首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Lesser White‐fronted Goose (Anser erythropus), smallest of the “gray” geese, is listed as Vulnerable on the IUCN Red List and protected in all range states. There are three populations, with the least studied being the Eastern population, shared between Russia and China. The extreme remoteness of breeding enclaves makes them largely inaccessible to researchers. As a substitute for visitation, remotely tracking birds from wintering grounds allows exploration of their summer range. Over a period of three years, and using highly accurate GPS tracking devices, eleven individuals of A. erythropus were tracked from the key wintering site of China, to summering, and staging sites in northeastern Russia. Data obtained from that tracking, bolstered by ground survey and literature records, were used to model the summer distribution of A. erythropus. Although earlier literature describes a patchy summer range, the model suggests a contiguous summer habitat range is possible, although observations to date cannot confirm A. erythropus is present throughout the modeled range. The most suitable habitats are located along the coasts of the Laptev Sea, primarily the Lena Delta, in the Yana‐Kolyma Lowland, and smaller lowlands of Chukotka with narrow riparian extensions upstream along major rivers such as the Lena, Indigirka, and Kolyma. The probability of A. erythropus presence is related to areas with altitude less than 500 m with abundant wetlands, especially riparian habitat, and a climate with precipitation of the warmest quarter around 55 mm and mean temperature around 14°C during June‐August. Human disturbance also affects site suitability, with a gradual decrease in species presence starting around 160 km from human settlements. Remote tracking of animal species can bridge the knowledge gap required for robust estimation of species distribution patterns in remote areas. Better knowledge of species'' distribution is important in understanding the large‐scale ecological consequences of rapid global change and establishing conservation management strategies.  相似文献   

2.
Fundamental to effective management of migratory waterbird populations is an understanding of their flyway delineation. Taiga Bean Geese Anser fabalis fabalis wintering in NW Denmark, Scotland and England are considered to originate from northern and central Sweden, southern and central Norway (‘Western flyway’), those wintering in southern Sweden, NE and southern Denmark are considered to originate from northern Fennoscandia and western Russia (‘Central flyway’), and those wintering in eastern Germany and Poland (which show far less favourable conservation status) are thought to come from western Siberia (‘Eastern 1 flyway’), although evidence to demonstrate this has largely been lacking. Evidence for different natal and moult origins of Taiga Bean Geese was investigated using stable isotope analyses of feathers of four elements (δ2H, δ13C, δ15N and δ34S). There were significant differences in isotopic composition of feathers from Swedish (Central) and German (Eastern 1) wintering populations and those moulting in Sweden in late summer (Western), which validated the three proposed major management flyway units above. The strong continental gradient in the stable hydrogen isotope ratios in precipitation (δ2Hp) across the region was used to assign wintering birds geospatially to natal and moulting origin, indicating separate natal and moulting areas for German (= 37, from western Siberia) and Swedish (= 20, Fennoscandia and more western Russia) wintering birds. These results confirm the largely discrete nature of these three flyways and contribute significantly to our ability to deliver effective targeted and appropriate research, monitoring and management actions throughout the ranges of these flyways.  相似文献   

