首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The treatment of spinach chloroplasts with p-nitrothiophenol in the light at acidic and neutral pH'S caused specific inhibition of the Photosystem II activity, whereas the same treatment in the dark did not affect the activity at all. The photosystem I activity was not inhibited by p-nitrothiophenol both in the light and in the dark. The inhibition was accompanied by changes of fluorescence from chloroplasts. As observed at room temperature, the 685-nm band was lowered by the p-nitrothiophenol treatment in the light and, at liquid nitrogen temperature, the relative height of the 695-nm band to the 685-nm band increased and the 695-nm band shifted to longer wavelengths. The action spectra for these effects of p-nitrothiophenol on the activity and fluorescence showed a peak at 670 nm with a red drop at longer wavelengths. It was concluded that the light absorbed by Photosystem II is responsible for the chemical modification of chloroplasts with p-nitrothiopehnol to causing the specific inhibition of Photosystem II.  相似文献   

2.
Illumination of the chlorophyll ab light-harvesting complex in the presence of p-nitrothio[14C]phenol caused quenching of fluorescence emission at 685 nm (77 K) relative to 695 nm and covalent modification of light-harvesting complex polypeptides. Fluorescence quenching saturated with one p-nitrothiophenol bound per light-harvesting complex polypeptide (10–13 chlorophylls); 12 maximal quenching occurred with one p-nitrothiophenol bound per light-harvesting complex polypeptides (190–247 chlorophylls). This result provides direct evidence for excitation energy transfer between light-harvesting complex subunits which contain 4–6 polypeptides plus 40–78 chlorophylls per complex.Illumination of chloroplasts or Photosystem II (PS II) particles in the presence of p-nitrothio[14C]phenol caused inhibition of PS II activity and labeling of several polypeptides including those of 42–48 kilodaltons previously identified as PS II reaction center polypeptides. In chloroplasts, inhibition of oxygen evolution accelerated p-nitrothiophenol modification reactions; DCMU or donors to PS II decreased p-nitrothiophenol modification. These results are consistent with the hypothesis that accumulation of oxidizing equivalents on the donor side of PS II creates a ‘reactive state’ in which polypeptides of PS II are susceptible to p-nitrothiophenol modification.  相似文献   

3.
Kazuhiko Satoh  David C. Fork 《BBA》1983,722(1):190-196
Time courses of chlorophyll fluorescence and fluorescence spectra at 77 K after various light treatments were measured in the red alga, Porphyra perforata. Photosystem (PS) I or II light (light 1 or 2) induced differences in the fluorescence spectra at 77 K. Light 2 decreased the two PS II fluorescence bands (F-685 and F-695) in parallel, while light 1 preferentially increased F-695. Light 1 and 2 also produced different effects on the activities of PS I and II. Preillumination with light 1 increased PS II activity and decreased PS I activity. However, preillumination with light 2 decreased PS II activity with no effect on PS I activity. These results show that there are at least two mechanisms that can alter the transfer of light energy in P. perforata. The dark state in this alga was found to be State 2 and light 1 induced a State 2-State 1 transition which retarded the transfer of light energy from PS II to PS I. Light 2 induced another change (which we have called a State 2-State 3 transition) that was accompanied by a change only in PS II activity.  相似文献   

4.
A study was made of the chlorophyll fluorescence spectra between 100 and 4.2 K of chloroplasts of various species of higher plants (wild strains and chlorophyll b mutants) and of subchloroplast particles enriched in Photosystem I or II. The chloroplast spectra showed the well known emission bands at about 685, 695 and 715–740 nm; the System I and II particles showed bands at about 675, 695 and 720 nm and near 685 nm, respectively. The effect of temperature lowering was similar for chloroplasts and subchloroplast particles; for the long wave bands an increase in intensity occurred mainly between 100 and 50 K, whereas the bands near 685 nm showed a considerable increase in the region of 50-4.2 K. In addition to this we observed an emission band near 680 nm in chloroplasts, the amplitude of which was less dependent on temperature. The band was missing in barley mutant no. 2, which lacks the lightharvesting chlorophyll a/b-protein complex. At 4.7 K the spectra of the variable fluorescence (Fv) consisted mainly of the emission bands near 685 and 695 nm, and showed only little far-red emission and no contribution of the band at 680 nm.From these and other data it is concluded that the emission at 680 nm is due to the light-harvesting complex, and that the bands at 685 and 695 nm are emitted by the System II pigment-protein complex. At 4.2 K, energy transfer from System II to the light-harvesting complex is blocked, but not from the light-harvesting to the System I and System II complexes. The fluorescence yield of the chlorophyll species emittting at 685 nm appears to be directly modulated by the trapping state of the reaction center.  相似文献   

