首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Early effects of gibberellic acid (GA3) (1–4 h treatment) on the ion ratios in a dwarf maize mutant (Zea mays L. d 1) showing normal growth after hormone treatment, have been investigated by electron microprobe analysis. GA3 exerts a different effect on the ion ratios in plastids, cytoplasm and vacuoles in short term experiments. The Cl content of chloroplasts and cytoplasm increases without a lag phase after GA3 treatment. The K content of plastids increases after a lag phase of 2 h, whereas in the cytoplasm an increase can be observed immediately after GA3 addition. The hormone has only little influence on the Ca content of the cell compartments investigated. Control experiments with water and the physiologically inactive GA3 methylester confirm the specifity of the short-term actions of GA3 on the ion ratios. The primary action of GA3 at the membrane level is discussed.  相似文献   

2.
以紫斑牡丹种子为试验材料,研究不同浓度的赤霉素(GA_3)处理对种子生根以及生根过程中营养物质、酶活性和内源激素水平变化的影响,为探讨紫斑牡丹种子萌发机制提供依据。结果表明:(1)GA_3处理能够促进种子生根,并以300 mg/L GA_3处理对种子生根效果最好,与对照相比可提前14.67 d生根,生根率可达71.00%。(2)与对照相比,GA_3处理可以在0~15 d时促进种子淀粉水解和可溶性糖的积累,并加速可溶性蛋白的消耗,在0~30 d促进过氧化物酶(POD)活性的提高,从而促进种子萌发生根。(3)在种子沙藏生根过程中,种子脱落酸(ABA)含量呈下降趋势,赤霉素(GA)、玉米素核苷(ZR)和吲哚乙酸(IAA)含量均表现出先上升后下降的趋势,与对照相比,GA_3处理可使种子GA、ZR和IAA的含量在沙藏前期明显上升,以解除种子休眠。研究发现,外源GA_3处理可以调控紫斑牡丹种子内源激素含量和POD活性的变化,促进营养物质转化,从而提前解除种子休眠使其萌发。  相似文献   

3.
Changes in gibberellins (GAs), indole-3-acetic acid (IAA), and cytokinins associated with the transition from vegetative growth to reproductive growth in Humulus lupulus L. buds and leaves harvested at fortnight intervals were studied. During vegetative growth, GA1 increased gradually and the lowest content was observed during flower development. Both GA3 and GA4 showed a dramatic increase in the samples taken from the apical part of axillary branches from plants 4–5 m high, which corresponds to the maximum vegetative development prior to macroscopically visible inflorescences. Notable increases in the cytokinins trans-zeatin (t-Z), isopentenyladenine (iP), and the riboside and ribotide forms of iP were also obtained. The auxin, indole-3-acetic acid, was the most abundant plant hormone, and its content was highest during vegetative growth. These results show for the first time a relationship between endogenous hormone profiles and both vegetative and reproductive development in hop plants, which may be relevant for future research on the control of the flowering by exogenous hormone applications.  相似文献   

4.
Richard Hooley 《Planta》1984,161(4):355-360
In the presence of gibberellic acid (GA3) aleurone layers and isolated aleurone protoplasts of Avena fatua accumulate specific isozymes of acid phosphatase (EC 3.1.3.2). Some of these may be involved in mobilizing aleurone-grain phosphate reserves during germination. The hormone also controls secretion of other specific molecular forms of the enzyme that probably assist in endosperm hydrolysis. The accumulation and secretion of putative cell-wall-associated isozymes are stimulated by the action of GA3 in isolated protoplasts. This effect however, is apparently over-ridden in the intact tissue, possibly by a cell-wall-based feedback mechanism.Abbreviations GA3 gibberellic acid - pI isoelectric point(s)  相似文献   

5.
Indole-3-acetic acid (IAA) strongly enhanced rooting of etiolated pea epicotyl cuttings while gibberellic acid (GA3) enhanced rooting only slightly. The promoting effects of the hormones appeared not until 14 d after the onset of treatment. When GA3 and IAA were applied together, the initiation of rooting started already after 6 d after onset of treatment. It is suggested that gibberellin plays an important role, in combination with auxin, in the initiation of root formation in Pisum cuttings.Abbreviations IAA Indole-3-acetic acid - GA3 Gibberellic acid  相似文献   

