共查询到20条相似文献,搜索用时 0 毫秒
1.
Miriam A Shelef David A Bennin Nihad Yasmin Thomas F Warner Thomas Ludwig Hilary E Beggs Anna Huttenlocher 《Arthritis research & therapy》2014,16(5)
Introduction
Synovial fibroblasts invade cartilage and bone, leading to joint destruction in rheumatoid arthritis. However, the mechanisms that regulate synovial fibroblast invasion are not well understood. Focal adhesion kinase (FAK) has been implicated in cellular invasion in several cell types, and FAK inhibitors are in clinical trials for cancer treatment. Little is known about the role of FAK in inflammatory arthritis, but, given its expression in synovial tissue, its known role in invasion in other cells and the potential clinical availability of FAK inhibitors, it is important to determine if FAK contributes to synovial fibroblast invasion and inflammatory arthritis.Methods
After treatment with FAK inhibitors, invasiveness of human rheumatoid synovial fibroblasts was determined with Matrigel invasion chambers. Migration and focal matrix degradation, two components of cellular invasion, were assessed in FAK-inhibited rheumatoid synovial fibroblasts by transwell assay and microscopic examination of fluorescent gelatin degradation, respectively. Using mice with tumor necrosis factor α (TNFα)–induced arthritis in which fak could be inducibly deleted, invasion and migration by FAK-deficient murine arthritic synovial fibroblasts were determined as described above and arthritis was clinically and pathologically scored in FAK-deficient mice.Results
Inhibition of FAK in human rheumatoid synovial fibroblasts impaired cellular invasion and migration. Focal matrix degradation occurred both centrally and at focal adhesions, the latter being a novel site for matrix degradation in synovial fibroblasts, but degradation was unaltered with FAK inhibitors. Loss of FAK reduced invasion in murine arthritic synovial fibroblasts, but not migration or TNFα-induced arthritis severity and joint erosions.Conclusions
FAK inhibitors reduce synovial fibroblast invasion and migration, but synovial fibroblast migration and TNFα-induced arthritis do not rely on FAK itself. Thus, inhibition of FAK alone is unlikely to be sufficient to treat inflammatory arthritis, but current drugs that inhibit FAK may inhibit multiple factors, which could increase their efficacy in rheumatoid arthritis. 相似文献2.
He Z Ma WY Liu G Zhang Y Bode AM Dong Z 《The Journal of biological chemistry》2003,278(12):10588-10593
Arsenite is known to be an environmental human carcinogen. However, the mechanism of action of this compound in skin carcinogenesis is not completely clear. Here, we provide evidence that arsenite can induce phosphorylation of histone H3 at serine 10 in a time- and dose-dependent manner in JB6 Cl 41 cells. Arsenite induces phosphorylation of Akt1 at serine 473 and increases Akt1 activity. A dominant-negative mutant of Akt1 inhibits the arsenite-induced phosphorylation of histone H3 at serine 10. Additionally, active Akt1 kinase strongly phosphorylates histone H3 at serine 10 in vitro. The arsenite-induced phosphorylation of histone H3 at serine 10 was almost completely blocked by a dominant-negative mutant of extracellular signal-regulated kinase 2 and the mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor PD98059. N- or C-terminal mutant mitogen- and stress-activated protein kinase 1 or its inhibitor H89 had no effect on arsenite-induced phosphorylation of histone H3 at serine 10 in JB6 Cl 41 cells. However, cells deficient in p90 ribosomal S6 kinase 2 (Rsk2(-/-)) totally block this phosphorylation in a dose- and time-dependent manner. Taken together, these results suggested that arsenite-induced phosphorylation of histone H3 at serine 10 is mediated by Akt1, extracellular signal-regulated kinase 2 and p90 ribosomal S6 kinase 2 but not mitogen- and stress-activated protein kinase 1. 相似文献
3.