3.
Despite declines in numerous migratory bird populations due to global climate and landscape changes, the Pacific Flyway population of Greater White‐fronted Geese Anser albifrons frontalis in North America has flourished over recent decades. However, the demographic foundations of the population increase remain unclear, largely due to sparse data. In this study, we used a Bayesian integrated population model (IPM) to maximize information from multiple data sources including coordinated population survey, ring‐recovery and hunter‐harvested goose tail data. We estimated demographic parameters and assessed the role of several possible drivers of the observed population increase, including density‐dependent processes, agricultural land use change and climate conditions in both the wintering and the breeding season, while also accounting for the impacts of harvest. Non‐harvest survival of all geese was 0.83 (95% credible interval (CRI): 0.70–0.96) before legislation restricted post‐harvest rice field burning, and 0.98 (95% CRI: 0.94–1.0) afterwards. We detected a negative effect of density‐dependent processes and a positive effect of El Niño‐Southern Oscillation on non‐harvest survival with high certainty. Kill rates were 0.11 (95% CRI: 0.09–0.12) for adults (after hatch year) and 0.26 (95% CRI 0.21–0.31) for juveniles (hatch year), resulting in annual survival rates of 0.81 (95% CRI: 0.69–0.89) for adults and 0.67 (95% CRI: 0.56–0.76) for juveniles. The ratio of juvenile birds to adults in the population was on average 0.36 (95% CRI: 0.29–0.45) and was driven by negative density‐dependent processes with high certainty. Our results suggest that the ban on rice field burning and subsequent high frequency of flooding as an alternative rice decomposition practice was the primary driver of the Pacific white‐fronted Goose population increase. The effects of climate change and density dependence were not strong enough to suppress the benefit of flooded rice. Given sparse demographic data for Pacific white‐fronted Geese, we were only able to uncover drivers of demography using IPMs. We encourage practitioners with sparse data similarly to consider forming IPMs to determine the drivers and mechanisms for population change and to prioritize future data collection.  相似文献   

4.
Wind farms offer a cleaner alternative to fossil fuels and can mitigate their negative effects on climate change. However, wind farms may have negative impacts on birds. The East China Coast forms a key part of the East Asian–Australasian Flyway, and it is a crucial region for wind energy development in China. However, despite ducks being the dominant animal taxon along the East China Coast in winter and considered as particularly vulnerable to the effects of wind farms, the potential negative impacts of wind farms on duck populations remain unclear. We therefore assessed the effects of wind farms on duck abundance, distribution, and habitat use at Chongming Dongtan, which is a major wintering site for ducks along the East Asian–Australasian Flyway, using field surveys and satellite tracking. We conducted seven paired field surveys of ducks inside wind farm (IWF) and outside wind farm (OWF) sites in artificial brackish marsh, paddy fields, and aquaculture ponds. Duck abundance was significantly higher in OWF compared with IWF sites and significantly higher in artificial brackish marsh than in aquaculture ponds and paddy fields. Based on 1,918 high‐resolution satellite tracking records, the main habitat types of ducks during the day and at night were artificial brackish marsh and paddy fields, respectively. Furthermore, grid‐based analysis showed overlaps between ducks and wind farms, with greater overlap at night than during the day. According to resource selection functions, habitat use by wintering ducks was impacted by distance to water, land cover, human activity, and wind farm effects, and the variables predicted to have significant impacts on duck habitat use differed between day and night. Our study suggests that wintering ducks tend to avoid wind turbines at Chongming Dongtan, and landscape of paddy fields and artificial wetlands adjoining natural wetlands is crucial for wintering ducks.  相似文献   

5.
The Neusiedler See – Seewinkel National Park area is confronted with a remarkable increase in tourism and recreational activities during the last years. The “Koppel” area, situated on the eastern shore of the lake, is one of the most important breeding sites for Greylag Geese. Behaviour and distribution of the geese on the breeding site as well as touristic activities on the adjacent road leading along the Koppel were examined to investigate relations and interactions between the Greylag Goose population and tourism. Taking into account the excellent weather and breeding conditions in the year 2000 the results of the survey indicate a stable or even rising Greylag population, increasing numbers of visitors and high disturbance frequencies in the vicinity of the study area. The number of disturbances on the adjacent road seems to affect the suitability of the site in general, leading to a specific temporal and spatial distribution of the birds, whereas different disturbance qualities result in changes of the birds behaviour.  相似文献   