6.
以云南省瑞丽市勐秀林场扦插种植的薇甘菊为试材,采用液相色谱串联质谱(LC-MS/MS)技术对花芽未分化期和花序原基分化期花芽中的生长素(IAA)、赤霉素(GA)、脱落酸(ABA)、反式玉米素(tZ)、异戊烯腺嘌呤(IP)、1-氨基环丙烷羧酸(ACC)、茉莉酸(JA)和水杨酸(SA)含量进行定量分析,同时基于转录组基因功能注释数据对内源激素合成、代谢及信号转导途径相关基因进行表达分析,以探讨不同内源激素对薇甘菊花芽形成的调控作用,以及内源激素合成和信号转导途径相关基因调控薇甘菊花芽分化的机制,为后期通过外源激素调控薇甘菊内源激素水平的方式来控制薇甘菊的有性繁殖提供理论和技术支持。结果表明:(1)薇甘菊未分化期花芽中GA15、GA19、GA20、GA24、IAA、ABA和ETH含量低于花序原基分化期,而未分化期花芽中两种细胞分裂素tZ和IP含量显著高于花序原基分化期。(2)基于RNA-seq测序结果,在薇甘菊两个花芽分化时期共获得7 116个差异表达基因(DEGs),其中上调3 907个,下调3 209个。(3)在内源激素合成方面,参与GA15、GA19、GA20、GA24、IAA、ABA和ACC合成的大量DEGs在花序原基分化期上调表达,这与它们在薇甘菊花序原基分化期的高含量趋势相一致;参与IAA合成的YUCCA基因家族和ACC合成的ACS基因在花序原基分化期的高表达也可能参与促进薇甘菊花芽分化。(4)在植物激素转导途径中,在花序原基分化期,生长素信号转导途径通过AUX/IAA(gene-E3N88_07743)的下调表达和ARF(gene-E3N88_41119)的上调表达,乙烯信号转导途径通过ERF(gene-E3N88_41547)的上调表达,赤霉素信号转导途径通过GID1(gene-E3N88_19448)基因的上调表达,细胞分裂素信号转导途径通过B-ARR(gene-E3N88_28086)和A-RRR(gene-E3N88_40764)基因的下调表达,脱落酸途径通过AREB(gene-E3N88_18558)基因的上调表达,茉莉酸信号转导途径通过JAZ(gene-E3N88_05628)的上调表达和MYC2(gene-E3N88_32405)的下调表达来调控薇甘菊花芽分化。研究发现,高水平的GA15、GA19、GA20、GA24、IAA、ABA和ACC有利于薇甘菊的花芽分化;薇甘菊在花芽分化过程中通过改变不同种类内源激素合成、代谢基因的表达来调控激素浓度,而激素又通过信号转导途径引起下游基因的表达,进而调控薇甘菊的花芽分化。  相似文献   

7.
Richard Hooley 《Planta》1982,154(1):29-40
Viable, long-lived, gibberellic acid (GA3)-responsive protoplasts have, for the first time, been isolated from aleurone layers of mature wild oat (Avena fatua L.) grain. More than 90% of the cells of aleurone layers are recovered as protoplasts, and these respond to treatment with GA3 in essentially the same manner as the tissue from which they were derived. Protoplasts become vacuolate during incubation in vitro and, although not dependent upon GA3, vacuolation is markedly stimulated by the hormone. Amylase and ribonuclease (RNase) are produced and secreted only in the presence of GA3 and only after lag periods of 3 d and 4 d respectively. The amounts of amylase produced and secreted are proportional to GA3 concentrations as low as 1.61·10-13 M. With increasing concentrations of mannitol in the culture medium both vacuolation and the GA3-induced production and secretion of enzymes are inhibited progressively, the latter being precluded by 0.6 M to 0.7 M mannitol.Abbreviations GA3 gibberellic acid3 - RNase ribonuclease  相似文献   

