首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New mosquito control strategies centred on the modifying of populations require knowledge of existing population densities at release sites and an understanding of breeding site ecology. Using a quantitative pupal survey method, we investigated production of the dengue vector Aedes aegypti (L.) (Stegomyia aegypti) (Diptera: Culicidae) in Cairns, Queensland, Australia, and found that garden accoutrements represented the most common container type. Deliberately placed ‘sentinel’ containers were set at seven houses and sampled for pupae over 10 weeks during the wet season. Pupal production was approximately constant; tyres and buckets represented the most productive container types. Sentinel tyres produced the largest female mosquitoes, but were relatively rare in the field survey. We then used field‐collected data to make estimates of per premises population density using three different approaches. Estimates of female Ae. aegypti abundance per premises made using the container‐inhabiting mosquito simulation (CIMSiM) model [95% confidence interval (CI) 18.5–29.1 females] concorded reasonably well with estimates obtained using a standing crop calculation based on pupal collections (95% CI 8.8–22.5) and using BG‐Sentinel traps and a sampling rate correction factor (95% CI 6.2–35.2). By first describing local Ae. aegypti productivity, we were able to compare three separate population density estimates which provided similar results. We anticipate that this will provide researchers and health officials with several tools with which to make estimates of population densities.  相似文献   

2.

Background

Aedes aegypti (L.) is the primary vector of dengue, the most important arboviral infection globally. Until an effective vaccine is licensed and rigorously administered, Ae. aegypti control remains the principal tool in preventing and curtailing dengue transmission. Accurate predictions of vector populations are required to assess control methods and develop effective population reduction strategies. Ae. aegypti develops primarily in artificial water holding containers. Release recapture studies indicate that most adult Ae. aegypti do not disperse over long distances. We expect, therefore, that containers in an area of high development site density are more likely to be oviposition sites and to be more frequently used as oviposition sites than containers that are relatively isolated from other development sites. After accounting for individual container characteristics, containers more frequently used as oviposition sites are likely to produce adult mosquitoes consistently and at a higher rate. To this point, most studies of Ae. aegypti populations ignore the spatial density of larval development sites.

Methodology

Pupal surveys were carried out from 2004 to 2007 in rural Kamphaeng Phet, Thailand. In total, 84,840 samples of water holding containers were used to estimate model parameters. Regression modeling was used to assess the effect of larval development site density, access to piped water, and seasonal variation on container productivity. A varying-coefficients model was employed to account for the large differences in productivity between container types. A two-part modeling structure, called a hurdle model, accounts for the large number of zeroes and overdispersion present in pupal population counts.

Findings

The number of suitable larval development sites and their density in the environment were the primary determinants of the distribution and abundance of Ae. aegypti pupae. The productivity of most container types increased significantly as habitat density increased. An ecological approach, accounting for development site density, is appropriate for predicting Ae. aegypti population levels and developing efficient vector control programs.  相似文献   

3.
The oomycete Leptolegnia chapmanii has been identified as a potential control agent of the primary vector of dengue, Aedes aegypti. In our assays, the persistence and pathogenicity of a native isolate of L. chapmanii decreased over time regardless of location. However, the mortality of Ae. aegypti larvae was significantly lower (p < 0.05) in containers located outside without sun protection (89% at first week and 9% at sixth week) compared with the containers located indoors (97% at first week and 42% at sixth week) and outside with shade (89% at first week and 29% at sixth week) possibly because of exposure to sun radiation.  相似文献   

4.
Invasion by mosquito vectors of disease may impact the distribution of resident mosquitoes, resulting in novel patterns of vectors and concomitant risk for disease. One example of such an impact is the invasion by Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] (Diptera: Culicidae) of North America and this species' interaction with Aedes aegypti L. (Stegomyia aegypti L). We hypothesized that Ae. aegypti would be found in urban, coastal areas that experience hotter and drier conditions, whereas Ae. albopictus would be more commonly found in suburban and rural areas that are cooler and wetter. In addition, we hypothesized that Ae. aegypti would be more abundant early in the wet season, whereas Ae. albopictus would be more abundant later in the wet season. Urban areas were drier, hotter and contained more Ae. aegypti than suburban or rural areas. Aedes aegypti was relatively more abundant early in the wet season, whereas Ae. albopictus was more abundant in both the late wet season and the dry season. The spatial patterns of inter‐ and intraspecific encounters between these species were also described. The distribution of these mosquitoes is correlated with abiotic conditions, and with temperature, humidity and the relative availability of rain‐filled containers. Understanding the ecological determinants of species distribution can provide insight into the biology of these vectors and important information for their appropriate control.  相似文献   

5.