6.
Abstract The White‐bellied Sea‐Eagle Haliaeetus leucogaster (Accipitridae) is widespread within Australia. However, in a number of states it is thought to be declining locally in response to human induced disturbance. Here we analyse the Australian Bird Atlas data to identify the extent and pattern of change in range and density of the species between three Atlas Periods (1901–1976, 1977–1981 and 1998–2001) using a new standardized frequency measure, the Occupancy Index (OI) for 1° blocks (approx. 100 km2) across the continent. At the continental scale, there was no significant difference in the spatial extent of occupancy between Atlas Periods. However, there were considerable changes in frequency and range extent between defined regions, and there were distinct differences in the pattern of change in OI between coastal and inland blocks over time. Coastal blocks showed much more change than inland blocks, with a clear increase in the use of coastal blocks, accompanied by a decrease in inland blocks, during the 1977–1981 Atlas Period, relative to both other Atlas Periods. While there were slight (and not statistically significant) trends for OI to increase in areas containing dams, and to decrease in urbanized coastal areas, the over‐riding factor associated with distributional shifts and frequency changes was apparently climatic fluctuation (the 1977–1981 period showing the influence of El Niño associated drought). Within this study, the impression of abundance was strongly dependent on both the temporal and spatial scale of analysis. This highlights the importance of large‐scale analysis in interpreting change in distribution and abundance of widespread species.  相似文献   

7.
The Barbary macaque, Macaca sylvanus is a very adaptable primate species occupying a wide range of habitats in Morocco and Algeria. Several groups of this endangered macaque can be found in tourist sites, where they are affected by the presence of visitors providing food to them. We compare the activity budgets and the diet of semiprovisioned and wild‐feeding groups of Barbary macaques in the central High Atlas Mountains of Morocco from February to August 2008. We used instantaneous scan sampling at 15‐min intervals. The behaviors included in the activity budget were feeding, moving, foraging, resting, and aggressive display. Food items were grouped into seven categories. We found no differences between the two groups in the daily percentages of records attributed to feeding. The semiprovisioned group spent significantly more time engaged in resting and aggressive behavior, and foraged and moved significantly less than the wild‐feeding group. There was no significant difference between the two groups in time spent eating leaves, fruits, or roots and bark. The semiprovisioned group, however, spent significantly less time per day feeding on herbs, seeds, and acorns than the wild‐feeding group. Human food accounted for 26% of the daily feeding records for the semiprovisioned group and 1% for the wild‐feeding group. Our findings agree with previous studies and indicate that in the tourist site, where food is highly clumped, macaques decreased foraging time yet showed higher levels of contest competition. Our results support the common claim that the diet of the Barbary macaque is highly flexible, differing among its varied habitats. Conservation efforts for the Barbary macaques should take into account the changes in behavior that human‐modified environments may cause.  相似文献   

8.
9.
We report the development of 14 novel polymorphic microsatellite markers cloned from the White‐tailed Sea Eagle, Haliaeetus albicilla, a formerly threatened raptor that has received much conservation attention throughout Eurasia. We also present a protocol for multiplex polymerase chain reaction (PCR) amplification of the loci. Among 40 unrelated H. albicilla individuals from southern Sweden, the markers produced two to eight alleles per locus, and average observed and expected heterozygosities were 0.463 and 0.468, respectively. We further present five microsatellite markers that appeared monomorphic in H. albicilla, but which may be of interest for use in other raptor species.  相似文献   

10.
The greatest common threat to birds in Madagascar has historically been from anthropogenic deforestation. During recent decades, global climate change is now also regarded as a significant threat to biodiversity. This study uses Maximum Entropy species distribution modeling to explore how potential climate change could affect the distribution of 17 threatened forest endemic bird species, using a range of climate variables from the Hadley Center's HadCM3 climate change model, for IPCC scenario B2a, for 2050. We explore the importance of forest cover as a modeling variable and we test the use of pseudo‐presences drawn from extent of occurrence distributions. Inclusion of the forest cover variable improves the models and models derived from real‐presence data with forest layer are better predictors than those from pseudo‐presence data. Using real‐presence data, we analyzed the impacts of climate change on the distribution of nine species. We could not predict the impact of climate change on eight species because of low numbers of occurrences. All nine species were predicted to experience reductions in their total range areas, and their maximum modeled probabilities of occurrence. In general, species range and altitudinal contractions follow the reductive trend of the Maximum presence probability. Only two species (Tyto soumagnei and Newtonia fanovanae) are expected to expand their altitude range. These results indicate that future availability of suitable habitat at different elevations is likely to be critical for species persistence through climate change. Five species (Eutriorchis astur, Neodrepanis hypoxantha, Mesitornis unicolor, Euryceros prevostii, and Oriola bernieri) are probably the most vulnerable to climate change. Four of them (E. astur, M. unicolor, E. prevostii, and O. bernieri) were found vulnerable to the forest fragmentation during previous research. Combination of these two threats in the future could negatively affect these species in a drastic way. Climate change is expected to act differently on each species and it is important to incorporate complex ecological variables into species distribution models.  相似文献   