8.
Gibberellic acid (GA3) is a commercially important plant growth hormone, which is gaining much more attention all over the world due to its effective use in agriculture and brewing industry. Industrially it is produced by submerged fermentation technique using Ascomycetous fungusGibberella fujikuroi. Solid state and immobilized cell fermentation techniques had also been developed as an alternative to obtain higher yield of GA3. This review summarizes the problems of GA3 fermentation such as production of co-secondary metabolites along with GA3, substrate inhibition and degradation of GA3 to biologically inert compound gibberellenic acid, which limits the yield of GA3 in the fermentation medium. These problems can be overcome by various bioprocessing strategiese.g. two-stage and fed batch cultivation processes. Further research on bioreactor operation strategies such as continuous and/or extractive fermentation with or without cell recycle/retention system need to be investigated for improvement in yield and productivity. Down stream processing for GA3 isolation is also a challenge and procedures available for the same have been critically evaluated.  相似文献   

9.
Indole-3-acetic acid (IAA), fusicoccin and weak acids all lower the cytoplasmic pH (pHi) and induce elongation growth of maize (Zea mays L.) coleoptiles. Gibberellic acid (GA3) also induces elongation growth and we have used confocal laser scanning microscopy to study the effects of GA3 on pHi employing the pH-indicator dyes, 2,7-bis(2-carboxyethyl)-5-(and-6) carboxyfluorescein and carboxy-semi-naphthorhodafluor-1. We confirm that GA3 induces growth significantly in light-grown but only slightly or not at all in dark-grown coleoptiles. The growth induced by IAA treatment was similar in light- and dark-grown coleoptiles. The pHi decreased by up to 0.6 units during the first 7 min of GA3 or IAA treatment of both light- and dark-grown coleoptiles. Gibberellic acid inhibited IAA-induced growth of dark-grown coleoptiles. Hence, in dark-grown coleoptiles GA3 may activate either directly or indirectly reactions that interfere with the signalling pathway leading to elongation growth. The possible role of pHi in growth is discussed.Abbreviations ABA abscisic acid - AM acetoxymethyl ester - BCECF 2,7-bis(2-carboxyethyl)-5-(and-6) carboxyfluorescein - [Ca2+]i cytoplasmic free calcium - GA(n) gibberellin A(n) - GA3 gibberellic acid - IAA indole-3-acetic acid - PGR plant growth regulator - pHi cytoplasmic pH - Pipes piperazine-N,N-bis[2-ethanesulfonic acid] - Snarf-1 carboxy-semi-naphthorhodafluor-1 We thank Dr R. King (CSIRO, Canberra) for providing the GA1 and T. Phillips for processing the photographic material. H.R. Irving was supported by an Australian Research Council Research Fellowship and the work was supported by an Australian Research Council grant.  相似文献   

10.
Gibberellic acid (GA3) is a very potent hormone whose natural occurrence in plants controls their development. Cadmium is a particularly dangerous pollutant due to its high toxicity and great solubility in water. In this study, the effect of GA3 on Allium sativum root tip cells was investigated in the presence of cadmium. A. sativum root tip cells were exposed to CdNO3 (50, 100, 200 μM), GA3 (10-3 M), both CdNO3 and GA3. Cytogenetic analyses were performed as micronucleus (MN) assay and mitotic index (MI). Lipid peroxidation analysis was also performed in A. sativum root tip cells for determination of membrane damage. MN exhibited a dose-dependent increase in Cd treatments in A. sativum. GA3 significantly reduced the effect of Cd on the MN frequency. MN was observed in GA3 and GA3 + 50 μm Cd treatments at very low frequency. MI slightly decreased in GA3 and GA3 + Cd treatments. MI decreased more in high concentrations of Cd than combined GA3 + Cd treatments. The high concentrations of cadmium induce MN, lipid peroxidation and lead to genotoxicity in A. sativum. Current work reveals that the effect of Cd on genotoxicity can be partially restored with GA3 application.  相似文献   

