首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Among several native species of the Brazilian cerrado, a shrub, Tontelea micrantha, is exploited by traditional communities for the valuable oil extracted from its seeds, which has anti‐inflammatory properties. There have been no studies on the anatomy of its flower, and so the aim of this study is to describe the anatomy and ultrastructure of its floral nectary. Flower buds and flowers in anthesis were collected, fixed and processed for light and electron microscopy. The discoid floral nectary is composed of epidermis and a secretory parenchyma. Secretory cells are rich in plastids with starch grains and mitochondria. The nectar, sucrose dominant, is just sufficient to form a thin film on the nectary. The secretory cells show starch and oil droplets; however, during nectar production there is no evidence of hydrolysis of starch and some lipid reserves remain unchanged. Our results suggest a reduction in the amount of oil in the secretory cells during the secretory phase but this does not appear to imply a release of oil as a nectar component. In addition to maintaining part of the reserves, the lower frequency of organelles involved in nectar synthesis reinforces the hypothesis that phloem sap is the origin of nectar sugars. The tiny nectar film, released through modified stomata, is attractive to small insects such as flies. Considering the importance and intensity of use of T. micrantha in the Brazilian cerrado, we think that these data about its floral nectary can help to better explain its reproductive biology with positive impacts on its management and conservation.  相似文献   

2.
Premise of the study: While mahogany (Swietenia macrophylla) is one of the most important forest species in the Amazon region, little is known about its reproductive biology. Knowledge about the nectary structure and dynamics of nectar production of this species represent a key step toward understanding its relationship with pollinators. • Methods: Mahogany tree floral buds and flowers in anthesis were collected, fixed, and processed for study by light and transmission and scanning electron microscopy. The chemical composition of nectar and the nectary pigments was also studied. • Key results: Both staminate and pistillate flowers have nectaries, which contain a papillose epidermis and stomata. The nectariferous tissue is parenchymatous, with the cell cytoplasm primarily containing mitochondria and plastids. Secretory activity initiates at the beginning of anthesis, which occurs at nightfall. Flowers undergoing anthesis become structurally modified, with starch grains in the plastids disappearing. The number of plastoglobuli in the plastids also increases when nectaries change color from pale yellow to intense red. Pistillate and staminate flowers produce meager nectar rewards. • Conclusions: Changes in plastoglobuli number seem to be related to an increase in carotenes and color changes during anthesis. Carotenes can be linked to the protection of the plant against oxidative stress, which results from secretory activities. Nectary color has a limited role as a pollinator attractant. Floral rewards comprise small nectar droplets in both flower types, in addition to a few pollen grains in staminate flowers. These meager rewards are probably adapted to attract small generalist insects.  相似文献   

3.
Wist TJ  Davis AR 《Annals of botany》2006,97(2):177-193
BACKGROUND AND AIMS: In spite of the impressive species diversity in the Asteraceae and their widespread appeal to many generalist pollinators, floral-nectary ultrastructure in the family has rarely been investigated. To redress this, a study using Echinacea purpurea, a plant of horticultural and nutraceutical value, was undertaken. Nectar secretion of disc florets was compared with floral nectary ultrastructure taking into account nectar's potential impact upon the reproductive success of this outcrossing species. METHODS: Micropipette collections of nectar in conjunction with refractometry were used to determine the volume and nectar-sugar quantities of disc florets throughout their phenology, from commencement of its production to cessation of secretion. Light, scanning-electron and transmission-electron microscopy were utilized to examine morphology, anatomy and ultrastructure of nectaries of the disc florets. KEY RESULTS: Florets were protandrous with nectar being secreted from anthesis until the third day of the pistillate phase. Nectar production per floret peaked on the first day of stigma receptivity, making the two innermost whorls of open florets most attractive to foraging visitors. Modified stomata were situated along the apical rim of the collar-like nectary, which surrounds the style base and sits on top of the inferior ovary. The floral nectary was supplied by phloem only, and both sieve elements and companion cells were found adjacent to the epidermis; the latter participated in the origin of some of the precursor cells that yielded these specialized cells of phloem. Companion cells possessed wall ingrowths (transfer cells). Lobed nuclei were a key feature of secretory parenchyma cells. CONCLUSIONS: The abundance of mitochondria suggests an eccrine mechanism of secretion, although dictyosomal vesicles may contribute to a granulocrine process. Phloem sap evidently is the main contributor of nectar carbohydrates. From the sieve elements and companion cells, an apoplastic route via intercellular spaces and cell walls, leading to the pores of modified stomata, is available. A symplastic pathway, via plasmodesmata connecting sieve elements to companion, parenchyma and epidermal cells, is also feasible. Uncollected nectar was reabsorbed, and the direct innervation of the nectary by sieve tubes potentially serves a second important route for nectar-sugar reclamation. Microchannels in the outer cuticle may facilitate both secretion and reabsorption.  相似文献   