Background and Objectives

In the Peruvian Amazon, the dengue vector Aedes aegypti is abundant in large urban centers such as Iquitos. In recent years, it has also been found in a number of neighboring rural communities with similar climatic and socioeconomic conditions. To better understand Ae. aegypti spread, we compared characteristics of communities, houses, and containers in infested and uninfested communities.

Methods

We conducted pupal-demographic surveys and deployed ovitraps in 34 communities surrounding the city of Iquitos. Communities surveyed were located along two transects: the Amazon River and a 95km highway. We calculated entomological indices, mapped Ae. aegypti presence, and developed univariable and multivariable logistic regression models to predict Ae. aegypti presence at the community, household, or container level.

Results

Large communities closer to Iquitos were more likely to be infested with Ae. aegypti. Within infested communities, houses with Ae. aegypti had more passively-filled containers and were more often infested with other mosquito genera than houses without Ae. aegypti. For containers, large water tanks/drums and containers with solar exposure were more likely to be infested with Ae. aegypti. Maps of Ae. aegypti presence revealed a linear pattern of infestation along the highway, and a scattered pattern along the Amazon River. We also identified the geographical limit of Ae. aegypti expansion along the highway at 19.3 km south of Iquitos.

Conclusion

In the Peruvian Amazon, Ae. aegypti geographic spread is driven by human transportation networks along rivers and highways. Our results suggest that urban development and oviposition site availability drive Ae. aegypti colonization along roads. Along rivers, boat traffic is likely to drive long-distance dispersal via unintentional transport of mosquitoes on boats.  相似文献   

6.
Variability between Aedes aegypti populations in north Queensland, Australia, has the potential to impact the successful implementation of new population replacement mosquito releases for dengue control. Four Ae. aegypti colonies originating from different locations (Cairns, Mareeba, Innisfail, and Charters Towers), along with one F1 field‐derived population from Cairns, were inter‐crossed to determine any incompatibilities in copulation, insemination, and production of viable offspring. Greater copulation and insemination rates were observed when males recently introduced from the wild (‘Cairns‐Wild’ population) were mated with long‐term laboratory females. Egg viability rates for all crosses ranged from 90.2–98.2%, with no significant differences observed between crosses. Greater egg production was seen in some populations, and when corrected for wing‐length, egg production was greatest in a Mareeba x Innisfail cross (19.55 eggs/mm wing length) and lowest for the Charters Towers intra‐population cross (14.35 eggs/mm). Additionally, behavioral differences were observed between laboratory and wild mosquitoes from the Cairns location, suggesting possible laboratory conditioning. Finally, despite controlled larval rearing conditions, size differences between populations existed with Charters Towers mosquitoes consistently smaller than the other populations. The spread of genes or bacterial symbionts between these populations is unlikely to be hindered by pre‐existing reproductive barriers.  相似文献   

7.
Eleven microsatellite markers were used to determine the genetic population structure and spread of Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) in Pakistan using mosquitoes collected from 13 different cities. There is a single genetic cluster of Ae. aegypti in Pakistan with a pattern of isolation by distance within the population. The low level of isolation by distance suggests the long‐range passive dispersal of this mosquito, which may be facilitated by the tyre trade in Pakistan. A decrease in genetic diversity from south to north suggests a recent spread of this mosquito from Karachi. A strong negative correlation between genetic distance and the quality of road connections shows that populations in cities connected by better road networks are less differentiated, which suggests the human‐aided passive dispersal of Ae. aegypti in Pakistan. Dispersal on a large spatial scale may facilitate the strategy of introducing transgenic Ae. aegypti or intracellular bacteria such as Wolbachia to control the spread of dengue disease in Pakistan, but it also emphasizes the need for simple measures to control container breeding sites.  相似文献   

8.

Background

The reduced rainfall in southeast Australia has placed this region''s urban and rural communities on escalating water restrictions, with anthropogenic climate change forecasts suggesting that this drying trend will continue. To mitigate the stress this may place on domestic water supply, governments have encouraged the installation of large domestic water tanks in towns and cities throughout this region. These prospective stable mosquito larval sites create the possibility of the reintroduction of Ae. aegypti from Queensland, where it remains endemic, back into New South Wales and other populated centres in Australia, along with the associated emerging and re-emerging dengue risk if the virus was to be introduced.