11.
The roles of gibberellic acid (GA3) and fusicoccin (FC) in the elongation growth and acidification of the medium by excised hypocotyl sections of lettuce (Lactuca sativa L.) were investigated. Hypocotyl sections incubated in buffer without GA3 elongate optimally at pH 4.0–4.25 while sections incubated with GA3 show the same growth between pH 4.25 and 6.0. Preincubation of sections at pH 6.0 for 6 h does not affect the subsequent elongation response to acidic medium (pH 4.25); however, the sections become refractory to further acid treatment after their initial burst of growth in response to pH 4.25. Sections made refractory to acid are responsive to GA3 application, however, and the rate of growth in response to GA3 of sections pretreated for 6 h at pH 4.25 is 85% of that of sections pretreated at pH 6.0. Although preincubation of sections for 48 h in medium at pH 6.0 abolishes the GA3 response, it does not affect the response to buffer at pH 4.25. FC stimulates elongation growth in letuce hypocotyls at an optimal concentration of 1 M, and pretreatment of sections at pH 4.25 does not affect this elongation response. Although both GA3 and FC increase elongation of the section, neither causes appreciable acidification of the medium. Addition of KCl or NaCl to FC-treated sections causes rapid medium acidification but addition of salts to GA3-treated tissue does not cause acidification. Abrasion of the hypocotyl to remove the cuticle does not enhance acidification of the medium by the sections nor deos it affect elongation of the sections in response to GA3 or FC. Medium acidification by the sections is not a passive process since it is abolished both by low temperature (2° C) and metabolic inhibitors (carbonyl cyanide-m-chlorophenyl-hydrazone, azide). The acidification of the medium by barley (Hordeum vulgare L.) roots in response to FC is also dependent on the presence of KCl. We conclude that the acid-growth hypothesis does not explain GA3- or FC-induced elongation in lettuce hypocotyls.Abbreviations FC tusicoccin - GA3 gibberellic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - CCCP carbonyl cyanide-m-chlorophenyl-hydrazone - MES 2-(N-morpholino)ethanesulphonic acid - Tris tris-(hydroxymethyl)aminomethane  相似文献   

12.
以1年生紫斑牡丹幼苗为试验材料,采用不同浓度(0、100、300、500 mg/L)赤霉素(GA_3)喷施叶片处理,通过透射电镜、扫描电镜、光学显微镜观察幼苗叶片解剖结构,光合仪测定幼苗光合参数并以酶联免疫吸附法测叶片内源激素含量,探究外源GA_3对紫斑牡丹幼苗叶片解剖结构、光合特性和内源激素水平的影响。结果表明:(1)低浓度GA_3处理的紫斑牡丹叶肉细胞增大,栅栏组织外层细胞中叶绿体数量增加,高浓度GA_3处理则与之相反;GA_3处理叶片的栅栏组织/海绵组织比值(P/S)、组织结构紧密度(CTR)均下降,而其组织结构疏松度(SR)增加;GA_3处理的幼苗叶片的叶肉细胞内各叶绿体大小显著大于对照,随着GA_3处理浓度增加,紫斑牡丹叶肉细胞内叶绿体的体积趋于增大,类囊体垛叠凝聚逐渐松散,叶绿体上淀粉颗粒在300 mg/L GA_3处理中较明显;叶片气孔长度、宽度、气孔器大小、气孔开度和气孔密度随着GA_3浓度升高先升高后下降,同时叶片上表皮角质层厚度随GA_3浓度的升高而增加。(2)紫斑牡丹叶片净光合速率(P_n)、气孔导度(Cond)、蒸腾速率(T_r)、水分利用率(WUE)在100和300 mg/L GA_3处理下大都显著高于对照,且300 mg/L GA_3处理显著高于其余处理,而其在500 mg/L GA_3处理下显著低于对照。(3)紫斑牡丹叶片脱落酸(ABA)和吲哚乙酸(IAA)含量均在500 mg/L GA_3下显著高于对照,而在其余浓度处理下不同程度低于对照,叶片内源玉米素核苷(ZR)和GA_3含量均在300 mg/L GA_3处理下显著高于其余处理和对照,而其余处理相比对照均无显著变化;叶片的ZR/ABA、ZR/IAA、ZR/GA_3和(IAA+GA_3+ZR)/ABA比值都在300 mg/L GA_3处理下显著高于其他处理,叶片的IAA/ABA和ABA/GA_3比值均在500 mg/L GA_3处理下显著高于其他处理。研究发现,适宜浓度外源GA_3处理,能显著提高紫斑牡丹幼苗叶片光合速率、水分利用效率及蒸腾速率,调节植物体内源激素的含量及平衡,从而使叶片能合成较多有机物,促进幼苗生长。  相似文献   

