首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Oxidative stress during exercise: Implication of antioxidant nutrients   总被引:17,自引:0,他引:17  
Research evidence has accumulated in the past decade that strenuous aerobic exercise is associated with oxidative stress and tissue damage in the body. There is indication that generation of oxygen free radicals and other reactive oxygen species may be the underlying mechanism for exercise-induced oxidative damage, but a causal relationship remains to be established. Enzymatic and nonenzymatic antioxidants play a vital role in protecting tissues from excessive oxidative damage during exercise. Depletion of each of the antioxidant systems increases the vulnerability of various tissues and cellular components to reactive oxygen species. Because acute strenuous exercise and chronic exercise training increase the consumption of various antioxidants, it is conceivable that dietary supplementation of specific antioxidants would be beneficial.  相似文献   

2.
Free radicals derived from oxygen, nitrogen and sulphur molecules in the biological system are highly active to react with other molecules due to their unpaired electrons. These radicals are important part of groups of molecules called reactive oxygen/nitrogen species (ROS/RNS), which are produced during cellular metabolism and functional activities and have important roles in cell signalling, apoptosis, gene expression and ion transportation. However, excessive ROS attack bases in nucleic acids, amino acid side chains in proteins and double bonds in unsaturated fatty acids, and cause oxidative stress, which can damage DNA, RNA, proteins and lipids resulting in an increased risk for cardiovascular disease, cancer, autism and other diseases. Intracellular antioxidant enzymes and intake of dietary antioxidants may help to maintain an adequate antioxidant status in the body. In the past decades, new molecular techniques, cell cultures and animal models have been established to study the effects and mechanisms of antioxidants on ROS. The chemical and molecular approaches have been used to study the mechanism and kinetics of antioxidants and to identify new potent antioxidants. Antioxidants can decrease the oxidative damage directly via reacting with free radicals or indirectly by inhibiting the activity or expression of free radical generating enzymes or enhancing the activity or expression of intracellular antioxidant enzymes. The new chemical and cell-free biological system has been applied in dissecting the molecular action of antioxidants. This review focuses on the research approaches that have been used to study oxidative stress and antioxidants in lipid peroxidation, DNA damage, protein modification as well as enzyme activity, with emphasis on the chemical and cell-free biological system.  相似文献   

3.
Oxidative stress is observed during aging and in numerous age-related diseases. Dietary restriction (DR) is a regimen that protects against disease and extends life span in multiple species. However, it is unknown how DR mediates its protective effects. One prominent and consistent effect of DR in a number of systems is the ability to reduce oxidative stress and damage. The purpose of this review is to comprehensively examine the hypothesis that dietary restriction reduces oxidative stress in rodents by decreasing reactive oxygen species (ROS) production and increasing antioxidant enzyme activity, leading to an overall reduction of oxidative damage to macromolecules. The literature reveals that the effects of DR on oxidative stress are complex and likely influenced by a variety of factors, including sex, species, tissue examined, types of ROS and antioxidant enzymes examined, and duration of DR. Here we present a comprehensive review of the existing literature on the effect of DR on mitochondrial ROS generation, antioxidant enzymes, and oxidative damage. In a majority of studies, dietary restriction had little effect on mitochondrial ROS production or antioxidant activity. On the other hand, DR decreased oxidative damage in the majority of cases. Although the effects of DR on endogenous antioxidants are mixed, we find that glutathione levels are the most likely antioxidant to be increased by dietary restriction, which supports the emerging redox-stress hypothesis of aging.  相似文献   

4.
Reactive oxygen species (ROS) are important signaling molecules with regulatory functions, and in young and adult organisms, the formation of ROS is increased during skeletal muscle contractions. However, ROS can be deleterious to cells when not sufficiently counterbalanced by the antioxidant system. Aging is associated with accumulation of oxidative damage to lipids, DNA, and proteins. Given the pro-oxidant effect of skeletal muscle contractions, this effect of age could be a result of excessive ROS formation. We evaluated the effect of acute exercise on changes in blood redox state across the leg of young (23±1 years) and older (66±2 years) sedentary humans by measuring the whole blood concentration of the reduced (GSH) and oxidized (GSSG) forms of the antioxidant glutathione. To assess the role of physical activity, lifelong physically active older subjects (62±2 years) were included. Exercise increased the venous concentration of GSSG in an intensity-dependent manner in young sedentary subjects, suggesting an exercise-induced increase in ROS formation. In contrast, venous GSSG levels remained unaltered during exercise in the older sedentary and active groups despite a higher skeletal muscle expression of the superoxide-generating enzyme NADPH oxidase. Arterial concentration of GSH and expression of antioxidant enzymes in skeletal muscle of older active subjects were increased. The potential impairment in exercise-induced ROS formation may be an important mechanism underlying skeletal muscle and vascular dysfunction with sedentary aging. Lifelong physical activity upregulates antioxidant systems, which may be one of the mechanisms underlying the lack of exercise-induced increase in GSSG.  相似文献   