4.
Floral development and vascular anatomy are investigated in Peganum harmala, emphasizing its unusual androccium with 15 stamens. Sepals arise successively; petals emerge simultaneously with five antesepalous stamens. The five stamen pairs arise in the space between the petals and the antesepalous stamens. The gynoecium arises from three carpel primordia with evidence of two reduced carpels. Placentae are axile and each bears two double rows of ovules. A weakly developed nectary surrounds the base of the ovary. The antepetalous stamen traces diverge from a common supply to petals and sepal laterals, independent of the antesepalous stamen traces. The androecium of Peganum is described as a derived obdiploste-monous form, differing from the complex haplostemonous androecium of Nitraria. “Congenital dédoublement” cannot adequately explain the origin of the paired antepetalous stamens; two stamens can arise either by the splitting of a common primordium or independently, and both ways of inception are best understood as extremes of a gradation. The systematic position of Peganum is discussed in relation to other Zygophyllaceae using a cladistic analysis with Ptelea (Rutaceae) and Quassia (Simaroubaceae) as outgroups. The basal division in the Zygophyllaceae is between Peganum and the rest of the family.  相似文献   

5.
采用不同溶剂分级提取骆驼蓬(Peganum harmala L.)根、茎、叶及种子中的蛋白质,结果表明总蛋白以种子中的蛋白含量最高,而营养器官以叶中的蛋白含量较高。当年种子总蛋白含量显著高于贮藏种子。不同溶剂分级提取的当年生种子、根、茎和叶中各组分,以碱提组分蛋白含量最高。用含不同盐离子浓度的缓冲液和不同pH值的广泛缓冲液提取骆驼蓬种子的蛋白质,结果表明优化后的缓冲液条件为含0.2mol/LNaCl,pH:7.0~8.0的5mmol/LPBS缓冲液。硫酸铵沉淀法获得的骆驼蓬种子中的蛋白粗提物(1.2mg/mL)对供试真菌交格链孢菌(Alternaria alternata)、指状青霉菌(Penicillium degitatum)、灰霉病菌(Botrytis cinerea)、稻瘟病菌(Magnaporthe grisea)和意大利青霉菌(Penicillium italicum)等5种植物病原真菌均有抑菌作用,其中对意大利青霉菌和交格链孢菌表现出较好的抑菌活性,抑菌环直径分别为19.50和18.50mm。对供试细菌表皮葡萄球菌(Staphylococcus epidermidis)、粪肠球菌(Enterococcus faecalis)、臭鼻克雷伯菌(Klebsiella penumoniae)、福氏志贺氏菌(Shigella flexneri)、金黄色葡萄球菌(Staphylococcus aureua)和鲍曼不动杆菌(Acinetobacter baumannii)等6种病原细菌也有抑菌作用,其中对臭鼻克雷伯菌、福氏志贺氏菌、表皮葡萄球菌等病原细菌等有较好的抑制作用,抑菌圈直径分别10.20、10.10和9.30mm。  相似文献   

