首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Positive liposomes consisting of phosphatidylcholine, cholesterol and stearylamine and negatively charged liposomes consisting of phosphatidylcholine, cholesterol and phosphatidylserine, were double labelled with either 3H-labelled dipalmitoyl phosphatidylcholine and [14C]cholesterol or with [14C]cholesterol and [3H]methotrexate entrapped in the aqueous phase. The plasma levels and urinary excretion of radioactivity from sonicated and non-sonicated liposomes were then compared with the levels of radioactivity from free [3H]methotrexate during a 4 h experimental period after an initial intravenous injection in cynomolgous monkeys. Tissue uptake at the completion of the 4 h experimental period was also measured.It was found that plasma radioactivity from [3H]methotrexate and [14C]cholesterol in sonicated positive liposomes was cleared more slowly than from comparable non-sonicated liposomes, and considerably slower than from free [3H]methotrexate. Radioactivity from sonicated negative liposomes was cleared more rapidly than from positive sonicated liposomes. Positive liposomes captured considerably more [3H]methotrexate than negative liposomes and showed very low permeability to [3H]methotrexate in in vitro studies, even in the presence of high concentrations of serum.[14C]Cholesterol radioactivity was cleared more rapidly from plasma than 3H-radioactivity from liposome-entrapped [3H]methotrexate for double-labelled sonicated liposomes and generally showed greater uptake into tissues and red blood cells. 3H-labelled dipalmitoyl phosphatidylcholine in sonicated positive liposomes was cleared faster than [14C]cholesterol during the first 3 h. The more rapid disappearance of [14C]cholesterol from the plasma was complemented by greater uptake into a number of tissues, and positive non-sonicated liposomes were taken up to a greater extent by the spleen than equivalent sonicated liposomes.Renal excretion of 3H from liposome-entrapped [3H]methotrexate was considerably less than that of 3H from free [3H]methotrexate. There was insignificant excretion, however, of 14C from cholesterol in the urine.Entrapment in liposomes completely prevented the otherwise considerable breakdown of free methotrexate to 3H-containing products in plasma and partially prevented its breakdown in tissues.These studies indicate marked differences in the distribution of liposomes in vivo due to surface charge and size, and some degree of exchange of the lipid components of the liposome bilayer independent of the distribution of the entrapped species. They also show that entrapment in liposomes can reduce metabolic degradation of a drug, maintain high plasma levels and reduce its renal excretion.  相似文献   

2.
The in vitro interactions between negatively charged multilamellar liposomes and purified rat liver parenchymal and non-parenchymal cells were studied. The liposomes were labelled with [14C]cholesterol and contained [3H]methotrexate. For both cell types the time course of liposomal attachment to the cells slowed down gradually after a rapid initial phase lasting ca 90 min. The rate of attachment at 4 °C was 3–7 times lower than that at 37 °C, and the metabolic inhibitors dinitrophenol and iodoacetic acid caused reduction of 20–30%. Up to 45% of the cell-associated liposomal radioactivity could be detached within 1 h incubation with unlabelled liposomes. Whereas liver parenchymal cell suspension seemed to exhibit similar characteristics in vitro as in vivo, the non-parenchymal cells in vitro showed a 20–50-fold reduction in the rate of liposomal attachment compared to in vivo.  相似文献   

3.
Small unilamellar liposomes prepared from sphingomyelins with defined 14C-labeled fatty acids were studied after injection into rats. The liposomes contained trace amounts of [3H]cholesteryl linoleyl ether (CLE), which served as a nonexchangeable and nonhydrolyzable marker. The liposomes were cleared from the circulation with an initial t1/2 of about 90 min. [14C]18:0- and [14C]18:1-containing sphingomyelins were cleared at a similar rate, but [14C]18:2-sphingomyelin disappeared much faster. The liver accounted for up to 70% of [3H]cholesteryl ether injected with 18:0-sphingomyelin liposomes, and for up to 50% with liposomes prepared from 18:1 or 18:2-sphingomyelin. The initial uptake of the liver appeared to be of the entire particle, and the loss of 14C label with time indicated metabolism of the sphingomyelins. With [14C]18:0-sphingomyelin liposomes, up to 8% of liver radioactivity was recovered in neutral lipids 6 h after injection, and this value was 17 and 22% with [14C]18:2- and [14C]18:1-sphingomyelins, respectively. The recovery in 'carcass' of [3H]cholesteryl ether 3 h after injection of [14C]18:2-sphingomyelin liposomes was 33% and of 14C label, 21%. Injection of 18:1- or 18:2-sphingomyelin liposomes (5.4 mumol/100 g body weight) resulted in a 2-fold increase of plasma unesterified cholesterol; a 30% increase was seen with 18:0 liposomes (2.63 mumol/100 g body weight). In experiments with cultured cells, the unsaturated sphingomyelin liposomes alone enhanced cholesterol efflux more extensively than the saturated ones, but their efficacies became similar when mixed with apoprotein (apo) A-I. At equimolar concentration, apo C-III1 or C-III2 had a smaller effect than apo A-I. It is concluded that 18:1- or 18:2-sphingomyelin tends to form small unilamellar liposomes which may reach also extrahepatic tissues. The liposomes able to enhance cholesterol release in vitro and in vivo. Since they are not a substrate for lecithin-cholesterol acyltransferase, they should be able to deliver the free cholesterol to the liver, where they are also rapidly metabolized.  相似文献   