5.
The imbalance between the reactive oxygen (ROS) and nitrogen (RNS) species production and their handling by the antioxidant machinery (low molecular weight antioxidant molecules and antioxidant enzymes), also known as oxidative stress, is a condition caused by physiological and pathological processes. Moreover, oxidative stress may be due to an overproduction of free radicals during physical exercise. Excess of radical species leads to the modification of molecules, such as proteins – the most susceptible to oxidative modification – lipids and DNA. With regard to the oxidation of proteins, carbonylation is an oxidative modification that has been widely described. Several studies have detected changes in the total amount of protein carbonyls following different types of physical exercise, but only few of these identified the specific amino acidic residues targets of such oxidation. In this respect, proteomic approaches allow to identify the proteins susceptible to carbonylation and in many cases, it is also possible to identify the specific protein carbonylation sites. This review focuses on the role of protein oxidation, and specifically carbonyl formation, for plasma and skeletal muscle proteins, following different types of physical exercise performed at different intensities. Furthermore, we focused on the proteomic strategies used to identify the specific protein targets of carbonylation. Overall, our analysis suggests that regular physical activity promotes a protection against protein carbonylation, due to the activation of the antioxidant defence or of the turnover of protein carbonyls. However, we can conclude that from the comprehensive bibliography analysed, there is no clearly defined specific physiological role about this post-translational modification of proteins.  相似文献   

6.
Exercise causes oxidative stress only when exhaustive. Strenuous exercise causes oxidation of glutathione, release of cytosolic enzymes, and other signs of cell damage. However, there is increasing evidence that reactive oxygen species (ROS) not only are toxic but also play an important role in cell signaling and in the regulation of gene expression. Xanthine oxidase is involved in the generation of superoxide associated with exhaustive exercise. Allopurinol (an inhibitor of this enzyme) prevents muscle damage after exhaustive exercise, but also modifies cell signaling pathways associated with both moderate and exhaustive exercise in rats and humans. In gastrocnemius muscle from rats, exercise caused an activation of MAP kinases. This in turn activated the NF-kappaB pathway and consequently the expression of important enzymes associated with defense against ROS (superoxide dismutase) and adaptation to exercise (eNOS and iNOS). All these changes were abolished when ROS production was prevented by allopurinol. Thus ROS act as signals in exercise because decreasing their formation prevents activation of important signaling pathways that cause useful adaptations in cells. Because these signals result in an upregulation of powerful antioxidant enzymes, exercise itself can be considered an antioxidant. We have found that interfering with free radical metabolism with antioxidants may hamper useful adaptations to training.  相似文献   

7.
It is well known that oxidation caused by reactive oxygen species (ROS) is a major cause of cellular damage and death and has been implicated in cancer, neurodegenerative, and cardiovascular diseases. Small-molecule antioxidants containing sulfur and selenium can ameliorate oxidative damage, and cells employ multiple antioxidant mechanisms to prevent this cellular damage. However, current research has focused mainly on clinical, epidemiological, and in vivo studies with little emphasis on the antioxidant mechanisms responsible for observed sulfur and selenium antioxidant activities. In addition, the antioxidant properties of sulfur compounds are commonly compared to selenium antioxidant properties; however, sulfur and selenium antioxidant activities can be quite distinct, with each utilizing different antioxidant mechanisms to prevent oxidative cellular damage. In the present review, we discuss the antioxidant activities of sulfur and selenium compounds, focusing on several antioxidant mechanisms, including ROS scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Findings of several recent clinical, epidemiological, and in vivo studies highlight the need for future studies that specifically focus on the chemical mechanisms of sulfur and selenium antioxidant behavior.  相似文献   