Methodology/Principal Findings

Having collated the known distribution of Ae. aegypti in Australia, we built distributional models using a genetic algorithm to project Ae. aegypti''s distribution under today''s climate and under climate change scenarios for 2030 and 2050 and compared the outputs to published theoretical temperature limits. Incongruence identified between the models and theoretical temperature limits highlighted the difficulty of using point occurrence data to study a species whose distribution is mediated more by human activity than by climate. Synthesis of this data with dengue transmission climate limits in Australia derived from historical dengue epidemics suggested that a proliferation of domestic water storage tanks in Australia could result in another range expansion of Ae. aegypti which would present a risk of dengue transmission in most major cities during their warm summer months.

Conclusions/Significance

In the debate of the role climate change will play in the future range of dengue in Australia, we conclude that the increased risk of an Ae. aegypti range expansion in Australia would be due not directly to climate change but rather to human adaptation to the current and forecasted regional drying through the installation of large domestic water storing containers. The expansion of this efficient dengue vector presents both an emerging and re-emerging disease risk to Australia. Therefore, if the installation and maintenance of domestic water storage tanks is not tightly controlled, Ae. aegypti could expand its range again and cohabit with the majority of Australia''s population, presenting a high potential dengue transmission risk during our warm summers.  相似文献   

9.
A prospective field study was conducted to determine transovarial dengue‐virus transmission in two forms of Aedes aegypti mosquitoes in an urban district of Bangkok, Thailand. Immature Aedes mosquitoes were collected monthly for one year and reared continuously until adulthood in the laboratory. Mosquitoes assayed for dengue virus were processed in pools and their dengue virus infection status was determined by one‐step RT‐PCR and nested‐PCR methods. Of a total 15,457 newly emerged adult Ae. aegypti, 98.2% were dark and 1.8% of the pale form. The results showed that the minimum infection rate (MIR) by transovarial transmission (TOT) of dengue virus during the one‐year study ranged between 0 to 24.4/1,000 mosquitoes. Dengue virus TOT increased gradually during the hot summer months, reaching a peak in April‐June, while dengue cases peaked in September, a rainy month near the end of the rainy season. Therefore, mosquito infections due to TOT were prevalent four months before a high incidence of human infections. TOT dengue virus infections occurred in both forms of Ae. aegypti. All four dengue serotypes were detected, with DEN‐4 predominant, followed by DEN‐3, DEN‐1, and DEN‐2, respectively.  相似文献   

10.
Dengue represents an increasing public health burden worldwide. In Africa, underreporting and misdiagnosis often mask its true epidemiology, and dengue is likely to be both more widespread than reported data suggest and increasing in incidence and distribution. Wolbachia-based dengue control is underway in Asia and the Americas but has not to date been deployed in Africa. Due to the genetic heterogeneity of African Aedes aegypti populations and the complexity of the host-symbiont interactions, characterization of key parameters of Wolbachia-carrying mosquitoes is paramount for determining the potential of the system as a control tool for dengue in Africa. The wAlbB Wolbachia strain was stably introduced into an African Ae. aegypti population by introgression, and showed high intracellular density in whole bodies and different mosquito tissues; high intracellular density was also maintained following larval rearing at high temperatures. No effect on the adult lifespan induced by Wolbachia presence was detected. Moreover, the ability of this strain to strongly inhibit DENV-2 dissemination and transmission in the host was also demonstrated in the African background. Our findings suggest the potential of harnessing Wolbachia for dengue control for African populations of Ae. aegypti.  相似文献   

11.

Background

The domestic dengue vector Aedes aegypti mosquitoes breed in indoor containers. However, in northern peninsular Malaysia, they show equal preference for breeding in both indoor and outdoor habitats. To evaluate the epidemiological implications of this peridomestic adaptation, we examined whether Ae. aegypti exhibits decreased survival, gonotrophic activity, and fecundity due to lack of host availability and the changing breeding behavior.

