首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
1. A passive penetration of (NH4)2 HPO4 or of K2HPO4+nigericin occurs in respiratory-inhibited liver mitochondria. Addition of succinate at the end of the passive swelling initiates a shrinkage phase which leads to restoration of the initial mitochondrial volume. The rate and time of onset of the active shrinkage depend on the degree of stretching of the mitochondrial membrane. The rate of active shrinkage increases proportionally to the concentration of nigericin while it is strongly inhibited by valinomycin. 2. A number of SH inhibitors such as N-ethylmaleimide, p-chloromercuribenzoate, p-chloromercuriphenylsulphonate, dithiobisnitrobenzoate, exert a marked enhancing effect on the rate of shrinkage. The enhancing effect parallels titration of the phosphate carrier and inhibition of the passive phosphate efflux. In contrast, mersalyl is a powerful inhibitor of the rate of active shrinkage. The inhibition parallels that on phosphate passive efflux and requires higher mersalyl concentrations in respect to inhibition of phosphate influx. 3. The active shrinkage is discussed in terms of (a) a mechanoenzyme, (b) an electrogenic proton pump and (c) a proton-driven Pi pump.  相似文献   

2.
1. Addition of succinate to valinomycin-treated mitochondria incubated in KCl causes a large electrolyte penetration. The process depends on a steady supply of energy and involves a continuous net extrusion of protons. Rates of respiration and of electrolyte penetration proceed in a parallel manner.2. A passive penetration of K+ salt of permeant anions occurs in respiratory-inhibited mitochondria after addition of valinomycin. Addition of succinate at the end of the passive swelling starts an active extrusion of anions and cations with restoration of the initial volume. The shrinkage is accompanied by a slow reuptake of protons. The initiation of the active shrinkage correlates with the degree of stretching of the inner membrane. The extrusion of electrolytes is inhibited by nigericin, while it is only slightly sensitive to variations of the valinomycin concentration larger than two orders of magnitude.3. Passive swelling and active shrinkage occurs also when K+ is replaced by a large variety of organic cations. The rate of organic cation penetration is enhanced by tetraphenylboron, while the rate of electrolyte extrusion is insensitive to variation of the tetraphenylboron concentration.4. Active shrinkage, either with K+ or organic cation salts, is inhibited by weak acids. The phosphate inhibition is removed by SH inhibitors. The active shrinkage is also inhibited by mersalyl to an extent of about 60%.5. Three models of active shrinkage are discussed: (a) mechanoprotein, (b) electrogenic proton pump, and (c) proton-driven cation anion pump.  相似文献   

3.
1. Addition of succinate to valinomycin-treated mitochondria incubated in KCL causes a large electrolyte penetration. The process depends on a steady supply of energy and involves a continuous net extrusion of protons. Rates of respiration and of electrolyte penetration proceed in a parallel manner. 2. A passive penetration of K+ salt of permeant anions occurs in respiratory-inhibited mitochondria after addition of valinomycin. Addition of succinate at the end of the passive swelling starts an active extrusion of anions and cations with restoration of the initial volume. The shrinkage is accompanied by a slow reuptake of protons. The initiation of the active shrinkage correlates with the degree of stretching of the inner membrane. The extrusion of electrolytes is inhibited by nigericin, while it is only slightly sensitive to variations of the valinomycin concentration larger than two orders of magnitude. 3. Passive swelling and active shrinkage occurs also when K+ is replaced by a large variety of organic cations. The rate of organic cation penetration is enhanced by tetraphenylboron, while the rate of electrolyte extrusion is insensitive to variation of the tetraphenylboron concentration. 4. Active shrinkage, either with K+ or organic cation salts, is inhibited by weak acids. The phosphate inhibition is removed by SH inhibitors. The active shrinkage is also inhibited by mersalyl to an extent of about 60%. 5. Three models of active shrinkage are discussed: (a) mechanoprotein, (b) electrogenic proton pump, and (c) proton-driven cation anion pump.  相似文献   