4.
A possible role for an acidic subcellular compartment in biosynthesis of lung surfactant phospholipids was evaluated with granular pneumocytes in primary culture. Incubation with chloroquine (100μm) was used to perturb this compartment. With control cells, incorporation of [9,10-3H]palmitic acid into total lipids and into total phosphatidylcholines increased linearly with time up to 4h. Total incorporation into phosphatidylcholine during a 1h incubation was 999+85pmol of [9,10-3H]palmitic acid, 458±18pmol of [1-14C]oleic acid and 252±15pmol of [U-14C]glucose per μg of phosphatidylcholine phosphorus. The cellular content of either disaturated phosphatidylcholine or total phosphatidylcholines did not change during a 2h incubation with chloroquine. In the presence of chloroquine, the specific radioactivity of [3H]palmitic acid in disaturated phosphatidylcholine increased by 40%, and that of disaturated-phosphatidylcholine fatty acids from [U-14C]glucose increased by 125%. Incorporation of [1-14C]oleic acid into phosphatidylcholine was decreased by chloroquine by 79% and 33% in the presence or absence of palmitic acid respectively. Chloroquine stimulated phospholipase activity in intact cells, and in sonicated cells at pH4.0, but not at pH8.5. The observations indicate that chloroquine stimulates synthesis of disaturated phosphatidylcholine in granular pneumocytes from fatty acids, both exogenous and synthesized de novo, which can be due to stimulation of acidic phospholipase. This stimulation of acidic phospholipase A activity by chloroquine appears to be coupled to the synthesis of disaturated phosphatidylcholine, thereby enhancing remodelling of phosphatidylcholine synthesized de novo. Our findings, therefore, implicate the involvement of an acidic subcellular compartment in the remodelling pathway of disaturated phosphatidylcholine synthesis by granular pneumocytes.  相似文献   

5.
Cholesterol readily exchanges between human skin fibroblasts and unilamellar phospholipid vesicles. Only a fraction of the exchangeable cholesterol and only 10–15% of the total cellular free cholesterol is available for net movement or depletion to cholesterol-free phosphatidylcholine vesicles. [14C]Cholesterol introduced into the fibroblast plasma membrane by exchange from lipid vesicles does not readily equilibrate with fibroblast cholesterol labelled endogenously from [3H]mevalonic acid. While endogenously-synthesized [3H]cholesterol readily becomes incorporated into a pool of esterified cholesterol, little, if any, of the [14C]cholesterol introduced into the fibroblast plasma membrane by exchange from lipid vesicles becomes available for esterification. We interpret these findings as suggesting that: (1) net cholesterol movement from fibroblasts to an acceptor membrane is limited to a small percentage of the plasma membrane cholesterol, and (2) separate pools of cholesterol exist in human skin fibroblasts, one associated with the plasma membrane and the second associated with intracellular membranes, and equilibration of cholesterol between the two pools is a very limited process.  相似文献   