5.
Haim Hardt  Bessel Kok 《BBA》1976,449(1):125-135
Treatment of isolated chloroplasts with glutaraldehyde affects their ability to photoreduce artificial electron acceptors. The remaining rate of O2 evolution approaches zero with methyl viologen, is low with ferricyanide, but nearly normal with lipophilic Photosystem II acceptors, like oxidized p-phenylenediamine and oxidized diaminodurene. Since Photosystem I donor reactions are also affected, a specific site of inhibition of electron transport to Photosystem I is indicated. At the same time, glutaraldehyde prolongs the longevity of the chloroplasts stored in dark. In control samples the half-life of Photosystem II activity varied between 5 days at 4 °C and 1 day at 25 °C. Glutaraldehyde treatment increased these half times approx. 3-fold. The glutaraldehyde doses required to induce inhibition and stabilization were very similar.  相似文献   

6.
Treatment of chloroplasts with p-nitrothiophenol in light causesspecific inhibition of photosystem II activity. The inhibitionobeyed first-order kinetics with respect to light intensity.The life time of the light-induced state of chloroplasts, whichis required for p-nitrothiophenol inhibition, was analyzed usingintermittent illumination with flashes at different intervals.The half life time thus determined was 230 msec. (Received August 2, 1976; )  相似文献   

7.
8.
A.W.D. Larkum  Jan M. Anderson 《BBA》1982,679(3):410-421
A Photosystem II reaction centre protein complex was extracted from spinach chloroplasts using digitonin. This complex showed (i) high rates of dichloroindophenol and ferricyanide reduction in the presence of suitable donors, (ii) low-temperature fluorescence at 685 nm with a variable shoulder at 695 nm which increased as the complex aggregated due to depletion of digitonin and (iii) four major polypeptides of 47, 39, 31 and 6 kDa on dissociating polyacrylamide gels. The Photosystem II protein complex, together woth the P-700-chlorophylla protein complex and light-harvesting chlorophyll ab-protein complex (LHCP) also isolated using digitonin, were reconstituted with lipids from spinach chloroplasts to form proteoliposomes. The low-temperature (77 K) fluorescence properties of the various proteoliposomes were analysed. The F685F695 ratios of the Photosystem II reaction centre protein complex-liposomes decreased as the lipid to protein ratios were increased. The F681F697 ratios of LHCP-liposomes were found to behave similarly. Light excitation of chlorophyll b at 475 nm stimulated emission from both the Photosystem II protein complex (F685 and F695) and the P-700-chlorophyll a-protein complex (F735) when LHCP was reconstituted with either of these complexes, demonstrating energy transfer between LHCP and PS I or II complexes in liposomes. No evidence was found for energy transfer from the PS II complex to the P-700-chlorophyll a-protein complex reconstituted in the same proteoliposome preparation. Proteoliposome preparations containing all three chlorophyll-protein complexes showed fluorescence emission at 685, 700 and 735 nm.  相似文献   

9.
T. Wydrzynski  E.L. Gross 《BBA》1975,376(1):151-161
The effects of Na+ and Mg2+ on the “dark” level (O level) and light-induced (P level) fluorescence in sucrose-washed spinach chloroplasts were studied. Low concentrations of NaCl (2–10 mM) cause a significant decrease in both the O and P levels in the chlorophyll fluorescence transient. The effect on the O level may reflect changes in the bulk chlorophyll a. At 77 °K NaCl increases the F735F685 emission peak ratio in dark-adapted and preilluminated chloroplasts, but has no significant effect on this ratio in sucrose-washed Photosystem II particles. This evidence is consistent with a sodium-induced excitation-energy distribution in favor of Photosystem I.In the presence of MgCl2, with or without NaCl, there is a slight decrease in the O and P level fluorescence as compared with the salt-free control, but an increase as compared with the NaCl-treated sample. Magnesium appears to override the sodium-induced changes. At low temperatures in chloroplasts and Photosystem II particles, MgCl2 has different effects on the F735F685 ratio apparently depending on the state of the membrane. Magnesium, however, always induces an increase in the F695F685 ratio. These results suggest that magnesium may influence Photosystem II reaction centers as well as energy distribution between the two photosystems.  相似文献   