4.
Regulation of the mitochondrial adenine nucleotide pool size   总被引:1,自引:0,他引:1  
A mechanism by which normal adult rat liver mitochondria may regulate the matrix adenine nucleotide content was studied in vitro. If mitochondria were incubated with 1 mm ATP at 30 ° C in 225 mm sucrose, 2 mm K2HPO4, 5 mm MgCl2, and 10 mm Tris-Cl (pH 7.4), the adenine nucleotide pool size increased at a rate of 0.44 ± 0.02 nmol/mg mitochondrial protein/min. The rate of adenine nucleotide accumulation under these conditions was concentration dependent and specific for ATP or ADP; AMP was not taken up. The rate of net ADP uptake was 50–75% slower than that for ATP. The Km values for net uptake of ATP and ADP were 2.08 and 0.36 mm, respectively. Adenine nucleotide uptake was stoichiometrically dependent on Mg2+ and stimulated by inorganic phosphate. Net uptake was inhibited by n-ethylmaleimide, or mersalyl, but not by n-butylmalonate. Nigericin inhibited net uptake, but valinomycin did not. In the presence of uncouplers, net uptake was not only inhibited, but adenine nucleotide efflux was observed instead. Like uptake, uncoupler-induced efflux of adenine nucleotides was inhibited by mersalyl, indicating that a protein was required for net flux in either direction. Carboxyatractyloside, bongkrekic acid, or respiratory substrates reduced the rate of adenine nucleotide accumulation, however, this did not appear to be a direct inhibition of the transport process, but rather was probably related indirectly to an increase in the matrix ATPADP ratio. The collective properties of the transport mechanism(s) for adenine uptake and efflux were different from those which characterize any of the known transport systems. It is proposed that uptake and efflux operate to regulate the total matrix adenine nucleotide pool size: a constant pool size is maintained if the rates of uptake and efflux are equal. Transient alterations in the relative rates of uptake and efflux may occur in response to hormones or other metabolic signals, to bring about net changes in the pool size.  相似文献   

5.
A highly active phosphate transporter was extracted with octylglucoside from bovine heart submitochondrial particles that were first partially depleted of other membrane components. It was then partially purified by ammonium sulfate fractionation. After reconstitution of the transporter into liposomes prepared with a crude mixture of soybean phospholipids, the Pi/OH exchange, but not the Pi/Pi exchange, was stimulated three- to fourfold by valinomycin and nigericin in the presence of K+. Both Pi/OH and Pi/Pi exchange activities were sensitive to mercurials and other SH reagents. The rutamycin-sensitive ATPase complex from mitochondria was reconstituted together with the phosphate transporter and adenine nucleotide transporter into liposomes. After inhibition of externally located ATPase, the hydrolysis of ATP was sensitive to atractyloside and mersalyl.  相似文献   

6.
The mercurial mersalyl has little effect either on rapid Mg++ binding by isolated rat liver mitochondria or on the total Mg++ content of these organelles measured after 0.75 min of incubation at 20°C. The data do not support the previous suggestion that the increased permeability to K+ of mitochondria treated with mersalyl results from release of endogenous Mg++. An increased pH-dependence of unidirectional Mg++ flux into respiring rat liver mitochondria is suggested to arise indirectly from inhibition by mersalyl of pH shifts associated with exchanges of endogenous phosphate. In addition, mersalyl appears to have a stimulatory effect on Mg++ influx. Mersalyl also increases the average rate of unidirectional efflux of endogenous Mg++. The stimulatory effects of mersalyl on Mg++ flux are similar to, although quantitatively less than, the previously reported effects of mersalyl on mitochondrial K+ flux.  相似文献   