8.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated throughout the human body. Enzymatic and nonenzymatic antioxidants detoxify ROS and RNS and minimize damage to biomolecules. An imbalance between the production of ROS and RNS and antioxidant capacity leads to a state of "oxidative stress" that contributes to the pathogenesis of a number of human diseases by damaging lipids, protein, and DNA. In general, lung diseases are related to inflammatory processes that generate increased ROS and RNS. The susceptibility of the lung to oxidative injury depends largely on its ability to upregulate protective ROS and RNS scavenging systems. Unfortunately, the primary intracellular antioxidants are expressed at low levels in the human lung and are not acutely induced when exposed to oxidative stresses such as cigarette smoke and hyperoxia. However, the response of extracellular antioxidant enzymes, the critical primary defense against exogenous oxidative stress, increases rapidly and in proportion to oxidative stress. In this paper, we review how antioxidants in the lung respond to oxidative stress in several lung diseases and focus on the mechanisms that upregulate extracellular glutathione peroxidase.  相似文献   

9.
Evolution of dietary antioxidants   总被引:2,自引:0,他引:2  
Oxygen is vital for most organisms but, paradoxically, damages key biological sites. Oxygenic threat is met by antioxidants that evolved in parallel with our oxygenic atmosphere. Plants employ antioxidants to defend their structures against reactive oxygen species (ROS; oxidants) produced during photosynthesis. The human body is exposed to these same oxidants, and we have also evolved an effective antioxidant system. However, this is not infallible. ROS breach defences, oxidative damage ensues, accumulates with age, and causes a variety of pathological changes. Plant-based, antioxidant-rich foods traditionally formed the major part of the human diet, and plant-based dietary antioxidants are hypothesized to have an important role in maintaining human health. This hypothesis is logical in evolutionary terms, especially when we consider the relatively hypoxic environment in which humans may have evolved. In this paper, the human diet is discussed briefly in terms of its evolutionary development, different strategies of antioxidant defence are outlined, and evolution of dietary antioxidants is discussed from the perspectives of plant need and our current dietary requirements. Finally, possibilities in regard to dietary antioxidants, evolution, and human health are presented, and an evolutionary cost-benefit analysis is presented in relation to why we lost the ability to make ascorbic acid (vitamin C) although we retained an absolute requirement for it.  相似文献   

10.
11.
There is increasing evidence that reactive oxygen species (ROS) are not only toxic but play an important role in cellular signalling and in the regulation of gene expression. We, here, discuss two examples of improved adaptive response to an altered cellular redox state. First, differences in longevity between males and females may be explained by a higher expression of antioxidant enzymes in females resulting in a lower yield of mitochondrial ROS. Oestrogens are made responsible for these phenomena. Oestradiol induces glutathione peroxidase-1 and MnSOD by processes requiring the cell surface oestrogen receptor (ER) and the activation of pathways usually involved in oxidative stress response. Second, oxygen radicals produced during moderate exercise as performed during training up-regulate the expression of antioxidant enzymes in muscle cells. An increased level of these enzymes might prevent oxidative damage during exhaustive exercise and should, therefore, not be prevented by antioxidants. The relevance of these findings is discussed in the context with observations made in transgenic animals overexpressing MnSOD or catalase.  相似文献   

12.
Systemic adaptation to oxidative challenge induced by regular exercise   总被引:3,自引:0,他引:3  
Exercise is associated with increased ATP need and an enhanced aerobic and/or anaerobic metabolism, which results in an increased formation of reactive oxygen species (ROS). Regular exercise seems to decrease the incidence of a wide range of ROS-associated diseases, including heart disease, type II diabetes, rheumatic arthritis, Alzheimer and Parkinson diseases, and certain cancers. The preventive effect of regular exercise, at least in part, is due to oxidative stress-induced adaptation. The oxidative challenge-related adaptive process of exercise is probably not just dependent upon the generated level of ROS but primarily on the increase in antioxidant and housekeeping enzyme activities, which involves the oxidative damage repair enzymes. Therefore, the effects of exercise resemble the characteristics of hormesis. In addition, it seems that the oxidative challenge-related effects of exercise are systemic. Skeletal muscle, liver, and brain have very different metabolic rates and functions during exercise, but the adaptive response is very similar: increased antioxidant/damage repair enzyme activity, lower oxidative damage, and increased resistance to oxidative stress, due to the changes in redox homeostasis. Hence, it is highly possible that the well-known beneficial effects of exercise are due to the capability of exercise to produce increased levels of ROS. Or in other words, it seems that the vulnerability of the body to oxidative stress and diseases is significantly enhanced in a sedentary compared to a physically active lifestyle.  相似文献   