13.
Abstract The effects of gibberellic acid (GA3) on whole sunflower (Helianthus annuus L.) plants grown at three potassium (K) levels (0.0, 0.5 and 5.0 mM) were studied. A tenfold increase in the length of the first internode was observed when plants grown without K were treated with GA3. The uneven K distribution along the plant (higher K content in the higher internodes) was enhanced by GA3 treatment. Gibberellic acid increased the content of reducing sugars, especially in K-deficient plants. An increase in the K level in the nutrient solution resulted in a decrease of the osmotic potential of stem segments. Osmotic potential differences within the elongating first internode were increased by GA3 treatment.  相似文献   

14.
关于中国沙棘克隆生长调节研究目前局限于外在机制,旨在探讨其克隆生长对灌水强度的响应规律及其激素调控的内在机制。结果表明:随着灌水强度的增大,分株生长、克隆繁殖、克隆扩散能力先升后降,IAA(吲哚-3-乙酸)、ZR(玉米素核苷)、GA_3(赤霉酸)含量及其与ABA(脱落酸)的比值先升后降而ABA含量先降后升。同时,分株生长、克隆繁殖、克隆扩散能力与IAA、ZR、GA_3含量以及IAA/ABA、ZR/ABA、GA_3/ABA呈极显著或显著正相关,与ABA含量呈极显著负相关。灌水强度过小或过大,IAA、ZR、GA_3含量以及IAA/ABA、ZR/ABA、GA_3/ABA低而ABA含量高,克隆生长潜力受到抑制,种群以分株小、数量少(分布稀疏)、扩散(水平根延伸和分枝)能力弱为特征,克隆生长格局倾向于"游击型"、种群早衰概率高;灌水强度适宜,IAA、ZR、GA_3含量以及IAA/ABA、ZR/ABA、GA_3/ABA高而ABA含量低,克隆生长潜力得以充分发挥,种群以分株大、数量多(分布密集)、扩散能力强为特征,克隆生长格局倾向于"聚集型"、种群稳定性高。随着灌水强度过小-适宜-过大的连续变化,中国沙棘通过改变激素状况调控克隆生长,从而形成与灌水强度相适应的克隆生长格局连续体"游击型-聚集型-游击型",种群稳定性呈"低-高-低"的连续变化过程。由此可见:灌水强度诱导内源激素发生改变,激素特征调控克隆生长格局,克隆生长格局决定种群稳定性。  相似文献   

15.
梾木种子低温层积过程中内源激素含量的动态变化特征   总被引:2,自引:0,他引:2  
应用酶联免疫吸附测定法(ELISA)研究了梾木种子低温层积过程中内源激素含量的动态变化,分析了内源激素与种子休眠与发芽的关系。结果表明:(1)梾木种子中IAA含量在层积处理初期剧烈降低,持续一段时间后又显著升高,但后期下降,且IAA/ABA也出现同样的变化;种子中ABA含量在层积处理前期较高,但随着处理时间的延长趋于下降;种子内GA1/3含量以及GA1/3/ABA均随层积处理时间的延长逐渐增大;种子内ZRs和iPAs含量的变化相对较为平稳,尽管有一定的波动,但整体呈渐趋增高趋势。(2)梾木种子发芽率及发芽势在未经层积处理以及处理时间少于90d的条件下均为0,但随着层积处理时间的延长二者明显上升,层积处理的时间长短对梾木种子萌发有显著影响。(3)相关分析表明,梾木种子内GA1/3含量与种子的发芽率、发芽势均呈显著正相关关系,相关系数分别为0.688、0.662;种子内GA1/3/ABA增大有利于种子休眠解除和萌发。  相似文献   