7.
Mitochondria from some plant tissues possess the ability to take up Ca2+ by a phosphate-dependent mechanism associated with a decrease in membrane potential, H+ extrusion, and increase in the rate of respiration (AE Vercesi, L Pereira da Silva, IS Martins, CF Bernardes, EGS Carnieri, MM Fagian [1989] In G Fiskum, ed, Cell Calcium Metabolism. Plenum Press, New York, pp 103-111). The present study reexamined the nature of the phosphate requirement in this process. The main observations are: (a) Respiration-coupled Ca2+ uptake by isolated corn (Zea mays var Maya Normal) mitochondria or carbonyl cyanide p-trifluoromethoxyphenylhydrazone-induced efflux of the cation from such mitochondria are sensitive to mersalyl and cannot be dissociated from the silmultaneous movement of phosphate in the same direction. (b) Ruthenium red-induced efflux is not affected by mersalyl and can occur in the absence of phosphate movement. (c) In Ca2+-loaded corn mitochondria, mersalyl causes net Ca2+ release unrelated to a decrease in membrane potential, probably due to an inhibition of Ca2+ cycling at the level of the influx pathway. It is concluded that corn mitochondria (and probably other plant mitochondria) do possess an electrophoretic influx pathway that appears to be a mersalyl-sensitive Ca2+/inorganic phosphate-symporter and a phosphate-independent efflux pathway possibly similar to the Na2+-independent Ca2+ efflux mechanism of vertebrate mitochondria, because it is not stimulated by Na+.  相似文献   

8.
Action of spermine on phosphate transport in liver mitochondria   总被引:1,自引:0,他引:1  
Spermine, at concentrations similar to those normally present in the cytosol of liver cells, facilitates the transport of phosphate into mitochondria and thus its accumulation within the matrix space. Both mersalyl and N-ethylmaleimide (NEM) inhibit phosphate influx either in the absence or in the presence of spermine. These inhibitors also inhibit, but only partially, the efflux from mitochondria of phosphate generated within the matrix space by the hydrolysis of ATP induced by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) or the valinomycin-K+ system. The inhibition of phosphate efflux by both mersalyl and NEM is almost completely removed, unlike that of phosphate influx, by spermine. The possibility that spermine may induce phosphate efflux by damaging mitochondrial membranes and consequently inducing an unspecific permeability to phosphate is excluded by the full restoration of transmembrane potential once FCCP has been removed by albumin. Since spermine does not react with either thiol groups or thiol group reagents, the simplest explanation of the reported results is that the pathway of phosphate efflux is distinct from that of phosphate influx.  相似文献   

9.
The tricarboxylate transport system located in the inner mitochondrial membrane was studied as an isolated protein reconstituted in proteoliposomes. The effects on the transport of citrate by various reagents, specific for different aminoacid residues, were analyzed. In the group of SH reagents, it was found that N-ethylmaleimide is an irreversible inhibitor of the citrate–citrate exchange, while HgCl2 and the mercurial mersalyl cause a rapid unidirectional efflux of citrate from liposomes. It was demonstrated that NEM and mercurials act on different SH groups. Dithioerythritol is not able to reverse the effect of mersalyl unless another reagent, pyridoxalphosphate, is present. Pyridoxalphosphate itself, a reagent specific for NH2 residues, is an effective inhibitor of citrate exchange transport, as measured in both influx and efflux, but it has no effect on the mercurial-induced efflux. The same behavior was observed with diethylpyrocarbonate, a reagent specific for histidine and tyrosine residues. Interestingly, a slow basic efflux of internal citrate, in the absence of countersubstrate, was observed in proteoliposomes. Because it is inhibited by the same reagents acting on the exchange process, it is deduced that it is catalyzed by the tricarboxylate carrier. The ability of the carrier to perform a uniport of the substrate suggests the presence of a single substrate binding site on the carrier protein. A preliminary kinetic approach indicates that such a transport model is compatible with this theory.  相似文献   