Methodology/Principal Findings

This yearlong field surveillance identified Ae. aegypti breeding in outdoor containers on an enormous scale. Through a sequence of experiments incorporating outdoors and indoors adapting as well as adapted populations, we observed that indoors provided better environment for the survival of Ae. aegypti and the observed death patterns could be explained on the basis of a difference in body size. The duration of gonotrophic period was much shorter in large-bodied females. Fecundity tended to be greater in indoor acclimated females. We also found increased tendency to multiple feeding in outdoors adapted females, which were smaller in size compared to their outdoors breeding counterparts.

Conclusion/Significance

The data presented here suggest that acclimatization of Ae. aegypti to the outdoor environment may not decrease its lifespan or gonotrophic activity but rather increase breeding opportunities (increased number of discarded containers outdoors), the rate of larval development, but small body sizes at emergence. Size is likely to be correlated with disease transmission. In general, small size in Aedes females will favor increased blood-feeding frequency resulting in higher population sizes and disease occurrence.  相似文献   

12.
Mosquitoes transmit a diverse group of human flaviviruses including West Nile, dengue, yellow fever, and Zika viruses. Mosquitoes are also naturally infected with insect‐specific flaviviruses (ISFs), a subgroup of the family not capable of infecting vertebrates. Although ISFs are not medically important, they are capable of altering the mosquito's susceptibility to flaviviruses and may alter host fitness. Wolbachia is an endosymbiotic bacterium of insects that when present in mosquitoes limits the replication of co‐infecting pathogens, including flaviviruses. Artificially created Wolbachia‐infected Aedes aegypti mosquitoes are being released into the wild in a series of trials around the globe with the hope of interrupting dengue and Zika virus transmission from mosquitoes to humans. Our work investigated the effect of Wolbachia on ISF infection in wild‐caught Ae. aegypti mosquitoes from field release zones. All field mosquitoes were screened for the presence of ISFs using general degenerate flavivirus primers and their PCR amplicons sequenced. ISFs were found to be common and widely distributed in Ae. aegypti populations. Field mosquitoes consistently had higher ISF infection rates and viral loads compared to laboratory colony material indicating that environmental conditions may modulate ISF infection in Ae. aegypti. Surprisingly, higher ISF infection rates and loads were found in Wolbachia‐infected mosquitoes compared to the Wolbachia‐free mosquitoes. Our findings demonstrate that the symbiont is capable of manipulating the mosquito virome and that Wolbachia‐mediated viral inhibition is not universal for flaviviruses. This may have implications for the Wolbachia‐based DENV control strategy if ISFs confer fitness effects or alter mosquito susceptibility to other flaviviruses.  相似文献   

13.
Dengue outbreaks were first reported in East Africa in the late 1970s to early 1980s including the 1982 outbreak on the Kenyan coast. In 2011, dengue outbreaks occurred in Mandera in northern Kenya and subsequently in Mombasa city along the Kenyan coast in 2013–2014. Following laboratory confirmation of dengue fever cases, an entomologic investigation was conducted to establish the mosquito species, and densities, causing the outbreak. Affected parts of the city were identified with the help of public health officials. Adult Ae. aegypti mosquitoes were collected using various tools, processed and screened for dengue virus (DENV) by cell culture and RT-PCR. All containers in every accessible house and compound within affected suburbs were inspected for immatures. A total of 2,065 Ae. aegypti adults were collected and 192 houses and 1,676 containers inspected. An overall house index of 22%, container index, 31.0% (indoor = 19; outdoor = 43) and Breteau index, 270.1, were observed, suggesting that the risk of dengue transmission was high. Overall, jerry cans were the most productive containers (18%), followed by drums (17%), buckets (16%), tires (14%) and tanks (10%). However, each site had specific most-productive container-types such as tanks (17%) in Kizingo; Drums in Nyali (30%) and Changamwe (33%), plastic basins (35%) in Nyali-B and plastic buckets (81%) in Ganjoni. We recommend that for effective control of the dengue vector in Mombasa city, all container types would be targeted. Measures would include proper covering of water storage containers and eliminating discarded containers outdoors through a public participatory environmental clean-up exercise. Providing reliable piped water to all households would minimize the need for water storage and reduce aquatic habitats. Isolation of DENV from male Ae. aegypti mosquitoes is a first observation in Kenya and provides further evidence that transovarial transmission may have a role in DENV circulation and/or maintenance in the environment.  相似文献   

14.

Background

Dengue fever is reemerging on the island of Martinique and is a serious threat for the human population. During dengue epidemics, adult Aedes aegypti control with pyrethroid space sprays is implemented in order to rapidly reduce transmission. Unfortunately, vector control programs are facing operational challenges with the emergence of pyrethroid resistant Ae. aegypti populations.