6.
γ-Harmine, a new carboline alkaloid isolated from Peganum harmala L. (Zygophylaceae), has been shown to be 7-methoxy-4-methyl-γ-carboline (Ⅵ) according to its color reaction and spectral analyses. This is the first γ-carboline compound isolated from a plant, Harmine (Ⅰ) has also been isolated from the same plant material.  相似文献   

7.
BACKGROUND AND AIMS: Considering that few studies on nectary anatomy and ultrastructure are available for chiropterophilous flowers and the importance of Hymenaea stigonocarpa in natural 'cerrado' communities, the present study sought to analyse the structure and cellular modifications that take place within its nectaries during the different stages of floral development, with special emphasis on plastid dynamics. METHODS: For the structural and ultrastructural studies the nectary was processed as per usual techniques and studied under light, scanning and transmission electron microscopy. Histochemical tests were employed to identify the main metabolites on nectary tissue and secretion samples. KEY RESULTS: The floral nectary consists of the inner epidermis of the hypanthium and vascularized parenchyma. Some evidence indicates that the nectar release occurs via the stomata. The high populations of mitochondria, and their juxtaposition with amyloplasts, seem to be related to energy needs for starch hydrolysis. Among the alterations observed during the secretory phase, the reduction in the plastid stromatic density and starch grain size are highlighted. When the secretory stage begins, the plastid envelope disappears and a new membrane is formed, enclosing this region and giving rise to new vacuoles. After the secretory stage, cellular structures named 'extrastomatic bodies' were observed and seem to be related to the nectar resorption. CONCLUSIONS: Starch hydrolysis contributes to nectar formation, in addition to the photosynthates derived directly from the phloem. In these nectaries, the secretion is an energy-requiring process. During the secretion stage, some plastids show starch grain hydrolysis and membrane rupture, and it was observed that the region previously occupied by this organelle continued to be reasonably well defined, and gave rise to new vacuoles. The extrastomatic bodies appear to be related to the resorption of uncollected nectar.  相似文献   

8.
骆驼蓬的组织培养及植株再生   总被引:1,自引:0,他引:1  
以骆驼蓬(Peganum harmala L)无菌苗下胚轴切段为材料,在不同的培养基上进行愈伤组织的诱导,发现在MS基本培养基附加2.0mg/L 2,4—D、0.5mg/L 6—BA和3%蔗糖时,可100%的诱导出愈伤组织。愈伤组织在附加2.0mg/L 6—BA、0.5mg/L NAA、500mg/L CH和3%蔗糖的MS培养基上诱导出丛生芽,进而发育成苗,苗的分化频率在30%左右。分化苗或其茎切断在附加0.2mg/L IBA、0.2mg/L NAA和3%蔗糖的l/2MS培养基上出现根的分化,分化频率在90%以上。再生植株经炼苗后移栽成活,成活率在80%以上。  相似文献   

9.
陆晓东  王琦 《菌物研究》2010,8(2):103-106,114
以金黄色葡萄球菌、大肠杆菌、鼠伤沙门氏菌及大肠杆菌F为测试菌种,对从骆驼蓬(Peganum harmala L.)叶中分离出的14株内生真菌及其次生代谢产物进行了抗菌活性筛选。结果表明:8个菌株及10个菌株的代谢产物均至少对1种试验细菌具有抑菌活性,其中1株内生真菌及其次生代谢产物对测试病原细菌具有较强的抑菌作用。  相似文献   