10.
The block in the electrogenic H+ efflux produced by protein synthesis inhibitors in corn root tissue can be released or by-passed by addition of fusicoccin or nigericin. The inhibition also lowers cell potential, and the release repolarizes. Associated with the inhibition of H+ efflux is inhibition of K+ influx and the growth of the root tip; fusicoccin partially relieves these inhibitions, but nigericin does not. The inhibition of H+ efflux which arises from blocking the proton channel of the ATPase by oligomycin or N,N′-dicyclohexylcarbodiimide can also be partially relieved by fusicoccin, but not by nigericin; the inhibition produced by diethylstilbestrol is not relieved by fusicoccin.  相似文献   

11.
Ca2+ efflux from rat liver mitochondria in the presence of glutamate is stimulated by a decrease in pH from 7.3 to 6.8 and the rate is dependent on the phosphate concentration. During Ca2+ (13 μm) uptake and release at low pH (+ phosphate), swelling is minimal, but a large oxidation of pyridine nucleotides and sustained membrane depolarization occurs. The depolarization (but not Ca2+ efflux) is reversed by ruthenium red. An absolute requirement for phosphate to support Ca2+ efflux is demonstrated by using acetate or lactate to support Ca2+ uptake (efflux is depressed at pH 6.8). Preincubation with mersalyl, to block phosphate movements, with subsequent phosphate addition preceeding Ca2+ uptake also inhibits efflux. β-Mercaptoethanol then stimulates efflux concomittent with membrane repolarization. Ca2+ efflux is not a simple result of collapse of ΔpH since nigericin inhibits phosphate transport and Ca2+ release. Following Ca2+ uptake at pH 6.8, respiratory inhibition occurs, but oxygen consumption coupled to ATP synthesis can be stimulated by succinate (+ rotenone). Addition of succinate allows reuptake of Ca2+, reduction of pyridine nucleotides, and repolarization of the membrane potential. Respiratory inhibition is also seen with nigericin, but no Ca2+ efflux is observed. Coupled respiration with glutamate is seen at pH 6.8 following Ca2+ uptake in the presence of lactate with subsequent addition of phosphate to promote Ca2+ efflux. We conclude that Ca2+ efflux is not a consequence of respiratory inhibition, but is mediated solely by phosphate movements. The inhibitory effect of Mg2+ on Ca2+ efflux is probably due to Mg2+-dependent inhibition of the Ca2+ diffusion potential so that the compensatory increase in ΔpH due to membrane depolarization does not occur and phosphate entry is slowed.  相似文献   

12.
Guido Zimmer 《BBA》1977,461(2):268-273
Dithionitrobenzoate has been used to titrate sulfhydryl groups of rat liver mitochondria in glutamate buffer, pH 7.4.Reaction with oligomycin and different SH reagents preceded the SH titration. Under these conditions it was found that 2-mercaptopropionylglycine and N-ethylmaleimide reacted in an oligomycin-sensitive manner, so that the control values (in the absence of SH reagent) were obtained.Similar concentrations of mersalyl and of N-(N-acetyl-4-sulfamoylphenyl) maleimide, in the presence of oligomycin, enhanced reactivity toward Nbs2.The concentration range of oligomycin-sensitive SH groups was thus defined between approx. 5 and 9 nmol reagent/mg mitochondrial protein.In this way, a differentiation between SH groups, which are implicated in phosphate transport and those, which react in an oligomycin-sensitive manner, and which are probably connected with the coupling mechanism, was achieved.  相似文献   