10.
A study was made of the chlorophyll fluorescence spectra between 100 and 4.2 K of chloroplasts of various species of higher plants (wild strains and chlorophyll b mutants) and of subchloroplast particles enriched in Photosystem I or II. The chloroplast spectra showed the well known emission bands at about 685, 695 and 715--740 nm; the System I and II particles showed bands at about 675, 695 and 720 nm and near 685 nm, respectively. The effect of temperature lowering was similar for chloroplasts and subchloroplast particles; for the long wave bands an increase in intensity occurred mainly between 100 and 50 K, whereas the bands near 685 nm showed a considerable increase in the region of 50--4.2 K. In addition to this we observed an emission band near 680 nm in chloroplasts, the amplitude of which was less dependent on temperature. The band was missing in barley mutant no. 2, which lacks the light-harvesting chlorophyll a/b-protein complex. At 4.7 K the spectra of the variable fluorescence (Fv) consisted mainly of the emission bands near 685 and 695 nm, and showed only little far-red emission and no contribution of the band at 680 nm. From these and other data it is concluded that the emission at 680 nm is due to the light-harvesting complex, and that the bands at 685 and 695 nm are emitted by the System II pigment-protein complex. At 4.2 K, energy transfer from System II to the light-harvesting complex is blocked, but not from the light-harvesting to the System I and System II complexes. The fluorescence yield of the chlorophyll species emitting at 685 nm appears to be directly modulated by the trapping state of the reaction center.  相似文献   

11.
W.S. Chow  R.C. Ford  J. Barber 《BBA》1981,635(2):317-326
Salt-induced chlorophyll fluorescence and spillover changes in control and briefly sonicated chloroplasts have been studied under conditions where Photosystem II traps are closed. In a low-salt medium containing 10 mM KCl, control envelope-free chloroplasts exhibited good spillover, as measured by low chlorophyll fluorescence yield at room temperature, a high ratio of the fluorescence peaks F735F685 at 77 K, and increased Photosystem I activity in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea and Photosystem II light. In contrast, when stacked chloroplasts were briefly sonicated and subsequently diluted into a low-salt medium, a high fluorescence yield at room temperature and a low ratio of F735F685 at 77 K persisted. When unstacked chloroplasts were sonicated and then diluted into a high-salt medium, the room temperature fluorescence yield remained low. The results are interpreted in terms of a model relating the changes in chlorophyll fluoresecence with the lateral diffusion of Photosystem I and Photosystem II chlorophyll-protein complexes in the plane of the thylakoid membrane creating randomized or segregated domains, depending on the degree of electrostatic screening of surface charges (Barber, J. (1980) FEBS Lett. 188, 1–10). It is argued that brief sonication of stacked chloroplasts separates stromal membranes from granal stacks, thus limiting the inter-mixing of the photosystems via lateral diffusion even when the ionic composition of the medium is varied. Consequently energy transfer from Photosystem II to Photosystem I is relatively poor and chlorophyll fluorescence from Photosystem II is enhanced. The loss of the salt effect on sonicated unstacked membranes can also be accommodated by the model. In this case it seems that the generation of small membrane fragments does not allow the normal salt-induced phase separation of the pigment-protein complexes to occur.  相似文献   