6.
The interaction of sheep erythrocyte membranes with phosphatidylcholine vesicles (liposomes) or human plasma lipoproteins is described. Isolated sheep red cell membranes were incubated with liposomes containing [14C]phosphatidylcholine or [3H]phosphatidylcholine in the presence of EDTA. A time-dependent uptake of phosphatidylcholine into the membranes could be observed. The content of this phospholipid was increased from 2 to 5%. The rate of transfer was dependent on temperature, the amount of phosphatidylcholine present in the incubation mixture and on the fatty acid composition of the liposomal phosphatidylcholine. A possible adsorption of lipid vesicles to the membranes could be monitored by adding cholesteryl [14C]oleate to the liposomal preparation. As cholesterylesters are not transferred between membranes [1], it was possible to differentiate between transfer of phosphatidylcholine molecules from the liposomes into the membranes and adsorption of liposomes to the membranes. The phosphatidylcholine incorporated in the membranes was isolated, and its fatty acids were analysed by gas chromatography. It could be shown that there was a preferential transfer of phosphatidylcholine molecules containing two unsaturated fatty acids.  相似文献   

7.
Early responses of cholesterol metabolism to dietary cholesterol were compared between exogenous hypercholesterolemic (ExHC) and Sprague-Dawley rats. Both strains had a similar radioactivity of [14C]cholesterol in the serum half a day after the oral administration, but thereafter the radioactivity disappeared slowly in ExHC rats. ExHC rats promptly altered in response to the dietary cholesterol, activities of cholesterol 7α-hydroxylase and cholesterol synthesis in the liver and fecal excretion of bile acids derived from [14C]cholesterol administered orally. Lymphatic transport for 24 hr of [14C]cholesterol was similar between the strains. Triton administration resulted in a marked accumulation of cholesterol in serum d > 1.006 g/ml lipoproteins in ExHC rats; in addition, the formation of cholesteryl esters from [14C]oleic acid intravenously infused was greater in ExHC rats. These results indicate that ExHC rats increase serum cholesterol in response to exogenous cholesterol by decreasing the liver uptake and enhancing the secretion in the liver.  相似文献   

8.
Liposomes survive exposure to biological fluids poorly, extruding trapped enzymes, drugs, or solutes upon interaction with serum or plasma constituents. We have quantified the disruptive effects of human serum on liposomes and have studied whether various modifications in their phospholipid composition might produce liposomes with an increased carrier potential for applications in vivo. Multilamellar liposomes (phosphatidylcholine 70:dicetyl phosphate 20: cholesterol 10) were prepared with 3H-labeled phosphatidylcholine as the lipid phase marker and [14C]inulin and horseradish peroxidase as aqueous phase markers. Gel exclusion chromatography showed that 32 ± 3% of [14C]inulin and 27 ± 7% of horseradish peroxidase were lost after 1 h incubation with 10% (v/v) human serum. Loss of aqueous solutes was reduced to 20 ± 5%/h and 17 ± 2%/h, respectively, after treatment with decomplemented serum (56°C, 30 min). Loss induced by serum was concentration and time dependent: to 57 ± 2% at 1 h and 67 ± 14% at 24 h, with 50% serum; plasma was slightly less perturbing whereas human serum albumin was not at all disruptive. By incorporating sphingomyelin (35 mol%) into multilamellar liposomes, the leakage of [14C]-inulin in the presence of 10% serum was reduced to 12 ± 4%/h; increasing the molar percentage of cholesterol to 35% also stabilized the lipid bilayers, reducing leakage to 20 ± 7%/h. Both small and large unilamellar vesicles could not be stabilized against serum-mediated leakage by the incorporation of sphingomyelin. The data suggest that cholesterol and sphingomyelin enhance liposomal integrity in the presence of serum or plasma and promise to yield enhanced survival of drug-laden lipid vesicles in biological fluids in vivo.  相似文献   

9.
[3H]Imipramine and [3H]cocaine were concentrated at membranes of liposomes prepared from phosphatidylcholine, cholesterol, and dicetylphosphate. This binding has an apparent dissociation constant in the micromolar range and a density close to 2 pmol/g of phosphatidylcholine. The potencies of various drugs in inhibiting the binding ot liposomes correlated only weakly with those in inhibiting the high-affinity binding of [3H]imipramine and [3H]cocaine to brain membranes. However, there was a highly significant correlation between the potencies of drugs in inhibiting binding to liposomes and their lipophilic character, indicating the involvement of hydrophobic bonding. Although the amounts of phosphatidylcholine and cholesterol in brain preparations in assays for high-affinity binding to brain membranes were in the same range as those used in our assays with liposomes, the inhibition of the high-affinity binding to brain membranes was only weakly dependent upon the lipophilicity of the inhibiting drug. These results indicate that lipophilicity is but one of the factors in the complex binding interactions between lipophilic substances and integral brain membranes. In addition, the results are in agreement with the suggestion that phosphatidylcholine and cholesterol are not the primary sites of high-affinity binding [3H]imipramine and [3H]cocaine to brain membranes, although it cannot be ruled out that these lipids have different properties in natural biological membranes and in artificial liposome membranes.  相似文献   