Elongation factor 2 kinase (eEF2k) phosphorylates and inactivates eEF2. Insulin induces dephosphorylation of eEF2 and inactivation of eEF2 kinase, and these effects are blocked by rapamycin, which inhibits the mammalian target of rapamycin, mTOR. However, the signalling mechanisms underlying these effects are unknown. Regulation of eEF2 phosphorylation and eEF2k activity is lost in cells in which phosphoinositide-dependent kinase 1 (PDK1) has been genetically knocked out. This is not due to loss of mTOR function since phosphorylation of another target of mTOR, initiation factor 4E-binding protein 1, is not defective. PDK1 is required for activation of members of the AGC kinase family; we show that two such kinases, p70 S6 kinase (regulated via mTOR) and p90(RSK1) (activated by Erk), phosphorylate eEF2k at a conserved serine and inhibit its activity. In response to insulin-like growth factor 1, which activates p70 S6 kinase but not Erk, regulation of eEF2 is blocked by rapamycin. In contrast, regulation of eEF2 by stimuli that activate Erk is insensitive to rapamycin, but blocked by inhibitors of MEK/Erk signalling, consistent with the involvement of p90(RSK1). 相似文献
4.
Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones. 相似文献
5.
6.
Sapkota GP Kieloch A Lizcano JM Lain S Arthur JS Williams MR Morrice N Deak M Alessi DR 《The Journal of biological chemistry》2001,276(22):19469-19482
Peutz-Jeghers syndrome is an inherited cancer syndrome that results in a greatly increased risk of developing tumors in those affected. The causative gene is a protein kinase termed LKB1, predicted to function as a tumor suppressor. The mechanism by which LKB1 is regulated in cells is not known. Here, we demonstrate that stimulation of Rat-2 or embryonic stem cells with activators of ERK1/2 or of cAMP-dependent protein kinase induced phosphorylation of endogenously expressed LKB1 at Ser(431). We present pharmacological and genetic evidence that p90(RSK) mediated this phosphorylation in response to agonists that activate ERK1/2 and that cAMP-dependent protein kinase mediated this phosphorylation in response to agonists that activate adenylate cyclase. Ser(431) of LKB1 lies adjacent to a putative prenylation motif, and we demonstrate that full-length LKB1 expressed in 293 cells was prenylated by addition of a farnesyl group to Cys(433). Our data suggest that phosphorylation of LKB1 at Ser(431) does not affect farnesylation and that farnesylation does not affect phosphorylation at Ser(431). Phosphorylation of LKB1 at Ser(431) did not alter the activity of LKB1 to phosphorylate itself or the tumor suppressor protein p53 or alter the amount of LKB1 associated with cell membranes. The reintroduction of wild-type LKB1 into a cancer cell line that lacks LKB1 suppressed growth, but mutants of LKB1 in which Ser(431) was mutated to Ala to prevent phosphorylation of LKB1 were ineffective in inhibiting growth. In contrast, a mutant of LKB1 that cannot be prenylated was still able to suppress the growth of cells. 相似文献
7.
Monocytes and macrophages play critical roles in innate host defense and are sensitive to mechanical stimuli. Tissue pressure is often altered in association with inflammation or infection. Low pressure (20 mmHg), equivalent to normal tissue pressure, increases phagocytosis by primary monocytes and PMA-differentiated THP-1 macrophages, in part by FAK and ERK inhibition and p38 activation. PI-3K is required for macrophage phagocytosis, but whether PI-3K mediates pressure-stimulated phagocytosis is not known. Furthermore, little is known about the role played by the PI-3K downstream Kinases, Akt, and p70 S6 kinase (p70S6K) in modulating macrophage phagocytosis. Thus, we studied the contribution of PI-3K, Akt, and p70S6K to pressure-increased serum-opsonized bead phagocytosis. Pressure-induced p85 PI-3K translocation from cytosolic to membrane fractions and increased Akt activation by 36.1 +/- 12.0% in THP-1 macrophages. LY294002 or Akt inhibitor IV abrogated pressure-stimulated but not basal phagocytosis. Basal Akt activation was inhibited 90% by LY294002 and 70% by Akt inhibitor IV. Each inhibitor prevented Akt activation by pressure. SiRNA targeted to Akt1, Akt2, or Akt3 reduced Akt1, Akt2, and Akt3 expression by 50%, 45%, and 40%, respectively. However, only Akt2SiRNA abrogated the pressure-stimulated phagocytosis without affecting basal. Pressure also activated mTOR and p70S6K. mTORSiRNA and p70S6K inhibition by rapamycin or p70S6KSiRNA blocked pressure-induced, but not basal, phagocytosis. Changes in tissue pressure during inflammation may regulate macrophage phagocytosis by activation of PI-3K, which activates Akt2, mTOR, and p70S6K. 相似文献
8.