13.
Prolonged periods of muscular inactivity (e.g., limb immobilization) result in skeletal muscle atrophy. Although it is established that reactive oxygen species (ROS) play a role in inactivity-induced skeletal muscle atrophy, the cellular pathway(s) responsible for inactivity-induced ROS production remain(s) unclear. To investigate this important issue, we tested the hypothesis that elevated mitochondrial ROS production contributes to immobilization-induced increases in oxidative stress, protease activation, and myofiber atrophy in skeletal muscle. Cause-and-effect was determined by administration of a novel mitochondrial-targeted antioxidant (SS-31) to prevent immobilization-induced mitochondrial ROS production in skeletal muscle fibers. Compared with ambulatory controls, 14 days of muscle immobilization resulted in significant muscle atrophy, along with increased mitochondrial ROS production, muscle oxidative damage, and protease activation. Importantly, treatment with a mitochondrial-targeted antioxidant attenuated the inactivity-induced increase in mitochondrial ROS production and prevented oxidative stress, protease activation, and myofiber atrophy. These results support the hypothesis that redox disturbances contribute to immobilization-induced skeletal muscle atrophy and that mitochondria are an important source of ROS production in muscle fibers during prolonged periods of inactivity.  相似文献   

14.
The effects of acute exercise on the mRNA content of selected genes were examined during control conditions and after oral intake of antioxidants. In addition, to provide evidence for formation of reactive oxygen species (ROS) in human skeletal muscle during exercise, cytochrome c reduction was measured in microdialysate from the muscle. For the study on the effects of antioxidants on mRNA content, seven healthy, habitually active, male subjects participated in a double-blinded experimental design in which they, on one occasion, received a placebo and, on another, a mixture of antioxidants containing 1500 mg vitamin C, 120 mg coenzyme Q, and 345 mg alpha-tocopherol every day for 7 days before the experiment. On the experimental day the subjects cycled for 90 min and muscle biopsies were taken preexercise and at 1, 3, and 5 h after exercise. Exercise induced an increase in the eNOS, UCP3, PGC-1alpha, VEGF, Hsp72, and HO-1 mRNA content (p < 0.001), whereas there was no change in the Hsc70 mRNA level. Prior antioxidant treatment further enhanced (p < 0.05) the eNOS and UCP3 mRNA content after exercise. Moreover, the overall level of Hsc70 mRNA tended (p = 0.07) to be higher after antioxidant treatment. In another group of healthy male subjects, cytochrome c reduction was determined in microdialysate from the thigh muscle at rest and during knee extensor exercise to determine ROS formation. There was a significant increase in cytochrome c reduction with exercise both at 14 ( approximately 25%) and at 30 W ( approximately 50%). The data show that ROS are formed within skeletal muscle during exercise and that oral intake of antioxidants can enhance the exercise-induced adaptive mRNA responses of eNOS and UCP3.  相似文献   

15.
Generation of reactive oxygen species (ROS) is a normal process in the life of aerobic organisms. Under physiological conditions, these deleterious species are mostly removed by the cellular antioxidant systems, which include antioxidant vitamins, protein and non-protein thiols, and antioxidant enzymes. Since the antioxidant reserve capacity in most tissues is rather marginal, strenuous physical exercise characterized by a remarkable increase in oxygen consumption with concomitant production of ROS presents a challenge to the antioxidant systems.An acute bout of exercise at sufficient intensity has been shown to stimulate activities of antioxidant enzymes. This could be considered as a defensive mechanism of the cell under oxidative stress. However, prolonged heavy exercise may cause a transient reduction of tissue vitamin E content and a change of glutathione redox status in various body tissues. Deficiency of antioxidant nutrients appears to hamper antioxidant systems and augment exercise-induced oxidative stress and tissue damage. Chronic exercise training seems to induce activities of antioxidant enzymes and perhaps stimulate GSH levels in body fluids. Recent research suggest that supplementation of certain antioxidant nutrients are necessary for physically active individuals.  相似文献   

16.
The observation that muscular exercise is associated with oxidative stress in humans was first reported over 30 years ago. Since this initial report, numerous studies have confirmed that prolonged or high-intensity exercise results in oxidative damage to macromolecules in both blood and skeletal muscle. Although the primary tissue(s) responsible for reactive oxygen species (ROS) production during exercise remains a topic of debate, compelling evidence indicates that muscular activity promotes oxidant production in contracting skeletal muscle fibers. Mitochondria, NADPH oxidase, PLA2-dependent processes, and xanthine oxidase have all been postulated to contribute to contraction-induced ROS production in muscle but the primary site of contraction-induced ROS production in muscle fibers remains unclear. Nonetheless, contraction-induced ROS generation has been shown to play an important physiological function in the regulation of both muscle force production and contraction-induced adaptive responses of muscle fibers to exercise training. Although knowledge in the field of exercise and oxidative stress has grown markedly during the past 30 years, this area continues to expand and there is much more to be learned about the role of ROS as signaling molecules in skeletal muscle.  相似文献   