10.
We describe an attempt to incorporate a metabolically inert phospholipid analog into animal membranes, especially myelin, in vivo, with the view of eventual long-term membrane modification or membrane engineering. A sonicated suspension of a mixture of [14C] phosphatidylcholine and its dialkyl analog, [3H] tetradecyloctadecano(1)phosphocholine, was injected into the brain of weanling rats. Samples were counted of whole brain, myelin, liver, and carcass, at intervals from 1 to 63 days, and the composition of the extracted labeled lipid was determined by thin-layer chromatography. Both lipid labels were found to be cleared from the body at similar rates, but while phosphatidylcholine was metabolized within a day, with the label appearing mainly in the phosphatidylethanolamine fraction and in nonpolar lipids, the dialkylphosphatidylcholine remained intact, with retention in myelin of a small but almost constant amount for a month. Ways will have to be found to enhance uptake of the lipids by the brain.  相似文献   

11.
Small unilamellar vesicles consisting of sphingomyelin, cholesterol and phosphatidylserine in a molar ratio of 4:5:1 containing [3H]inulin as a marker of the aqueous space or [Me-14C]choline-labeled sphingomyelin as a marker of the lipid phase were injected intravenously into rats. After separation of the non-parenchymal cells into a Kupffer cell fraction and an endothelial cell fraction by elutriation centrifugation analysis of the radioactivity contents demonstrated that Kupffer cells were actively involved in the uptake of the vesicles whereas endothelial cells did not contribute at all. Uptake by total parenchymal cells was also substantial but, on a per cell base, significantly lower than that by the Kupffer cells. By comparising the fate of the [3H]inulin label and the [14C]sphingomyelin label it was concluded that release of liposomal lipid degradation products especially occurred from Kupffer cells rather than from parenchymal cells. In both cell types, however, substantial proportions of the 14C-label accumulated in the phosphatidylcholine fraction, indicating intracellular degradation of sphingomyelin and subsequent phosphatidylcholine synthesis. Treatment of the animals with the lysosomotropic agent chloroquine prior to liposome injection effectively blocked the conversion of the choline-labeled sphingomyelin into phosphatidylcholine in both cell types. This observation indicates that uptake of the vesicles occurred by way of an endocytic mechanism.  相似文献   

12.
13.
In the present study the tissue distribution of [3H]methotrexate was studied after intravenous injection of [3H]methotrexate-containing liposomes in normal and macrophage-depleted mice. Elimination of macrophages was performed by treatment with dichloromethylene diphosphonate- (DMDP)-containing liposomes. After thorough elimination of the macrophages from spleen and liver, by two intravenous injections of DMDP liposomes 6 and 4 days before tissue distribution studies, we found dramatic changes in the localization pattern of [3H]methotrexate liposomes in the blood, due to a decreased uptake of [3H]methotrexate liposomes by the DMDP liposome-treated liver. Because of the absence of these macrophages that are able to clear the blood of liposomes, and because of the resulting higher blood level of liposomes, we found an enhanced uptake of [3H]methotrexate liposomes by the spleen. It may be concluded that, in the spleen, apart from uptake of liposomes by macrophages, at least one other mechanism is responsible for the clearance of liposomes from the circulation. When comparing cholesterol-rich with cholesterol-poor liposomes, we found basically the same results, although uptake of cholesterol-rich liposomes by macrophages was smaller than that of cholesterol-poor liposomes, as found in several other studies. We suggest that pretreatment with DMDP liposomes can help to maintain a high level of intravenous-injected liposome-entrapped material in the blood, which otherwise would be removed by macrophages.  相似文献   