Methodology/Principal Findings

To assess the impact of pyrethroid resistance on the efficacy of treatments, applications of deltamethrin and natural pyrethrins were performed with vehicle-mounted thermal foggers in 9 localities of Martinique, where Ae. aegypti populations are strongly resistant to pyrethroids. Efficacy was assessed by monitoring mortality rates of naturally resistant and laboratory susceptible mosquitoes placed in sentinel cages. Before, during and after spraying, larval and adult densities were estimated. Results showed high mortality rates of susceptible sentinel mosquitoes treated with deltamethrin while resistant mosquitoes exhibited very low mortality. There was no reduction of either larval or adult Ae. aegypti population densities after treatments.

Conclusions/Significance

This is the first documented evidence that pyrethroid resistance impedes dengue vector control using pyrethroid-based treatments. These results emphasize the need for alternative tools and strategies for dengue control programs.  相似文献   

15.
16.

Aedes aegypti (Linnaeus) was once highly prevalent across eastern Australia, resulting in epidemics of dengue fever. Drought conditions have led to a rapid rise in semi-permanent, urban water storage containers called rainwater tanks known to be critical larval habitat for the species. The presence of these larval habitats has increased the risk of establishment of highly urbanised, invasive mosquito vectors such as Ae. aegypti. Here we use a spatially explicit network model to examine the role that unsealed rainwater tanks may play in population connectivity of an Ae. aegypti invasion in suburbs of Brisbane, a major Australian city. We characterise movement between rainwater tanks as a diffusion-like process, limited by a maximum distance of movement, average life expectancy, and a probability that Ae. aegypti will cross wide open spaces such as roads. The simulation model was run against a number of scenarios that examined population spread through the rainwater tank network based on non-compliance rates of tanks (unsealed or sealed) and road grids. We show that Ae. aegypti tank infestation and population spread was greatest in areas of high tank density and road lengths were shortest e.g. cul-de-sacs. Rainwater tank non-compliance rates of over 30% show increased connectivity when compared to less than 10%, suggesting rainwater tanks non-compliance should be maintained under this level to minimize the spread of an invading Ae. aegypti population. These results presented as risk maps of Ae. aegypti spread across Brisbane, can assist health and government authorities on where to optimally target rainwater tank surveillance and educational activities.

  相似文献   

17.
Six mosquito species were identified in a survey of containers associated with 347 households in four villages in American Samoa. Aedes polynesiensis Marks (Diptera: Culicidae) and Aedes aegypti (L) were the most abundant species, representing 57% and 29% of the mosquitoes identified. Culex quinquefasciatus (Say), Culex annulirostris (Skuse), Aedes oceanicus (Belkin) and Toxorhynchites amboinensis (Doleschall) were also found. Aedes aegypti and Ae. polynesiensis showed distinct differences in their use of containers, preferring large and small containers, respectively. By contrast with previous studies, Ae. polynesiensis utilized domestic and natural containers with equal frequency, whereas Ae. aegypti continued to be found predominantly in domestic containers. Only 15% of containers holding immature mosquitoes included pupae and fewer than 10 Aedes spp. pupae were found in most containers with pupae. An estimated 2289 Ae. polynesiensis and 1640 Ae. aegypti pupae were found in 2258 containers. The presence of both species in the same container did not affect the mean density of either species for larvae or pupae. Glass jars, leaf axils, tree holes and seashells produced few Aedes spp. pupae in any of the study villages. Overall, 75% of Ae. polynesiensis pupae were found in buckets, ice-cream containers and tyres, with <7% being produced in natural containers, whereas 82% of Ae. aegypti pupae were found in 44-gallon (US) drums ( approximately 166L), buckets and tyres. Source reduction efforts targeting these container types may yield significant reductions in both Ae. polynesiensis and Ae. aegypti populations in American Samoa.  相似文献   