11.
《Palaeoworld》2021,30(3):583-592
Palynological analyses in combination with radiocarbon dating on a Holocene borehole from the Lake Nanyi, Anhui Province, East China demonstrate a well-documented local vegetation evolution since 9000 cal BP, which is the first record of Holocene climate change and human impact in this region. Since 9000 cal BP a mixed evergreen and deciduous broad-leaved forest dominated by Cyclobalanopsis and Quercus developed in this area, indicating a warm climate condition with enhanced insolation. A mixed evergreen and deciduous broad-leaved forest was fully developed between 6600–4500 cal BP, which corresponds to the Holocene Climate Optimum with the strong influence of East Asian summer monsoon (EASM). After 3000 cal BP the broad-leaved forest decreased rapidly, while land herbs and ferns increased. It seems that the climate condition in East China was similar to the present after Holocene Climate Optimum. Pollen results show a potential interface between environment changes and human activities. Pollen diagram demonstrates that human impacts on the natural vegetation remained weak at the early stage but significantly enhanced upwards. The distinctive fluctuations of the pollen contents among AP (trees and shrubs), and the possible agriculture indicators might infer the potential human behaviors for environment changes. Due to the enlargement of organized farming and increase in population, natural forest was eventually replaced by farmland since 3000 cal BP. This study would increase our knowledge of Holocene vegetation transition related to the monsoon dynamics on a long timescale in East China and provide an environmental background for more detailed studies on cultural developments in the middle and lower reaches of the Yangtze River region.  相似文献   

12.
Leveraging existing presence records and geospatial datasets, species distribution modeling has been widely applied to informing species conservation and restoration efforts. Maxent is one of the most popular modeling algorithms, yet recent research has demonstrated Maxent models are vulnerable to prediction errors related to spatial sampling bias and model complexity. Despite elevated rates of biodiversity imperilment in stream ecosystems, the application of Maxent models to stream networks has lagged, as has the availability of tools to address potential sources of error and calculate model evaluation metrics when modeling in nonraster environments (such as stream networks). Herein, we use Maxent and customized R code to estimate the potential distribution of paddlefish (Polyodon spathula) at a stream‐segment level within the Arkansas River basin, USA, while accounting for potential spatial sampling bias and model complexity. Filtering the presence data appeared to adequately remove an eastward, large‐river sampling bias that was evident within the unfiltered presence dataset. In particular, our novel riverscape filter provided a repeatable means of obtaining a relatively even coverage of presence data among watersheds and streams of varying sizes. The greatest differences in estimated distributions were observed among models constructed with default versus AICC‐selected parameterization. Although all models had similarly high performance and evaluation metrics, the AICC‐selected models were more inclusive of westward‐situated and smaller, headwater streams. Overall, our results solidified the importance of accounting for model complexity and spatial sampling bias in SDMs constructed within stream networks and provided a roadmap for future paddlefish restoration efforts in the study area.  相似文献   