14.
In the present study the tissue distribution of [3H]methotrexate was studied after intravenous injection of [3H]methotrexate-containing liposomes in normal and macrophage-depleted mice. Elimination of macrophages was performed by treatment with dichloromethylene diphosphonate- (DMDP)-containing liposomes. After thorough elimination of the macrophages from spleen and liver, by two intravenous injections of DMDP liposomes 6 and 4 days before tissue distribution studies, we found dramatic changes in the localization pattern of [3H]methotrexate liposomes in the blood, due to a decreased uptake of [3H]methotrexate liposomes by the DMDP liposome-treated liver. Because of the absence of these macrophages that are able to clear the blood of liposomes, and because of the resulting higher blood level of liposomes, we found an enhanced uptake of [3H]methotrexate liposomes by the spleen. It may be concluded that, in the spleen, apart from uptake of liposomes by macrophages, at least one other mechanism is responsible for the clearance of liposomes from the circulation. When comparing cholesterol-rich with cholesterol-poor liposomes, we found basically the same results, although uptake of cholesterol-rich liposomes by macrophages was smaller than that of cholesterol-poor liposomes, as found in several other studies. We suggest that pretreatment with DMDP liposomes can help to maintain a high level of intravenous-injected liposome-entrapped material in the blood, which otherwise would be removed by macrophages.  相似文献   

15.
Abstract: The effect of increasing the cytoplasmic levels of various divalent cations on the release of [3H]acetylcholine ([3H]ACh) from synaptosomes was investigated. Synaptosomes prepared from rat brain and prelabeled with [3H]choline were incubated with liposomes containing Mg2+, Ca2+, Mn2+, Co2+, Sr2+, or Ba2+. This treatment allows the transfer of the aqueous contents of the liposomes to the cytoplasm of the synaptosomes. The efflux of radioactivity subsequent to this treatment was measured, and the relative proportions of [3H]ACh and [3H]choline were determined. The release of radioactivity from synaptosomes incubated with liposomes containing Mg2+, Mn2+, or Co2+ was not altered when compared with synaptosomes incubated either without liposomes or with liposomes containing isotonic K+/Na+. Synaptosomes incubated with liposomes containing Ca2+, Sr2+, or Ba2+, however, released significantly more radioactivity than did controls. Moreover, the released radioactivity consisted almost entirely of [3H]ACh. Liposomes containing either Ca2+ or Sr2+ were equally effective in promoting the release of [3H]ACh from synaptosomes, whereas liposomes containing Ba2+ were 2.5 times more effective in promoting the release of [3H]ACh than were liposomes containing either Ca2+ or Sr2+. Since liposomes introduce their aqueous contents into cytoplasm via a mechanism not involving plasma membrane channels, the increased release of [3H]ACh caused by liposomes containing Ca2+, Sr2+, or Ba2+ is attributable to an increase in the intrasynaptosomal concentration of these ions, and not to their passage through calcium channels.  相似文献   

16.
We have investigated the effect of the cholesterol content of small unilamellar liposomes composed of egg phosphatidylcholine (PC) and containing 6-carboxyfluorescein (6-CF) on the in-vivo fate of their radiolabelled PC (3H-PC) and tracer [1-14C]-cholesteryl oleate (14C-cholesteryl oleate) components. Chromatography of the blood plasma of mice at various times after injection with liposomes composed of equimolar amounts of PC and cholesterol (PCCHOL liposomes) showed a main peak (peak A) containing most 3H-PC, 14C-cholesteryl oleate and 6-CF and representing intact liposomes. With cholesterol- free liposomes (PC liposomes) on the other hand, there was increasing transfer of the two radiolabelled lipids from peak A to the subsequently eluted high density lipoproteins (HDL) (peak B) paralleled by increasing loss of liposomal stability as evidenced by 6-CF release. Studies on the rate of clearance of PCCHOL liposomes showed half-lives of 110 min (3H-PC) and 120 min (14C-cholesteryl oleate marker). Similar studies with PC liposomes revealed complex patterns of clearance evaluation of which was hampered by a number of observed or anticipated concurrent events: removal of liposomes by tissues, transfer of PC and cholesteryl oleate to HDL, clearance of HDL and donation of the two lipids by HDL to, or their exchange with lipids of, tissues.  相似文献   

17.
Liposomes prepared with cholesterol and dipalmitoyl phosphatidylcholine were incubated with a clone of normal rat kidney fibroblast of cells in culture. The cells took up [14C]cholesterol in proportion to the concentration of liposomes in the incubation medium, and the uptake increased with time over the four hours of study. Two cell membrane enzymes, adenylate cyclase and (Na+ + K+)-ATPase, exhibited decreased activity after treatment with cholesterol-containing liposomes. The decrease in adenylate cyclase activity was directly proportional to the uptake of [14C]cholesterol. When a variety of subclones of NRK 5W were examined some were found to respond to cholesterol treatment and some did not. These data are consistent with the view that membrane cholesterol content plays a role in controlling the activity of some plasma membrane enzymes.  相似文献   