13.
Upon the addition of inorganic phosphate, isolated rat-heart mitochondria released endogenous adenine nucleotides. To elucidate the mechanism of this phosphate-induced efflux, we evaluated the relative roles of three inner mitochondrial membrane carriers: the adenine nucleotide translocase, the phosphate/hydroxyl exchanger, and the dicarboxylate carrier. Atractyloside (a specific inhibitor of the adenine nucleotide translocase) prevented this efflux, but did not inhibit mitochondrial swelling. Inhibitors of the phosphate/hydroxyl exchanger (200 microM n-ethylmaleimide and 10 microM mersalyl) did not inhibit phosphate-induced efflux. 200 microM mersalyl (which inhibited both the phosphate/hydroxyl exchanger and the dicarboxylate carrier) inhibited the rate of efflux approx. 65% Phenylsuccinate and 2-n-butylmalonate (inhibitors of the dicarboxylate carrier) partially inhibited phosphate-induced efflux and adenine nucleotide translocase activity. Mersalyl (200 microM) had no effect on adenine nucleotide translocase activity. Partial inhibition of the adenine nucleotide translocase by phenylsuccinate and butylmalonate could not explain the extent of inhibition of phosphate-efflux by these agents. Moreover, the rates of adenine nucleotide efflux in the presence of phenylsuccinate, butylmalonate, or mersalyl correlated well with the ability of these agents to inhibit succinate-supported respiration. We conclude that phosphate-induced efflux of adenine nucleotides from rat heart mitochondria occurs over the adenine nucleotide translocase, and that the site of action of the phosphate is not the phosphate/hydroxyl exchanger, but is likely the dicarboxylate carrier.  相似文献   

14.
The mechanism of phosphate permeation in purified bean mitochondria   总被引:1,自引:0,他引:1  
The permeability properties and mechanism of Pi transport wereinvestigated in purified bean mitochondria.
  1. Purified bean mitochondria are impermeable to small moleculesand ions. However, Pi, arsenate, acetate and formate can enterthe osmotically active space of bean mitochondria.
  2. Nigericinor the association of valinomycin and FCCP cause mitochondrialswelling in isoosmotic potassium phosphate.
  3. The SH-blockingreagents mersalyl, pHMB and NEM inhibit variousmitochondrialfunctions dependent on the translocation of Piand arsenateacross the membrane. These include the respirationstimulatedby ADP, Ca2++Pi, and K++valinomycin +Pi; the swellingin ammoniumphosphate medium and, in the presence of nigericin,in potassiumphosphate medium; the energy-linked yalinomycin-inducedswellingand the subsequent CICCP-induced shrinking. The uncoupler-stimulatedrespiration, as well as the other processes when acetate issubstituted for Pi, are not influenced by SH reagents.
  4. Mersalyland pHMB cause complete inhibition at about 20 nmoles/mgprotein,whereas, NEM is effective at about 1 µmole/mgprotein.The inhibition by mersalyl and pHMB, but not that byNEM, issigmoidal and reversed by 2-mercaptoethanol. Non-inhibitoryamounts of mersalyl protect the Pi transport from irreversibleinhibition by NEM.
  5. We concluded that a carrier-mediated transportsystem for Piis present in bean mitochondria, and that someof its propertiesare similar to the Pi carrier of animal mitochondria.
(Received June 5, 1975; )  相似文献   

15.
Unidirectional active and passive fluxes of 42K and 24Na were measured in red blood cells of ground squirrels (hibernators) and guinea pigs (nonhibernators). As temperature is lowered, "active" (ouabain-sensitive) K influx and Na efflux were more greatly diminished in guinea pig cells than in those of ground squirrels. The fraction of total K influx which is ouabain sensitive in red blood cells of ground squirrels was virtually constant at all temperatures, whereas it decreased abruptly in guinea pig cells as temperature was lowered. All the passive fluxes (i.e., Na influx, K efflux, and ouabain-insensitive K influx and Na efflux) decreased logarithmically with decrease in temperature in both species, but in ground squirrels the temperature dependence (Q10 2.5–3.0) was greater than in guinea pig (Q10 1.6–1.9). Thus, red blood cells of ground squirrel are able to resist loss of K and gain of Na at low temperature both because of relatively greater Na-K transport (than in cells of nonhibernators) and because of reduced passive leakage of ions.  相似文献   