12.
Tetzuya Katoh  Elisabeth Gantt 《BBA》1979,546(3):383-393
Photosynthetically active vesicles with attached phycobilisomes from Anabaena variabilis, were isolated and shown to transfer excitation energy from phycobiliproteins to F696 chlorophyll (Photosystem II). The best results were obtained when cells were disrupted in a sucrose/phosphate/citrate mixture (0.3 : 0.5 : 0.3 M, respectiely) containing 1.5% serum albumin. The vesicles showed a phycocyanin/chlorophyll ratio essentially identical to that of whole cells, and oxygen evolution rates of 250 μmol O2/h per mg chlorophyll (with 4 mM ferricyanide added as oxidant), whereas whole cells had rates of up to 450. Excitation of the vesicles by 600 nm light produced fluorescence peaks (?196°C) at 644, 662, 685, 695, and 730 nm. On aging of the vesicles, or upon dilution, the fluorescence yield of the 695 nm emission peak gradually decreased with an accompanying increase and final predominant peak at 685 nm. This shift was accompanied by a decrease in the quantum efficiency of Photosystem II activity from an initial 0.05 to as low as 0.01 mol O2/einstein (605 nm), with a lesser change in the Vmax values. The decrease in the quantum efficiency is mainly attributed to excitation uncoupling between phycobilisomes and Photosystem II. It is concluded that the F685 nm emission peak, often exclusively attributed to Photosystem II chlorophyll, arises from more than one component with phycobilisome emission being a major contributor. Vesicles from which phycobilisomes had been removed, as verified by electron microscopy and spectroscopy, had an almost negligible emission at 685 nm.  相似文献   

13.
The cyanobacterium Chlorogloea fritschii loses Photosystem II activity, measured by delayed fluorescence and oxygen evolution, during dark heterotrophic growth, but retains Photosystem I, measured as light induced EPR signals. Following transition to the light, Photosystem II recovers in two stages, the first of which does not require protein synthesis. New Photosystem I reaction centres are not synthesised until after net chlorophyll synthesis has commenced. Carbon dioxide fixation recovery commences immediately, the initial rate being unaffected by chloramphenicol. The recovery of carbon dioxide fixation is not directly related to oxygen evolution rate and is only inhibited slightly by 3-(3,4-dichlorophyenyl)-1,1-dimethylurea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone.  相似文献   

14.
Fractions enriched in either Photosystem I or Photosystem II activity have been isolated from the blue-green alga, Synechococcus cedrorum after digitonin treatment. Sedimentation of this homogenate on a 10–30% sucrose gradient yielded three green bands: the upper band was enriched in Photosystem II, the lowest band was enriched in Photosystem I, while the middle band contained both activities. Large quantities of both particles were isolated by zonal centrifugation, and the material was then further purified by chromatography on DEAE-cellulose.The resulting Photosystem II particles carried out light-induced electron transport from semicarbizide to ferricyanide of over 2000 μmol/mg Chlorophyll per h (which was sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea), and was nearly devoid of Photosystem I activity. This particle contains β-carotene, very little phycocyanin, has a chlorophyll absorption maximum at 675 nm, and a liquid N2 fluorescence maximum at 685 nm. The purest Photosystem II particles have a chlorophyll to cytochrome b-559 ratio of 50 : 1. The Photosystem I particle is highly enriched in P-700, with a chlorophyll to P-700 ratio of 40 : 1. The physical structure of the two Photosystem particles has also been studied by gel electrophoresis and electron microscopy. These results indicate that the size and protein composition of the two particles are distinctly different.  相似文献   

15.
R.J. Strasser  W.L. Butler 《BBA》1977,460(2):230-238
Equations are derived from our model of the photochemical apparatus of photosynthesis to show that the yield of energy transfer from Photosystem II to Photosystem I, ?T(II→Iz), can be obtained from measurements on an individual sample of chloroplasts frozen to ?196 °C by comparing the sum of two specifically defined fluorescence excitation spectra with the absorption spectrum of the sample. Then, given that value of ?T(II→I), the fraction of the quanta absorbed by the photochemical apparatus which is distributed initially to Photosystem I, α, can be determined as a function of the wavelength of excitation from the same fluorescence excitation spectra. The results obtained in this study of individual samples of chloroplasts frozen to ?196 °C in the absence of divalent cations, namely, that ?T(II→I) varies from a minimum value of 0.10 when the Photosystem II reaction centers are all open to a maximum value of 0.25 when the centers are all closed and that α has a value of about 0.30 which is almost independent of wavelength for wavelengths shorter than 675 nm (α increases rapidly toward unity at wavelengths longer than 675 nm), agrees quite well with results obtained previously from comparative measurements of chloroplasts frozen to ?196 °C in the presence and absence of divalent cations.  相似文献   