10.
The goal of this study was to analyse possible structural and ultrastructural differences between the secretory disk of male and functionally female flowers of Tapirira guianensis (Anacardiaceae) at different developmental stages. Studies were carried out using light, scanning and transmission electron microscopy. Biochemical tests were employed to determine the proportion of sugars in the nectar of the floral morphotypes: they were found to be similar, both predominantly composed of sucrose. In addition to sugars, lipids and phenolic substances were identified in anthetic flowers; thus, the secretory disk is a mixed secretion gland, also called a sensu lato nectary. During anthesis, granulocrine and eccrine secretory mechanisms occur in both floral morphotypes. After anthesis and fertilization of the functionally female flower, only the lipophilic and phenolic secretion continues until the early stages of fruit development. An intrastaminal secretory disk that produces both nectar and lipids is reported for the first time in Anacardiaceae. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 533–544.  相似文献   

11.
Orchidaceae show enormous floral diversity. However, anatomical studies of nectary tissues relative to nectar composition and pollinators are scarce. This work aims to present a detailed anatomical study of the labellar nectary of Elleanthus brasiliensis, analyse the chemical composition of its nectar and relate these findings to pollination biology. Basally, the labellum bears a pair of fleshy, whitish, ovoid calli on its adaxial surface. Nectariferous callus tissue consists of a papillate epidermis and enlarged subepidermal parenchyma cells with thin walls, large nuclei and dense cytoplasm which stained positively for hydrophilic substances, interpreted as pre‐nectar. The paired calli lack vascular tissues, but at the point of callus insertion, the diameters of vascular bundles supplying the lip are larger. Nectar is secreted as droplets on the adaxial callus surface. It is produced in small quantities, c. 4 μL per flower. Callus cell contents tested negative for polysaccharides, lipids and phenolic compounds. The nectar is sucrose‐dominant, as in other hummingbird‐pollinated species. It is suggested that other ornithophilous species of Sobralieae have anatomically similar nectaries. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013 , 171 , 764–772.  相似文献   

12.
鹅掌柴花蜜腺的发育解剖学研究   总被引:1,自引:0,他引:1  
对鹅掌柴(Scheffler octophylla Harms.)花蜜腺的发育进行解剖结构观察。鹅掌柴花盘蜜腺位于下位子房上方环绕花柱基部。蜜腺由分泌表皮、产蜜组织组成,心皮维管束与其相邻并发出一些伸入蜜腺基部的短分枝。蜜腺起源于心皮原基基部外侧的几层细胞。鹅掌柴花蜜腺为淀粉型蜜腺,淀粉粒为许多微小颗粒聚集成的复粒。原蜜汁由蜜腺基部维管束的筛管提供,达产蜜组织细胞和表皮细胞后以淀粉粒的形式贮藏。泌出的蜜汁一部分来自淀粉粒的降解,一部分来自泌蜜期输入的原蜜汁。表皮和产蜜组织细胞均具泌蜜功能。泌出的蜜汁大部分通过气孔排出,还有部分由角质层渗出。  相似文献   

13.
骆驼蓬提取物浸种对小麦幼苗生长及抗氧化酶活性的影响   总被引:1,自引:0,他引:1  
以不同浓度骆驼蓬提取液浸种处理小麦。研究对幼苗生长及抗氧化酶活性的影响。结果表明,骆驼蓬提取液浸种后小麦幼苗的根长、株高和干重增加,根冠比增大;幼苗根系活力增强,根系超氧化物歧化酶(SOD)活性提高,过氧化氢酶(CAT)活性先升后降,过氧化物酶(POD)活性下降,过氧化物酶同工酶表达受抑;叶片叶绿素和可溶性蛋白质含量增加,叶片SOD、POD活性提高,过氧化物酶同工酶表达增强,CAT活性降低。根系和叶片丙二醛(MDA)含量下降。  相似文献   