13.
14.
Abstract A greater understanding of the relative impact of insecticide use on non‐target species is critical for the incorporation of natural enemies into integrated pest management strategies. Here we use a small‐plot field trial to examine the relative impact of an insecticide on herbivores and predators found in soybean (Glycine max L.), and to highlight the issues associated with calculating impact factors from these studies. The pyrethroid insecticide (Deltamethrin) caused a significant reduction in invertebrate abundance in the treated plots, and populations did not recover to pre‐treatment levels even 20 days after spraying. To assess the relative impact of the spray on arthropods we first examined the mean difference in abundance in each plot before and after spraying. All herbivores decreased in abundance in the sprayed plots but increased in the control plots after spraying. Most predators (excluding hemipterans) showed a decrease in the control plots but a proportionally greater decrease in the sprayed plots. Next we examined the corrected percentage population reduction calculated using Abbott's formula. All predators (including Araneae) experienced a greater reduction (mean 87% ± 3.54 SE) than herbivores (mean 56% ± 4.37 SE) and Araneae alone (mean 71% ± 8.12 SE). The range in values across the plots varied and made categorising overall impact subjective for some taxa. Despite the constraints associated with small‐plot trials, by using a combination of impact factors and examining community‐level response across time, we did get some indication of the likely impact of this insecticide if used in a commercial situation.  相似文献   

15.
We describe Vipera walser, a new viper species from the north‐western Italian Alps. Despite an overall morphological resemblance with Vipera berus, the new species is remarkably distinct genetically from both V. berus and other vipers occurring in western Europe and shows closer affinities to species occurring only in the Caucasus. Morphologically, the new species appear to be more similar to V. berus than to its closest relatives occurring in the Caucasus, but can be readily distinguished in most cases by a combination of meristic features as confirmed by discriminant analysis. The extant population shows a very low genetic variability measured with mitochondrial markers, suggesting that the taxon has suffered a serious population reduction/bottleneck in the past. The species is extremely range‐restricted (less than 500 km2) and occurs only in two disjunct sites within the high rainfall valleys of the Alps north of Biella. This new species should be classified as globally ‘endangered’ due to its small and fragmented range, and an inferred population decline. The main near‐future threats to the species are habitat changes associated with reduced grazing, along with persecution and collecting.  相似文献   

16.
In this paper, the population biology of the velvet belly lanternshark Etmopterus spinax was studied and life‐history coefficients determined. Age was estimated from sections of the second dorsal spine and validated by marginal increment analysis. Males attained a maximum age of 8 years while 11 year‐old females were found. Several growth models were fitted and compared for both size‐at‐age and mass‐at‐age data, showing that even though this is a small‐sized species, it has a relatively slow growth rate. This species matures late, specifically at 49·6 and 42·5% of the maximum observed ages for males and females, respectively. It has a low fecundity, with a mean ovarian fecundity of 9·94 oocytes and a mean uterine fecundity of 7·59 embryos per reproductive cycle. This species seems to have a long reproductive cycle, and even though no conclusive data were obtained, a 2–3 year cycle is possible. The estimated coefficients indicate that this species has a vulnerable life cycle, typical of deepwater squalid sharks. Given the high fishing pressures that it is suffering in the north‐east Atlantic, this fish may already be facing severe declines or in risk of facing them in the near future.  相似文献   

17.
Hyalospheniids are among the most common and conspicuous testate amoebae in high‐latitude peatlands and forest humus. These testate amoebae were widely studied as bioindicators and are increasingly used as models in microbial biogeography. However, data on their diversity and ecology are still very unevenly distributed geographically: notably, data are lacking for low‐latitude peatlands. We describe here a new species, Nebela jiuhuensis, from peatlands near the Middle Yangtze River reach of south‐central China with characteristic morphology. The test (shell) has hollow horn‐like lateral extensions also found in N. saccifera, N. equicalceus (=N. hippocrepis), and N. ansata, three large species restricted mostly to Sphagnum peatlands of Eastern North America. Mitochondrial cytochrome oxidase (COI) data confirm that N. jiuhuensis is closely related to the morphologically very similar North American species N. saccifera and more distantly to N. ansata within the N. penardiana group. These species are all found in wet mosses growing in poor fens. Earlier reports of morphologically similar specimens found in South Korea peatlands suggest that N. jiuhuensis may be distributed in comparable peatlands in Eastern Asia (China and Korea). The discovery of such a conspicuous new species in Chinese peatlands suggests that many new testate amoebae species are yet to be discovered, including potential regional endemics. Furthermore, human activities (e.g., drainage, agriculture, and pollution) have reduced the known habitat of N. jiuhuensis, which can thus be considered as locally endangered. We, therefore, suggest that this very conspicuous micro‐organism with a probably limited geographical distribution and specific habitat requirement should be considered as a flagship species for microbial biogeography as well as local environmental conservation and management.  相似文献   