An endogenous inhibitor of focal adhesion kinase blocks Rac1/JNK but not Ras/ERK-dependent signaling in vascular smooth muscle cells 总被引:4,自引:0,他引:4
Sundberg LJ Galante LM Bill HM Mack CP Taylor JM 《The Journal of biological chemistry》2003,278(32):29783-29791
Humoral factors and extracellular matrix are critical co-regulators of smooth muscle cell (SMC) migration and proliferation. We reported previously that focal adhesion kinase (FAK)-related non-kinase (FRNK) is expressed selectively in SMC and can inhibit platelet-derived growth factor BB homodimer (PDGF-BB)-induced proliferation and migration of SMC by attenuating FAK activity. The goal of the current studies was to identify the mechanism by which FAK/FRNK regulates SMC growth and migration in response to diverse mitogenic signals. Transient overexpression of FRNK in SMC attenuated autophosphorylation of FAK at Tyr-397, reduced Src family-dependent tyrosine phosphorylation of FAK at Tyr-576, Tyr-577, and Tyr-881, and reduced phosphorylation of the FAK/Src substrates Cas and paxillin. However, FRNK expression did not alter the magnitude or dynamics of ERK activation induced by PDGF-BB or angiotensin II. Instead, FRNK expression markedly attenuated PDGF-BB-, angiotensin II-, and integrin-stimulated Rac1 activity and attenuates downstream signaling to JNK. Importantly, constitutively active Rac1 rescued the proliferation defects in FRNK expressing cells. Based on these observations, we hypothesize that FAK activation is required to integrate integrin signals with those from receptor tyrosine kinases and G protein-coupled receptors through downstream activation of Rac1 and that in SMC, FRNK may control proliferation and migration by buffering FAK-dependent Rac1 activation. 相似文献
9.
Tschopp O Yang ZZ Brodbeck D Dummler BA Hemmings-Mieszczak M Watanabe T Michaelis T Frahm J Hemmings BA 《Development (Cambridge, England)》2005,132(13):2943-2954
Protein kinase B is implicated in many crucial cellular processes, such as metabolism, apoptosis and cell proliferation. In contrast to Pkb(alpha) and Pkb(beta)-deficient mice, Pkb(gamma)(-/-) mice are viable, show no growth retardation and display normal glucose metabolism. However, in adult Pkb(gamma)mutant mice, brain size and weight are dramatically reduced by about 25%. In vivo magnetic resonance imaging confirmed the reduction of Pkb(gamma)(-/-) brain volumes with a proportionally smaller ventricular system. Examination of the major brain structures revealed no anatomical malformations except for a pronounced thinning of white matter fibre connections in the corpus callosum. The reduction in brain weight of Pkb(gamma)(-/-) mice is caused, at least partially, by a significant reduction in both cell size and cell number. Our results provide novel insights into the physiological role of Pkb(gamma) and suggest a crucial role in postnatal brain development. 相似文献
10.
PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest 总被引:34,自引:0,他引:34
Liang J Zubovitz J Petrocelli T Kotchetkov R Connor MK Han K Lee JH Ciarallo S Catzavelos C Beniston R Franssen E Slingerland JM 《Nature medicine》2002,8(10):1153-1160
Mechanisms linking mitogenic and growth inhibitory cytokine signaling and the cell cycle have not been fully elucidated in either cancer or in normal cells. Here we show that activation of protein kinase B (PKB)/Akt, contributes to resistance to antiproliferative signals and breast cancer progression in part by impairing the nuclear import and action of p27. Akt transfection caused cytoplasmic p27 accumulation and resistance to cytokine-mediated G1 arrest. The nuclear localization signal of p27 contains an Akt consensus site at threonine 157, and p27 phosphorylation by Akt impaired its nuclear import in vitro. Akt phosphorylated wild-type p27 but not p27T157A. In cells transfected with constitutively active Akt(T308DS473D)(PKB(DD)), p27WT mislocalized to the cytoplasm, but p27T157A was nuclear. In cells with activated Akt, p27WT failed to cause G1 arrest, while the antiproliferative effect of p27T157A was not impaired. Cytoplasmic p27 was seen in 41% (52 of 128) of primary human breast cancers in conjunction with Akt activation and was correlated with a poor patient prognosis. Thus, we show a novel mechanism whereby Akt impairs p27 function that is associated with an aggressive phenotype in human breast cancer. 相似文献
11.
Activation of pyk2/related focal adhesion tyrosine kinase and focal adhesion kinase in cardiac remodeling 总被引:8,自引:0,他引:8
Melendez J Welch S Schaefer E Moravec CS Avraham S Avraham H Sussman MA 《The Journal of biological chemistry》2002,277(47):45203-45210
Cellular remodeling during progression of dilation involves focal adhesion contact reorganization. However, the signaling mechanisms and structural consequences leading to impaired cardiomyocyte adhesion are poorly defined. These events were studied in tropomodulin-overexpressing transgenic mice that develop dilated cardiomyopathy associated with chronic elevation of intracellular calcium. Analysis of tropomodulin-overexpressing transgenic hearts by immunoblot and confocal microscopy revealed activation and redistribution of signaling molecules known to regulate adhesion. Calcium-dependent pyk2/related focal adhesion tyrosine kinase (RAFTK) showed changes in expression and phosphorylation state, similar to changes observed for a related downstream target molecule of pyk2/RAFTK termed focal adhesion kinase. Paxillin, the target substrate molecule for focal adhesion kinase phosphorylation, was redistributed in tropomodulin-overexpressing transgenic hearts with enhanced paxillin phosphorylation and cleavage. Certain aspects of the in vivo signaling phenotype including increased paxillin phosphorylation could be recapitulated in vitro using neonatal rat cardiomyocytes infected with recombinant adenovirus to overexpress tropomodulin. In addition, increasing intracellular calcium levels with ionomycin induced pyk2/RAFTK phosphorylation, and adenovirally mediated expression of wild-type pyk2/RAFTK resulted in increased phospho-pyk2/RAFTK levels and concomitant paxillin phosphorylation. Collectively, these results delineate a cardiomyocyte signaling pathway associated with dilation that has potential relevance for cardiac remodeling, focal adhesion reorganization, and loss of contractility. 相似文献
12.
Protein kinase B (PKB or Akt) is a mitogen-regulated protein kinase involved in the protection of cells from apoptosis, the promotion of cell proliferation and diverse metabolic responses [1]. Its activation is initiated by the binding of 3' phosphorylated phosphoinositide lipids to its pleckstrin homology (PH) domain, resulting in the induction of activating phosphorylation at residues Thr308 and Ser473 by upstream kinases such as phosphoinositide-dependent protein kinase-1 (PDK1) [2]. Adhesion of epithelial cells to extracellular matrix leads to protection from apoptosis via the activation of phosphoinositide (PI) 3-kinase and Akt/PKB through an unknown mechanism [3] [4]. Here, we use the localisation of Akt/PKB within the cell to probe the sites of induction of PI 3-kinase activity. In fibroblasts, immunofluorescence microscopy showed that endogenous Akt/PKB localised to membrane ruffles at the outer edge of the cell following mitogen treatment as did green fluorescent protein (GFP) fusions with full-length Akt/PKB or its PH domain alone. In epithelial cells, the PH domain of Akt/PKB localised to sites of cell-cell and cell-matrix contact, distinct from focal contacts, even in the absence of serum. As this localisation was disrupted by PI 3-kinase inhibitory drugs and by mutations that inhibit interaction with phosphoinositides, it is likely to represent the sites of constitutive 3' phosphoinositide generation that provide a cellular survival signal. We propose that the attachment-induced, PI-3-kinase-mediated survival signal in epithelial cells is generated not only by cell-matrix interaction but also by cell-cell interaction. 相似文献
13.