18.
Dengue occurs throughout the year in Hanoi, Vietnam, despite winter low temperatures <10°C. During July 2010 to March 2012, we surveyed monthly for Aedes larvae and pupae in 120 houses in 8 Hanoi districts. Aedes albopictus preferred discarded containers in summer and pupal density drastically decreased in winter. Aedes aegypti preferred concrete tanks and this preference increased in winter. Even in winter, the lowest water temperature found in concrete tanks was >14°C, exceeding the developmental zero point of Ae. aegypti. Although jars, drums and concrete tanks were the dominant containers previously (1994–97) in Hanoi, currently the percentage of residences with concrete tanks was still high while jars and drums were quite low. Our study showed that concrete tanks with broken lids allowing mosquitoes access were important winter refuge for Ae. aegypti. We also indicate a concern about concrete tanks serving as foci for Ae. aegypti to expand their distribution in cooler regions.  相似文献   

19.
In Cairns, Australia, the impacts on Aedes aegypti L. (Diptera: Culicidae) populations of two types of ‘lure & kill’ (L&K) lethal ovitraps (LOs), the standard lethal ovitrap (SLO) and the biodegradable lethal ovitrap (BLO) were measured during three mass‐trapping interventions. To assess the efficacy of the SLO, two interventions (one dry season and one wet season) were conducted in three discrete areas, each lasting 4 weeks, with the following treatments: (i) SLOs (>200 traps, ∼4/premise), BG‐sentinel traps (BGSs; ∼15, 1/premise) and larval control (container reduction and methoprene treatment) and (ii) larval control alone, and (iii) untreated control. Female Ae. aegypti populations were monitored for 4 weeks pre‐ and post‐treatment in all three areas using BGSs and sticky ovitraps (SOs) or non‐lethal regular ovitraps (ROs). In the dry season, 206 SLOs and 15 BGSs set at 54 and 15 houses, respectively, caught and killed an estimated 419 and 73 female Ae. aegypti, respectively. No significant decrease in collection size of female Ae. aegypti could be attributed to the treatments. In the wet season, 243 SLOs and 15 BGSs killed ∼993 and 119 female Ae. aegypti, respectively. The mean number of female Ae. aegypti collected after 4 weeks with SOs and BGSs was significantly less than the control (LSD post‐hoc test). The third mass‐trapping intervention was conducted using the BLO during the wet season in Cairns. For this trial, three treatment areas were each provided with BLOs (>500, ∼4/premise) plus larval control, and an untreated control area was designated. Adult female Ae. aegypti were collected for 4 weeks pre‐ and post‐treatment using 15 BGSs and 20 SOs. During this period, 53.2% of BLOs contained a total of 6654 Ae. aegypti eggs. Over the intervention period, collections of Ae. aegypti in the treatment areas were significantly less than in the control area for BGSs but not SOs. An influx of relatively large numbers of young females may have confounded the measurement of changes in populations of older females in these studies. This is an important issue, with implications for assessing delayed action control measures, such as LOs and parasites/pathogens that aim to change mosquito age structure. Finally, the high public acceptability of SLOs and BLOs, coupled with significant impacts on female Ae. aegypti populations in two of the three interventions reported here, suggest that mass trapping with SLOs and BLOs can be an effective component of a dengue control strategy.  相似文献   

20.

Background

Dengue fever, a mosquito-borne viral disease, is now the fastest spreading tropical disease globally. Previous studies indicate that climate and human behavior interact to influence dengue virus and vector (Aedes aegypti) population dynamics; however, the relative effects of these variables depends on local ecology and social context. We investigated the roles of climate and socio-ecological factors on Ae. aegypti population dynamics in Machala, a city in southern coastal Ecuador where dengue is hyper-endemic.

Methods/Principal findings

We studied two proximate urban localities where we monitored weekly Ae. aegypti oviposition activity (Nov. 2010-June 2011), conducted seasonal pupal surveys, and surveyed household to identify dengue risk factors. The results of this study provide evidence that Ae. aegypti population dynamics are influenced by social risk factors that vary by season and lagged climate variables that vary by locality. Best-fit models to predict the presence of Ae. aegypti pupae included parameters for household water storage practices, access to piped water, the number of households per property, condition of the house and patio, and knowledge and perceptions of dengue. Rainfall and minimum temperature were significant predictors of oviposition activity, although the effect of rainfall varied by locality due to differences in types of water storage containers.

Conclusions

These results indicate the potential to reduce the burden of dengue in this region by conducting focused vector control interventions that target high-risk households and containers in each season and by developing predictive models using climate and non-climate information. These findings provide the region''s public health sector with key information for conducting time and location-specific vector control campaigns, and highlight the importance of local socio-ecological studies to understand dengue dynamics. See Text S1 for an executive summary in Spanish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号