18.
We studied the effects of climate change and forest management scenarios on net climate impacts (radiative forcing) of production and utilization of energy biomass, in a Norway spruce forest area over an 80‐year simulation period in Finnish boreal conditions. A stable age‐class distribution was used in model‐based analyses to identify purely the management effects under the current and changing climate (SRES B1 and A2 scenarios). The radiative forcing was calculated based on an integrated use of forest ecosystem model simulations and a life cycle assessment (LCA) tool. In this work, forest‐based energy was used to substitute coal, and current forest management (baseline management) was used as a reference management. In alternative management scenarios, the stocking was maintained 20% higher in thinning compared to the baseline management, and nitrogen fertilization was applied. Intensity of energy biomass harvest (e.g. logging residues, coarse roots and stumps) was varied in the final felling of the stands at the age of 80 years. Also, the economic profitability (NPV, 3% interest rate) of integrated production of timber and energy biomass was calculated for each management scenario. Our results showed that compared to the baseline management, climate benefits could be increased by maintaining higher stocking in thinning over rotation, using nitrogen fertilization and harvesting logging residues, stumps and coarse roots in the final felling. Under the gradually changing climate (in both SRES B1 and A2), the climate benefits were lower compared to the current climate. Trade‐offs between NPV and net climate impacts also existed.  相似文献   

19.
The 51 isolates, the causing agents of maize eyespot, were identified as Kabatiella zeae with morphological and molecular methods. The structure of the MAT locus in K. zeae JLMHK‐9 strain contains MAT1‐1 and MAT1‐2 genes which are transcribed in opposite directions, DNA lyase gene (APN2) which is adjacent to the 3′ flanking region of MAT1‐2‐1 gene and a pleckstrin homology domain (PH) which is adjacent to the 3′ flanking region of MAT1‐1‐1 gene. The specific primers are used to identify the mating types of K. zeae isolates collected from six provinces in China, and our findings speculate that K. zeae is a homothallic species.  相似文献   

20.
The climate‐driven dynamics of species ranges is a critical research question in evolutionary ecology. We ask whether present intraspecific diversity is determined by the imprint of past climate. This is an ongoing debate requiring interdisciplinary examination of population genetic pools and persistence patterns across global ranges. Previously, contrasting inferences and predictions have resulted from distinct genomic coverage and/or geographical information. We aim to describe and explain the causes of geographical contrasts in genetic diversity and their consequences for the future baseline of the global genetic pool, by comparing present geographical distribution of genetic diversity and differentiation with predictive species distribution modelling (SDM) during past extremes, present time and future climate scenarios for a brown alga, Fucus vesiculosus. SDM showed that both atmospheric and oceanic variables shape the global distribution of intertidal species, revealing regions of persistence, extinction and expansion during glacial and postglacial periods. These explained the distribution and structure of present genetic diversity, consisting of differentiated genetic pools with maximal diversity in areas of long‐term persistence. Most of the present species range comprises postglacial expansion zones and, in contrast to highly dispersive marine organisms, expansions involved only local fronts, leaving distinct genetic pools at rear edges. Besides unravelling a complex phylogeographical history and showing congruence between genetic diversity and persistent distribution zones, supporting the hypothesis of niche conservatism, range shifts and loss of unique genetic diversity at the rear edge were predicted for future climate scenarios, impoverishing the global gene pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号