16.
Peter Horton  Edward Croze 《BBA》1977,462(1):86-101
The role of cytochrome b-559 in Photosystem II reactions has been investigated using hydroxylamine treatment of chloroplast membranes. Incubation of chloroplasts with hydroxylamine in darkness resulted in inhibition of water oxidation and a decrease in the amplitude of cytochrome b-559 reducible by hydroquinone. The loss of water oxidizing activity perfectly correlated with the decrease in amplitude of cytochrome b-559 reduction. Potentiometric titration of cytochrome b-559 after hydroxylamine treatment revealed a component with Em7.8 at +240 mV in addition to a lower potential species at +90 mV. This compared to control chloroplasts in which cytochrome b-559 exists in the typical high potential state, Em7.8 = +383 mV, in addition to some of the low potential (Em7.8 = +77 mV) form. Photosystem II activity could be further inhibited by incubation with hydroxylamine in the light. In these chloroplasts only low rates of photooxidation of artificial electron donors were observed compared to ‘dark’ chloroplasts. In addition, the hydroxylamine light treatment caused a further change in cytochrome b-559 redox properties; a single component, Em7.8 = 90 mV is seen in titration curves. The role of cytochrome b-559 in Photosystem II functioning is discussed on the basis of these observations which suggest a dependence of photooxidizing ability of Photosystem II on the redox properties of this cytochrome.  相似文献   

17.
18.
The kinetics of chlorophyll fluorescence at 77 K were studied in Chlorella cells and spinach chloroplasts.During a first illumination, the rise is polyphasic with at least three phases. The slowest one is irreversible and corresponds to the cytochrome oxidation.The dark regeneration of half the variable fluorescence is biphasic, the fast phase being inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) both in Chlorella and chloroplasts.The fluorescence rise during a second illumination is still biphasic.Carbonyl cyanide m-chlorophenylhydrazone (CCCP) slows down the fluorescence rise in Chlorella but has no effect on the dark regeneration. It does not affect the fluorescence of chloroplasts.Ferricyanide which oxidizes cytochrome b-559 at room temperature produces a quenching of the variable fluorescence and an acceleration of the fluorescence rise during the first illumination.Our results fit the idea of the heterogeneity of the Photosystem II centers at low temperature.  相似文献   

19.
J. Haveman  P. Mathis 《BBA》1976,440(2):346-355
A comparative study is made, at 15 °C, of flash-induced absorption changes around 820 nm (attributed to the primary donors of Photosystems I and II) and 705 nm (Photosystem I only), in normal chloroplasts and in chloroplasts where O2 evolution was inhibited by low pH or by Tris-treatment.At pH 7.5, with untreated chloroplasts, the absorption changes around 820 nm are shown to be due to P-700 alone. Any contribution of the primary donor of Photosystem II should be in times shorter than 60 μs.When chloroplasts are inhibited at the donor side of Photosystem II by low pH, an additional absorption change at 820 nm appears with an amplitude which, at pH 4.0, is slightly higher than the signal due to oxidized P-700. This additional signal is attributed to the primary donor of Photosystem II. It decays (t12 about 180 μs) mainly by back reaction with the primary acceptor and partly by reduction by another electron donor. Acid-washed chloroplasts resuspended at pH 7.5 still present the signal due to Photosystem II (t12 about 120 μs). This shows that the acid inhibition of the first secondary donor of Photosystem II is irreversible.In Tris-treated chloroplasts, absorption changes at 820 nm due to the primary donor of Photosystem II are also observed, but to a lesser extent and only after some charge accumulation at the donor side. They decay with a half-time of 120 μs.  相似文献   

20.
Francis-André Wollman 《BBA》1978,503(2):263-273
The redox state of the secondary electron acceptor B of Photosystem II was studied using fluorescence measurements. Preillumination of algae or chloroplasts with a variable number of short saturating flashes followed rapidly by the addition of 3-(3,4-dichlorophenyl)-1, 1-dimethylurea induces oscillations of the initial level of fluorescence. The phase of these oscillations is characteristic of a given BB? ratio in the dark-adapted samples.We conclude from our results that about 50% of the secondary electron acceptors are singly reduced in the dark in Chlorella cells, but that more than 70% are fully oxidized in the dark adapted chloroplasts.Benzoquinone treatment modifies this distribution in Chlorella leading to the same situation as in chloroplasts, i.e. more than 70% of the secondary acceptors are oxidized in the dark.The same ratio is observed if these algae are illuminated and then dark-adapted, unless an artificial donor (hydroxylamine) is added before this illumination. In that case about 50% B? is generated and stabilized in the dark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号