14.
15.
The serine/threonine protein kinase Akt is a major signal transducer of the phosphoinositide 3-kinase (PI 3-K) pathway in all cells and tissues and plays a pivotal role in the maintenance of cellular processes including cell growth, proliferation, survival and metabolism. The frequent aberrant activation of the PI 3-K/Akt pathway in human cancer has made it an attractive therapeutic target. Numerous studies have provided a comprehensive understanding of the specific functions of Akt signaling in cancer cells as well as the surrounding tumor microenvironment and this has informed and enabled the development of therapeutic drugs to target both PI 3-K and Akt. However, recent studies have provided evidence for distinct functions of the three mammalian Akt isoforms, particularly with respect to the regulation of cell motility and metastasis of breast cancer. Here we discuss the mechanisms by which Akt signaling contributes to invasive migration and tumor metastasis, and highlight recent advances in our understanding of the contribution of the Akt pathway in the tumor-associated stroma. 相似文献
16.
B van den Blink J Branger S Weijer S H Deventer T van der Poll M P Peppelenbosch 《Molecular medicine (Cambridge, Mass.)》2001,7(11):755-760
BACKGROUND: All three major members of the MAPK family (i.e., p38 MAPK, p42/p44 MAPK, and c-Jun N terminal kinase (JNK)) have been shown to control cellular responses to inflammation in vitro. Therefore these kinases have been designated suitable targets for anti-inflammatory therapy. However, the extent to which these kinases are actually activated during inflammation in humans in vivo has not been investigated. We employed experimental human endotoxemia, a model of systemic inflammation, to address this question. MATERIALS AND METHODS: Male volunteers were intravenously infused with 4 ng/kg bw lipopolysaccharide (LPS). Directly before LPS infusion and up to 24 h thereafter, activation of p38 MAPK, p42/p44 MAPK and JNK was assessed in peripheral blood, using Western blot and in vitro kinase assays. RESULTS: We observed that LPS induced a strong but transient phosphorylation and activation of p38 MAPK and p42/p44 MAPK, maximal activity being reached after 1 hr of LPS infusion. Strikingly, no JNK phosphorylation or activation was detected under these circumstances. CONCLUSIONS: These results suggest that both inhibitors of p38 MAPK and p42/p44 MAPK but not JNK are potentially useful for anti-inflammatory therapy. 相似文献
17.
18.
Lin Y Brady MJ Wolanske K Holbert R Ruderman NB Yaney GC 《American journal of physiology. Endocrinology and metabolism》2002,283(2):E318-E325
Denervation has been shown to impair the ability of insulin to stimulate glycogen synthesis and, to a lesser extent, glucose transport in rat skeletal muscle. Insulin binding to its receptor, activation of the receptor tyrosine kinase and phosphatidylinositol 3'-kinase do not appear to be involved. On the other hand, it has been shown that denervation causes an increase in the total diacylglycerol (DAG) content and membrane-associated protein kinase C (PKC) activity. In this study, we further characterize these changes in PKC and assess other possible signaling abnormalities that might be related to the decrease of glycogen synthesis. The results reveal that PKC-epsilon and -theta;, but not -alpha or -zeta, are increased in the membrane fraction 24 h after denervation and that the timing of these changes parallels the impaired ability of insulin to stimulate glycogen synthesis. At 24 h, these changes were associated with a 65% decrease in glycogen synthase (GS) activity ratio and decreased electrophoretic mobility, indicative of phosphorylation in GS in muscles incubated in the absence of insulin. Incubation of the denervated soleus with insulin for 30 min minimally increased glucose incorporation into glycogen; however, it increased GS activity threefold, to a value still less than that of control muscle, and it eliminated the gel shift. In addition, insulin increased the apparent abundance of GS kinase (GSK)-3 and protein phosphatase (PP)1 alpha in the supernatant fraction of muscle homogenate to control values, and it caused the same increases in GSK-3 and Akt/protein kinase B (PKB) phosphorylation and Akt/PKB activity that it did in nondenervated muscle. No alterations in hexokinase I or II activity were observed after denervation; however, in agreement with a previous report, glucose 6-phosphate levels were diminished in 24-h-denervated soleus, and they did not increase after insulin stimulation. These results indicate that alterations in the distribution of PKC-epsilon and -theta; accompany the impairment of glycogen synthesis in the 24-h-denervated soleus. They also indicate that the basal rate of glycogen synthesis and its stimulation by insulin in these muscles are diminished despite a normal activation of Akt/PKB and phosphorylation of GSK-3. The significance of the observed alterations to GSK-3 and PP1 alpha distribution remain to be determined. 相似文献
19.