16.
17.
The action of valinomycin in uncoupling corn mitochondria   总被引:14,自引:13,他引:1       下载免费PDF全文
Valinomycin in the presence of potassium is a potent uncoupler of corn (Zea mays L.) mitochondria, eliminating respiratory control. Valinomycin produces higher steady state potassium phosphate swelling which can be reversed to give active shrinkage if mersalyl is added to block the Pi/OH antiporter. Respiration declines concurrently. Uncouplers accelerate the shrinkage and restore the respiration. The same results can be obtained with sodium phosphate if gramicidin D is substituted as ionophore.  相似文献   

18.
The dithiol-reactive reagent phenylarsine oxide causes a pH-dependent stimulation of unidirectional K+ flux into respiring rat liver mitochondria. This stimulation is diminished by subsequent addition of either the dithiol 2,3-dimercaptopropanol or the monothiol 2-mercaptoethanol. In contrast, uncoupling by phenylarsine oxide is reversed by 2,3-dimercaptopropanol but not by 2-mercaptoethanol. The data suggest separate sites of interaction of phenylarsine oxide with mechanisms of K+ entry and ATP synthesis. Stimulatory effects of mersalyl and phenylarsine oxide on K+ influx are not additive. Thus PheASO and mersalyl may affect K+ influx at a common site. Pretreatment of the mitochondria with DCCD, which inhibits K+ influx, fails to alter sensitivity to PheAsO or mersalyl. Thus the DCCD binding site associated with the K+ influx mechanism appears to be separate from and independent of the sulfhydryl group(s) which mediate stimulation of K+ influx by PheAsO and mersalyl.PheAsO, like mersalyl, also increases the rate of unidirectional K+ efflux from respiring mitochondria. The combined presence of PheAsO plus mersalyl causes a greater stimulation of K+ efflux than is observed with either reagent alone.Abbreviations used: BAL, British AntilLewisite or 2,3-dimercaptopropanol; DCCD, dicyclohexylcarbodiimide; DBCT, dibutylchloromethyltin chloride; 2-ME, 2-mercaptoethanol; PheAsO, phenylarsine oxide.  相似文献   

19.
A highly active phosphate transporter was extracted with octylglucoside from bovine heart submitochondrial particles that were first partially depleted of other membrane components. It was then partially purified by ammonium sulfate fractionation. After reconstitution of the transporter into liposomes prepared with a crude mixture of soybean phospholipids, the Pi/OH exchange, but not the Pi/Pi exchange, was stimulated three- to fourfold by valinomycin and nigericin in the presence of K+. Both Pi/OH and Pi/Pi exchange activities were sensitive to mercurials and other SH reagents. The rutamycin-sensitive ATPase complex from mitochondria was reconstituted together with the phosphate transporter and adenine nucleotide transporter into liposomes. After inhibition of externally located ATPase, the hydrolysis of ATP was sensitive to atractyloside and mersalyl.  相似文献   

20.
The kinetic characteristics of the Na:K pump in high potassium (HK) and low potassium (LK) goat red cells were investigated after altering the intracellular cation concentrations. At low concentrations of intracellular K (Kc), increasing Kc at first stimulates the active K influx in HK cells, but at higher Kc the pump is inhibited. These results suggest that in HK cells Kc acts both at a stimulatory site at the inner aspect of the pump and by competition with intracellular Na (Nac) at the Na translocation sites. In LK cells, Kc inhibits the active K influx and the sensitivity of LK cells to inhibition is much greater than the sensitivity of HK cells. Exposure of LK cells to an antibody (anti-L), raised in an HK sheep by injection of LK sheep cells, increased the active K influx at any given Kc. The effect of the antibody was greater at higher intracellular K concentrations, and in cells with very low concentrations of K the antibody had little effect on the pump rate. The failure of anti-L to stimulate the pump in low Kc LK cells was not due to failure of the antibody to bind to the cells. Anti-L combining at the outer surface of the cell reduces the affinity of the pump at the inner surface for K at the inhibitory sites. The maximal pump rate in LK cells at optimal Na and K concentrations is less than the maximal pump rate of HK cells under the same circumstances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号