and native molecular masses of 96 and 400 kilodaltons reported for a preparation of maize endosperm ADPglucose pyrophosphorylase (Fuchs RL and JO Smith 1979 Biochim Biophys Acta 556: 40-48). Proteolytic degradation of maize endosperm ADPglucose pyrophosphorylase appears to occur during incubation of crude extracts at 30°C or during the partial purification of the enzyme according to a previously reported procedure (DB Dickinson, J Preiss 1969 Arch Biochem Biophys 130: 119-128). The progressive appearance of a 53 kilodalton antigenic peptide suggested the loss of a 1 kilodalton proteolytic fragment from the 54 kilodalton subunit. The complete conservation of the 54 kilodalton subunit structure following extraction of the enzyme in the presence of phenylmethylsulfonyl fluoride and/or chymostain was observed. The allosteric and catalytic properties of the partially purified proteolytic degraded versus nondegraded enzyme were compared. The major effect of proteolysis was to enhance enzyme activity in the absence of added activator while greatly decreasing its sensitivity to the allosteric effectors 3-P-glycerate and inorganic phosphate.  相似文献   

16.
ADPglucose pyrophosphorylase catalyzes the regulatory step in the pathway for bacterial glycogen synthesis. The enzymes from different organisms exhibit distinctive regulatory properties related to the main carbon metabolic pathway. Escherichia coli ADPglucose pyrophosphorylase is mainly activated by fructose 1,6-bisphosphate (FBP), whereas the Agrobacterium tumefaciens enzyme is activated by fructose 6-phosphate (F6P) and pyruvate. Little is known about the regions determining the specificity for the allosteric regulator. To study the function of different domains, two chimeric enzymes were constructed. "AE" contains the N-terminus (271 amino acids) of the A. tumefaciens ADPglucose pyrophosphorylase and the C-terminus (153 residues) of the E. coli enzyme, and "EA", the inverse construction. Expression of the recombinant wild-type and chimeric enzymes was performed using derivatives of the pET24a plasmid. Characterization of the purified chimeric enzymes showed that the C-terminus of the E. coli enzyme is relevant for the selectivity by FBP. However, this region seems to be less important for the specificity by F6P in the A. tumefaciens enzyme. The chimeric enzyme AE is activated by both FBP and F6P, neither of which affect EA. Pyruvate activates EA with higher apparent affinity than AE, suggesting that the C-terminus of the A. tumefaciens enzyme plays a role in the binding of this effector. The allosteric inhibitor site is apparently disrupted, as a marked desensitization toward AMP was observed in the chimeric enzymes.  相似文献   

17.
Nitrosomonas europaea is a chemolithoautotroph that obtains energy by oxidizing ammonia in the presence of oxygen and fixes CO2 via the Benson-Calvin cycle. Despite its environmental and evolutionary importance, very little is known about the regulation and metabolism of glycogen, a source of carbon and energy storage. Here, we cloned and heterologously expressed the genes coding for two major putative enzymes of the glycogen synthetic pathway in N. europaea, ADP-glucose pyrophosphorylase and glycogen synthase. In other bacteria, ADP-glucose pyrophosphorylase catalyzes the regulatory step of the synthetic pathway and glycogen synthase elongates the polymer. In starch synthesis in plants, homologous enzymes play similar roles. We purified to homogeneity the recombinant ADP-glucose pyrophosphorylase from N. europaea and characterized its kinetic, regulatory, and oligomeric properties. The enzyme was allosterically activated by pyruvate, oxaloacetate, and phosphoenolpyruvate and inhibited by AMP. It had a broad thermal and pH stability and used different divalent metal ions as cofactors. Depending on the cofactor, the enzyme was able to accept different nucleotides and sugar phosphates as alternative substrates. However, characterization of the recombinant glycogen synthase showed that only ADP-Glc elongates the polysaccharide, indicating that ATP and glucose-1-phosphate are the physiological substrates of the ADP-glucose pyrophosphorylase. The distinctive properties with respect to selectivity for substrates and activators of the ADP-glucose pyrophosphorylase were in good agreement with the metabolic routes operating in N. europaea, indicating an evolutionary adaptation. These unique properties place the enzyme in a category of its own within the family, highlighting the unique regulation in these organisms.  相似文献   