18.
We compared the metabolic fate of [3H]cholesteryl[14C]oleate, [3H]cholesteryl hexadecylether, 125I-labeled bovine serum albumin and [3H]inulin as constituents of large immunoglobulin-coupled unilamellar lipid vesicles following their internalization by rat liver macrophages (Kupffer cells) in monolayer culture. Under serum-free conditions, the cholesteryl oleate that is taken up is hydrolyzed, for the greater part, within 2 h. This occurs in the lysosomal compartment as judged by the inhibitory effect of the lysosomotropic agents monensin and chloroquin. After hydrolysis, the cholesterol moiety is accommodated in the cellular pool of free cholesterol and the oleate is reutilized for the synthesis mainly of phospholipids and, to a lesser extent of triacylglycerols. During incubation in plasma, however, substantial proportions of both the cholesterol and the oleate are shed from the cells, predominantly in the unesterified form. When the liposomes are labeled with the cholesteryl ester analog [3H]cholesteryl hexadecylether only a very small fraction of the label is released from the cells, even in the presence of plasma. Similar to the label remaining associated with the cells, the released label is identified in that case as unchanged cholesteryl ether. The liposomal aqueous phase marker 125I-labeled bovine serum albumin is also readily degraded intralysosomally and the radioactive label is rapidly released from the cells in a trichloroacetic acid-soluble form. Also, as much as 20% of the aqueous phase marker [3H]inulin that becomes cell-associated during a 2-h incubation with inulin-containing liposomes, is released from the cells during a subsequent 4-h incubation period in medium or rat plasma. The usefulness of the various liposomal labels as parameters of liposome uptake and intracellular processing is discussed.  相似文献   

19.
Purified phosphatidylcholine exchange protein from bovine liver was used to exchange [14C]dipalmitoyl phosphatidylcholine from sonicated vesicles to human plasma very low density lipoproteins (VLDL). The exchange of [14C]-dipalmitoyl phosphatidylcholine for VLDL phospholipids was temperature dependent and linear with respect to time and amount of exchange protein. In the absence of the exchange protein, less than 10% of the [14C]dipalmitoyl phosphatidylcholine was transferred. At an initial weight ratio of [14C]-dipalmitoyl phosphatidylcholine vesicles to VLDL phospholipid (1.2 mg) of 2.2, the exchange protein (14 microgram) replaced 55% of the VLDL phospholipids with [14C]dipalmitoyl phosphatidylcholine in 15 min; VLDL protein and cholesterol content were unaltered. From these studies we conclude that the exchange protein is a useful method to alter the phospholipid composition of VLDL under conditions such that there is minimal perturbation of the lipoprotein.  相似文献   

20.
Uptake and processing of liposomal phospholipids by Kupffer cells in vitro   总被引:5,自引:0,他引:5  
We investigated the intracellular metabolic fate of [Me-14C]choline-labeled phosphatidylcholines and sphingomyelin taken up by rat Kupffer cells in maintenance culture during interaction with large unilamellar liposomes composed of cholesterol, labeled choline-phospholipid and phosphatidylserine (molar ration 5:4:1). With both labeled compounds only small proportions of water-soluble radioactivity were found to accumulate in the cells and in the culture medium, suggesting limited phospholipid degradation. However, after a lag period of 30 min progressively increasing proportions of cell-associated liposomal phospholipid were found to be converted to cellular phospholipid, nearly all of which was phosphatidylcholine. This conversion as well as the limited release of water-soluble label from the cells was inhibited by the lysosomotropic agents ammonium chloride and chloroquine. With [Me-14C]choline-labeled lysophosphatidylcholine, label was found to become cell-associated far in excess of an encapsulated liposomal label, [3H]inulin. Without a lag period virtually all of this was rapidly converted to phosphatidylcholine, a process which was not inhibited by the lysosomotropic agents. It is concluded that Kupffer cells, after endocytosis of liposomes, degrade the liposomal phospholipids effectively but reutilize the choline moiety for de novo synthesis of cellular phosphatidylcholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号