14.
Background and Aims Despite the number of orchid speciesthat are thought to be pollinated by hummingbirds, our knowledgeof the nectaries of these orchids is based solely on a singlespecies, Maxillaria coccinea (Jacq.) L.O. Williams ex Hodge.Nevertheless, it is predicted that such nectaries are likelyto be very diverse and the purpose of this paper is to comparethe nectary and the process of nectar secretion in Hexisea imbricata(Lindl.) Rchb.f. with that of Maxillaria coccinea so as to beginto characterize the nectaries of presumed ornithophilous Neotropicalorchids. • Methods Light microscopy, transmission electronmicroscopyand histochemistry were used to examine the histology and chemicalcomposition of nectary tissue and the process of nectar secretionin H. imbricata. • Key Results and Conclusions The nectary of H. imbricatahas a vascular supply, is bound by a single-layered epidermiswith few stomata and comprises two or three layers of subepidermalsecretory cells beneath which lie several layers of palisade-likeparenchymatous cells, some of which contain raphides or mucilage.The secretory cells are collenchymatous and their walls havenumerous pits with associated plasmodesmata. They contain thefull complement of organelles characteristic of secretory cellsas well as intravacuolar protein bodies but some of the secretoryepidermal cells, following secretion, collapse and their anticlinalwalls seem to fold. Nectar secretion is thought to be granulocrineand, following starch depletion, lipid droplets collect withinthe plastids. The nectar accumulates beneath the cuticle whichsubsequently forms swellings. Finally, nectar collects in thesaccate nectary spur formed by the fusion of the margins ofthe labellum and the base of the column-foot. Thus, althoughthe nectary of H. imbricata and M. coccinea have many featuresin common, they nevertheless display a number of important differences.  相似文献   

15.
龙眼花蜜腺的发育解剖学研究   总被引:4,自引:0,他引:4  
对龙眼(Dimocarpus longan Lour.)花蜜腺的形态结构、发育过程以及蜜腺的组织化学变化进行了较为系统的研究;对花蜜腺结构与泌蜜的关系、泌蜜方式、起源和系统演化等作了初步的探讨。结果表明:龙眼的花盘蜜腺位于花托上,呈环状环绕在雌雄蕊基部外围,花芽分化约30d,在雄蕊和花被之间的花托表面,蜜腺原基也开始形成,由花托表面2~3层细胞脱分化形成居间分生组织发育而来;龙眼花蜜腺由分泌表皮和产蜜组织构成,属结构蜜腺;分泌表皮角质层极薄,密布单细胞绒毛,未发现有气孔;产蜜组织由亚腺细胞、产蜜细胞、油细胞和维管束组成;在蜜腺发育过程中,产蜜细胞的液泡和多糖物质发生有规律的变化;蜜腺的原蜜汁来源于韧皮部,蜜汁经表皮角质层渗出。  相似文献   

16.
以骆驼蓬幼苗为材料,采用盆栽试验研究不同浓度(0、50、100、200、400 mg·kg-1)Ni、Cu处理对骆驼蓬叶片光合作用、叶绿素荧光特性及生长状况的影响.结果表明: 随着Ni浓度的增加,骆驼蓬幼苗叶片的光合色素含量、净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、PSⅡ最大光化学效率(Fv/Fm)、PSⅡ电子传递量子产率(ΦPSⅡ)、光化学猝灭系数(qP)及各项生长指标均呈显著下降趋势,而细胞间隙CO2浓度(Ci)和非光化学猝灭系数(qN)呈显著增加趋势,其中Pn的下降主要是由非气孔限制所致;骆驼蓬幼苗叶片的光合色素含量、Pn、Gs、Tr、Ci、Fv/Fm、ΦPSⅡ、qP及各项生长指标均在50 mg·kg-1 Cu处理时达到峰值,叶绿素a和b、Pn、Gs、Tr、Ci、Fv/Fm及各项生长指标值在100 mg·kg-1 Cu处理时仍微高于对照,而后随Cu浓度的增加,光合色素含量、Pn、Gs、Tr、Ci、 Fv/Fm、ΦPSⅡ、qP及各项生长指标均呈下降趋势,qN呈增加趋势,其中Pn的下降主要是由气孔限制所致.  相似文献   