18.
ADP-glucose pyrophosphorylase is the enzyme responsible for the regulation of glycogen synthesis in bacteria. The enzyme N-terminal domain has a Rossmann-like fold with three neighbor loops facing the substrate ATP. In the Escherichia coli enzyme, one of those loops also faces the regulatory site containing Lys39, a residue involved in binding of the allosteric activator fructose-1,6-bisphosphate and its analog pyridoxal-phosphate. The other two loops contain Trp113 and Gln74, respectively, which are highly conserved among all the ADP-glucose pyrophosphorylases. Molecular modeling of the E. coli enzyme showed that binding of ATP correlates with conformational changes of the latter two loops, going from an open to a closed (substrate-bound) form. Alanine mutants of Trp113 or Gln74 did not change apparent affinities for the substrates, but they became insensitive to activation by fructose-1,6-bisphosphate. By capillary electrophoresis we found that the mutant enzymes still bind fructose-1,6-bisphosphate, with similar affinity as the wild type enzyme. Since the mutations did not alter binding of the activator, they must have disrupted the communication between the regulatory and the substrate sites. This agrees with a regulatory mechanism where the interaction with the allosteric activator triggers conformational changes at the level of loops containing residues Trp113 and Gln74.  相似文献   

19.
ADPglucose pyrophosphorylase from potato (Solanum tuberosum L.) tubers has been purified by hydrophobic chromatography on 3 aminopropyl-sepharose (Seph-C3-NH2). The purified preparation showed two closely associated protein-staining bands that coincided with enzyme activity stains. Only one major protein staining band was observed in sodium dodecyl sulfate polyacrylamide gel electrophoresis. The subunit molecular weight was determined to be 50,000. The molecular weight of the native enzyme was determined to be 200,000. The enzyme appeared to be a tetramer consisting of subunits of the same molecular weight. The subunit molecular weight of the enzyme is compared with previously reported subunit molecular weights of ADPglucose pyrophosphorylases from spinach leaf, maize endosperm, and various bacteria. ADPglucose synthesis from ATP and glucose 1-P is almost completely dependent on the presence of 3-P-glycerate and is inhibited by inorganic phosphate. The kinetic constants for the substrates and Mg2+ are reported. The enzyme Vmax is stimulated about 1.5- to 3-fold by 3 millimolar DTT. The significance of the activation by 3-P-glycerate and inhibition by inorganic phosphate ADPglucose synthesis catalyzed by the potato tuber enzyme is discussed.  相似文献   

20.
The structural genes of ADPglucose pyrophosphorylase (glgC) and glycogen synthase (glgA) from Salmonella typhimurium LT2 were cloned on a 5.8-kilobase-pair insert in the SalI site of pBR322. A single strand specific radioactive probe containing the N terminus of the Escherichia coli K-12 glgC gene in M13mp8 was used to hybridize against a S. typhimurium genomic library in lambda 1059. DNA from a plaque showing a positive hybridization signal was isolated, subcloned into pBR322, and transformed into E. coli K-12 RR1 and E. coli G6MD3 (a mutant with a deletion of the glg genes). Transformants were stained with iodine for the presence of glycogen. E. coli K-12 RR1 transformants stained dark brown, whereas G6MD3 transformants stained greenish yellow, and they both were shown to contain a 5.8-kilobase-pair insert in the SalI site of pBR322, designated pPL301. Enzyme assays of E. coli K-12 G6MD3 harboring pPL301 restored ADPglucose pyrophosphorylase and glycogen synthase activities. The specific activities of ADPglucose pyrophosphorylase and glycogen synthase in E. coli K-12 RR1(pPL301) were increased 6- to 7-fold and 13- to 15-fold, respectively. Immunological and kinetic studies showed that the expressed ADPglucose pyrophosphorylase activity in transformed E. coli K-12 G6MD3 cells was very similar to that of the wild-type enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号