16.
Gibberellic acid (GA3) root treatments stimulated internode elongation of hydroponically grown dwarf pea seedlings (Pisum sativum L.,cv. Little Marvel) When the GA3 concentration in the solution was at least 2.9 M.Both GA3 concentration and the duration of the root-treatment period significantly affected internode elongation. This is attributed to a limited availability or saturation of active sites for gibberellin-induced cell elongation. The amount of GA3 taken up through the roots in 1 day from a 29 M GA3 solution apparently equaled or exceeded the amount which could be metabolized during the first four days after treatment, although higher concenrations and longer treatment periods produced a more prolonged response, conceivably due to 1) initial saturation of gibberellin active sites, 2) storage of surplus gibberellin in the plant, and 3) subsequent utilization of the stored gibberellin. GA3-induced stem elongation in hydroponically grown Little Marvel peas seemed to be limited initially by apparent saturation of active sites when the GA3 concentration exceeded 29 M.  相似文献   

17.
D. R. Mulligan  J. W. Patrick 《Planta》1979,145(3):233-238
Gibberellic acid (GA3), applied as a dispersion in aqueous lanolin to the stumps of decapitated stems of P. vulgaris plants, was found to promote the transfer of 14C-and 32P-labelled assimilates to the site of hormone application. Measurements of the component transfer processes, operating between source and sink (site of hormone application), showed that GA3 was not acting to promote assimilate transfer by increasing the photosynthetic rate of, or the assimilate export rate from the source, nor by altering the mobilizing ability of the competing root sink. Here, it also was found that the time between GA3 application and detection of an enhanced transport flux was independent of the length of the transport pathway. Overall, the evidence obtained indicated that GA3 was not acting on any transfer process remote from its point of hormone application but was acting locally at this latter point.Abbreviations GA3 gibberellic acid - IAA indol-3yl-acetic acid  相似文献   

18.
Gibberellic acid (GA3) is widely used to enlarge the berries of seedless grapes (Vitis vinifera L). In cv. Sultana (Thompson Seedless) the addition of 1000 mg/L urea phosphate (UP) to GA3 solutions after fruit set reduced the pH of the solutions to a stable pH 2.9 and enhanced the effect of GA3 on berry size and delayed maturation. Addition of citrate buffer, pH 2.9, to GA3 sprays did not affect berry size or maturation. The possibility of improved GA penetration due to the low pH is considered. The nutritional effect of UP and direct enhanced penetration by the urea ion are also discussed.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. No. 1735-E, 1986 series.  相似文献   

19.
The effect of gibberellic acid (GA3) was tested on germination of coconut zygotic embryos, their conversion into plantlets and ex vitro survival. There were four treatments consisting of 5 wk of culture in semi-solid medium or liquid medium, with or without GA3. Embryos were then transferred to GA3 free-liquid medium for the rest of a 32-wk culture. Germination and conversion percentages were higher in semi-solid medium than in liquid medium, and with both media percentages increased with GA3 treatment (with the exception of the highest GA3 concentration). Embryos of two varieties (MGD and MYD) were used. The following are the results with MGD embryos. Optimum GA3 concentration in liquid medium was 0.46 μM, with 80% germination (62% in the control without GA3) and 4.6 μM in semi-solid medium with 98% germination (71% in the control). With GA3 treatment, germination was also faster. Conversion in semi-solid medium with GA3 was 87% (60% in the control), and 45% in liquid medium with GA3 (25% in the control). Once the plantlets had at least three bifid leaves and three primary roots at the time of transfer to ex vitro, they survived independently of the treatment. When MYD embryos were used, germination and conversion percentages were higher in semi-solid medium than in liquid medium, and they increased when GA3 was used, although percentages were lower than those obtained with MGD embryos. The results showed that the use of GA3 benefited coconut embryos in culture because it favored germination and conversion to plants on semi-solid medium, and hence improved previous protocols.  相似文献   

20.
Indole-3-acetic acid (IAA) and gibberellic acid (GA3) enhanced the formation of roots on the stem cuttings of Abelmoschus esculentus. The effect increased considerably when both IAA and GA3 were applied together.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号