17.
地椒花蜜腺发育的解剖学观察   总被引:2,自引:0,他引:2  
通过显微和亚显微观察对地椒花蜜腺的发育进行了研究。地椒花蜜腺位于子房基部的花盘上,属于盘状蜜腺,新鲜时呈绿色。蜜腺由分泌表皮和泌蜜组织组成,分泌表皮为一层细胞,表皮细胞角质膜较厚,表皮上分布着大量的气孔器,气孔器突出于表面;泌蜜组织细胞多层。花盘中央有维管束通向子房,在维管束和泌蜜组织之间有4 ̄5层大型的薄壁细胞。蜜腺由花盘的表皮及其内侧相邻的细胞发育而来,在发育过程中,其细胞中的液泡和贮藏的淀粉  相似文献   

18.
通过解剖镜观察、石蜡切片和薄切片等方法,对芝麻菜的花蜜腺的位置、形态、结构、发育过程及泌蜜前后组织化学变化进行了研究。芝麻菜花蜜腺4枚,分成两对,其中一对侧蜜腺较大,棱柱状,分别着生在外轮2个短雄蕊基部内侧的花托上,结构上由表皮、产蜜组织和维管组织构成;另一对中蜜腺较小,近棒状,分别着生在内轮4个长雄蕊外侧的花托上,结构上仅由表皮和产蜜组织构成。二者表皮细胞外都具角质层,且蜜腺产蜜组织细胞中只含少量的多糖物质。两类蜜腺的蜜汁均由变态气孔泌出体外。无论侧蜜腺还是中蜜腺,蜜腺原基皆是在雌、雄蕊已分化后,由花托相应位置表皮下的1~2层细胞分裂形成的。在蜜腺发育中,产蜜组织细胞在泌蜜前后不具明显的液泡变化。  相似文献   

19.
骆驼蓬种子中一种具抗肿瘤活性蛋白的分离纯化及鉴定   总被引:1,自引:0,他引:1  
骆驼蓬种子经浸提、硫酸铵沉淀、CM阳离子交换层析和Superdex 75凝胶过滤层析分离纯化得到一种具有抗肿瘤细胞增殖活性的蛋白(命名为PhLTP),经Tricine-SDS-PAGE检测为单一蛋白条带,高效液相色谱检测其表观分子量为14.8 kDa左右,表明PhLTP是由两条相同的亚基组成的蛋白.采用Edman降解法对该纯化蛋白的N-末端进行氨基酸测序,其N-末端序列与其他植物非特异性脂转移蛋白相似.对PhLTP抗肿瘤活性进行研究,结果表明其对HeLa、Eca-109、MGC-9和BEL-7404细胞都有增殖抑制活性,其中对HeLa细胞增殖的抑制作用较好,并具有浓度和时间依赖性,其IC50为45 μg/mL.通过Hoechst33258染色观察细胞形态,发现PhLTP能诱导HeLa细胞发生凋亡.  相似文献   

20.
3种獐牙菜属植物花蜜腺的发育解剖学研究   总被引:3,自引:0,他引:3  
薛春迎  刘建全等 《西北植物学报》2001,21(1):112-116,T003,T004
獐牙菜属的红直獐牙菜、抱茎獐牙菜和四数獐牙菜3种植物花蜜腺都属花被蜜腺,其结构相似,均由分泌表皮和产蜜组织组成,为结构蜜腺,是花冠其部薄壁组织恢复分和能力形成的,分泌表皮无气孔器,原蜜汁由蜜腺周围的维管束提供,经产蜜组织加工后,由分泌表皮外薄的角质层泌出。四数獐牙菜花蜜腺裸露,凸起,而另2化蜜腺凹限为囊状、;红直獐牙菜为脱落蜜腺、而抱茎獐牙菜和四数獐牙菜为宿存蜜腺,其花蜜腺的性状基本印证了3种獐牙菜属植物的系统位置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号