Sakae Tanaka Naoyuki Takahashi Nobuyuki Udagawa Hiroshi Murakami Ichiro Nakamura Takahide Kurokawa Tatsuo Suda 《Journal of cellular biochemistry》1995,58(4):424-435
Involvement of tyrosine phosphorylation in osteoclastic bone resorption was examined using osteoclast-like multinucleated cells prepared from co-cultures of mouse osteoblastic cells and bone marrow cells in the presence of 1α,25-dihydroxyvitamin D3. When osteoclast-like cells were plated on culture dishes in the presence of 10% fetal bovine serum, they were sharply stained in their peripheral region by anti-phosphotyrosine antibody. Western blot analysis revealed that 115-to 130-kD proteins were tyrosine-phosphorylated in osteoclast-like cells. Using immunoprecipitation and immunoblotting, one of the proteins with 115–130 kD was identified as focal adhesion kinase (p125FAK), a tyrosine kinase, which is localized in focal adhesions. Immunostaining with anti-p 125FAK antibody revealed that p125FAK was mainly localized at the periphery of osteoclast-like cells. Herbimycin A, a tyrosine kinase inhibitor, not only suppressed tyrosine phosphorylation of p125FAK but also changed the intracellular localization of p125FAK and disrupted a ringed structure of F-actin-containing podosomes in osteoclast-like cells. Antisense oligodeoxynucleotides to p125FAK inhibited dentine resorption by osteoclast-like cells, whereas sense oligodeoxynucleotides did not. These results suggest that p125FAK is involved in osteoclastic bone resorption and that tyrosine phosphorylation of p125FAK is critical for regulating osteoclast function. 相似文献
20.
Nicole H. Rogers Michael F. Hirshman Andrew S. Greenberg 《Biochemical and biophysical research communications》2009,382(4):646-187
Post-menopausal women exhibit decreases in circulating estrogen levels and whole body insulin sensitivity, suggesting that estrogen regulates skeletal muscle glucose disposal. Thus, we assessed whether estrogen stimulates glucose uptake or enhances insulin sensitivity in skeletal muscle. Ex vivo muscle stimulation with 17β-estradiol (10 nM) resulted in a rapid (?10 min) increase in the phosphorylation of Akt, AMP-activated protein kinase (AMPK), and TBC1D1/4, key signaling proteins that regulate glucose uptake in muscle. Treatment with the estrogen receptor antagonist, ICI 182,780, only partly inhibited signaling, suggesting both an estrogen receptor-dependent and independent mechanism of estradiol action. 17β-Estradiol did not stimulate ex vivo muscle [3H]-2-deoxyglucose uptake or enhance insulin-induced glucose uptake, demonstrating discordance between the estradiol-induced stimulation of signaling proteins and muscle glucose uptake. This study is the first to demonstrate that estradiol stimulates Akt, AMPK, and TBC1D1/4 in intact skeletal muscle, but surprisingly, estradiol does not stimulate muscle glucose uptake. 相似文献