17.
Currently, food security depends on the increased production of cereals such as wheat (Triticum aestivum L.), which is an important source of calories and protein for humans. However, cells of the crop have suffered from the accumulation of reactive oxygen species (ROS), which can cause severe oxidative damage to the plants, due to environmental stresses. ROS are toxic molecules found in various subcellular compartments. The equilibrium between the production and detoxification of ROS is sustained by enzymatic and nonenzymatic antioxidants. In the present review, we offer a brief summary of antioxidant defense and hydrogen peroxide (H2O2) signaling in wheat plants. Wheat plants increase antioxidant defense mechanisms under abiotic stresses, such as drought, cold, heat, salinity and UV-B radiation, to alleviate oxidative damage. Moreover, H2O2 signaling is an important factor contributing to stress tolerance in cereals.  相似文献   

18.
Exposure of cells to ionizing radiation leads to the formation of reactive oxygen species (ROS) that are associated with radiation-induced cytotoxicity. Because of the serious damaging potential of ROS, cells depend on the elaboration of the antioxidant defense system (AODS), both enzymatic and nonenzymatic oxidant defense mechanisms. The deficiency in important components of the endogenous AODS leads to the accumulation of oxidative stress inducing oxidative damage. The antioxidant enzymes superoxide dismutase and glutathione peroxidase are key intracellular antioxidants in the metabolism of ROS. In the current study, we investigated the potential role of these antioxidant enzymes in radioresistance during the evaluation of the compensatory role of some exogenous micronutrients against oxidative stress Animals were categorized into eight groups, receiving vitamin E (α-tocopherol) and/or selenium (Se) with or without whole-body γ-irradiation (6.5 Gy). The results indicate that antioxidant pretreatments before irradiation may have some beneficial effects against irradiation-induced injury. The results also indicate that selenium and vitamin E act alone and in an additive fashion as radioprotecting agents. The results further suggest that selenium confers protection in part by inducing or activating cellular free-radical scavenging systems and by enhancing peroxide breakdown, whereas vitamin E appears to confer its protection by an alternate complementary mechanism.  相似文献   

19.
Salt stress causes multifarious adverse effects in plants. Of them, production of reactive oxygen species (ROS) is a common phenomenon. These ROS are highly reactive because they can interact with a number of cellular molecules and metabolites thereby leading to a number of destructive processes causing cellular damage. Plants possess to a variable extent antioxidant metabolites, enzymes and non-enzymes, that have the ability to detoxify ROS. In the present review, the emphasis of discussion has been on understanding the role of different antioxidants in plants defense against oxidative stress caused by salt stress. The role of different antioxidants as potential selection criteria for improving plant salt tolerance has been critically discussed. With the advances in molecular biology and availability of advanced genetic tools considerable progress has been made in the past two decades in improving salt-induced oxidative stress tolerance in plants by developing transgenic lines with altered levels of antioxidants of different crops. The potential of this approach in counteracting stress-induced oxidative stress has been discussed at length in this review.  相似文献   

20.
All definitions of the terms ‘oxidative stress’ and ‘antioxidants’ implicate that oxidants are just damaging. However, there is increasing evidence that reactive oxygen species (ROS) are not only toxic but that we need them for healthy life. This change in paradigm has been discussed at the third international symposium on ‘Nutrition, oxygen biology and medicine—micronutrients, exercise, energy and aging disorders’, of the Society for Free Radical Research France and the Oxygen Club of California on April 8–10, 2009 in Paris. The beneficial effect of a low to moderate concentration of oxidants produced during exercise was taken as most discussed example. In this case, ROS are required for normal force production in skeletal muscle, for the development of training-induced adaptation in endurance performance, as well as for the induction of endogenous defense systems. Taking antioxidants during training prevents adaptation. Although substantial progress on the understanding of the physiological functions of ROS was communicated at the meeting, it remained obvious that a lot of work is needed to fully understand the conditions and individual situations under which ROS are beneficial or detrimental.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号