首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A wheat germ cell-free extract was used to perform in vitro translation of human stearoyl-CoA desaturase in the presence of unilamelar liposomes, and near complete transfer of the expressed integral membrane protein into the liposome was observed. Moreover, co-translation of the desaturase along with human cytochrome b5 led to transfer of both membrane proteins into the liposomes. A simple, single step purification via centrifugation in a density gradient yielded proteoliposomes with the desaturase in high purity as judged by capillary electrophoresis. After in vitro reconstitution of the non-heme iron and heme active sites, the function of the reconstituted enzyme complex was demonstrated by conversion of stearoyl-CoA to oleoyl-CoA. This simple translation approach obviates the use of detergents or other lipids to stabilize and isolate a catalytically active integral membrane enzyme. The applicability of cell-free translation to the assembly and purification of other integral membrane protein complexes is discussed.  相似文献   

2.
Incubation of liposomes prepared by sonication of egg lecithin with the amphipathic form of cytochrome b5 results in the binding of a maximum of 244 molecules of cytochrome b5 per liposomal vesicle. Interactions of the phospholipid with the hydrophobic segment of cytochrome b5 are involved in this binding which does not disrupt the liposome. When a small amount of NADH-cytochrome b5 reductase is bound liposomes simultaneously with cytochrome b5, the two proteins catalyze the reduction of cytochrome c by NADH. A qualitative kinetic analysis reveals that all of the cytochrome b5 interacts with reductase, a result consistent with these protein undergoing translational diffusion in the plane of the membrane. This system and the purified stearyl coenzyme A desaturase provide a model to study the dynamics of protein andlipid interactions in this membrane-bound oxidative sequence.  相似文献   

3.
The integral membrane protein bacteriorhodopsin, containing a fluorescent amino acid at a specific position, was synthesized in the presence of hydrated lipid films using an in vitro translation system expanded with a four-base codon/anticodon pair. Cell-sized liposomes with the labeled protein inserted into the liposome membranes were generated after the translation reaction. This study also demonstrated that this labeling method could be used to analyze the dynamic properties of membrane proteins in situ by fluorescence correlation spectroscopy.  相似文献   

4.
The interaction between single-stranded RNAs and liposomes was studied using UV, Fourier Transform Infrared spectroscopy (FTIR) and Circular Dichroism spectroscopy (CD). The effect of the surface characteristics of liposomes, which were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and modified with cholesterol (Ch) or 1,2-dioleoyl-3-trimethylammonium propane (DOTAP), on the liposome–RNA interaction was investigated. The fluorescence of 6-(p-toluidino)naphthalene-2-sulfonate (TNS) embedded in the liposome surface (ε = 30–40) was decreased in the presence of tRNA, suggesting that single-stranded tRNA could bind onto the liposome. The dehydration of –PO2 –, guanine (G) and cytosine (C) of tRNA molecules in the presence of liposomes suggested both an electrostatic interaction (phosphate backbone of tRNA and trimethylammonium group of POPC, DOTAP) and a hydrophobic interaction (guanine or cytosine of tRNA and aliphatic tail of lipid). The tRNA conformation on the liposome was determined by CD spectroscopy. POPC/Ch (70/30) maintained tRNA conformation without any denaturation, while POPC/DOTAP(70/30) drastically denatured it. The mRNA translation was evaluated in an Escherichia coli cell-free translation system. POPC/Ch(70/30) enhanced expression of green fluorescent protein (GFP) (116%) while POPC/DOTAP(70/30) inhibited (37%), suggesting that the conformation of RNAs was closely related to the translation efficiency. Therefore, single-stranded RNAs could bind to liposomal membranes through electrostatic and hydrophobic attraction, after which conformational changes were induced depending on the liposome characteristics.  相似文献   

5.
NADPH-cytochrome c reductase also reduces cytochrome b 5. The reduction is very slow when the proteins are in solution or bound to different membranes. Only when both proteins share a common membrane, is cytochrome b 5 reduced rapidly by NADPH. The difference in reaction rates indicates recombination on a common membrane of cytochrome b 5 and NADPH reductase originally bound to different vesicles. The recombination of the two proteins occurs with a variety of biological membranes (previously enriched with either reductase or cytochrome b 5) as well as with liposomes. We explain this process as protein transfer rather than vesicle fusion for several reasons: 1. The vesicles do not alter shape or size during incubation. 2. The rate of this process corresponds to the rate of incorporation of the single proteins into liposomes carrying the 'complementary' protein. 3. The exchange of proteins between biological membranes and liposomes occupied by protein does not change the density of either membrane. Protein transfer between membranes appears to be limited to those proteins which had spontaneously recombined with a preformed membrane. In contrast, proteins incorporated into liposomes by means of a detergent were not transferred, nor were endogenous cytochrome b 5 and NADPH-cytochrome c reductase transferred from microsomes to Golgi membranes or lipid vesicles. We conclude that the endogenous proteins and proteins incorporated in the presence of a detergent are linked to the membrane in another manner than the same proteins which had been inserted into a preformed membrane.  相似文献   

6.
Since liver microsomal cytochrome b5 spontaneously associates with liposomes and membranes by means of its C-terminal hydrophobic domain (HP), chimeric proteins containing HP prepared by genetic fusion might also spontaneously associate with liposomes or cellular membranes. Synthetic DNA corresponding to the hydrophobic domain of cytochrome b5 was enzymatically fused in-frame to cloned DNA corresponding to the C-terminus of the Escherichia coli enzyme, beta-galactosidase. This protein, LacZ:HP, synthesized in E. coli and purified from a crude E. coli membrane extract, was shown to spontaneously associated with liposomes, as does cytochrome b5. Association is rapid and stable in the presence of salt and high pH and the fusion protein behaves as an integral membrane protein. LacZ:HP can be readily and extensively purified from crude extracts by association with liposomes and this procedure may provide a convenient purification scheme for proteins not otherwise readily purified, for example polypeptides from cloned gene fragments to be used for antibody production. These hybrid proteins may represent a new potentially useful class of polypeptides capable of hydrophobic interactions with membranes.  相似文献   

7.
Guo X  Wu Z  Guo Z 《Bioconjugate chemistry》2012,23(3):650-655
A new method was developed for site-specific modifications of liposomes by proteins via sortase A (SrtA)-mediated transpeptidation reactions. In this regard, the enhanced green fluorescent protein (eGFP) was biologically engineered to carry at its polypeptide C-terminus the LPATG motif recognized by SrtA and used as the protein donor for linking to liposomes that were decorated with phospholipids carrying a diglycine motif as the other SrtA substrate and the eGFP acceptor. Under the influence of SrtA, eGFP was efficiently attached to liposomes, as proved by analyzing the enzymatic reaction products and the resultant fluorescent liposomes. It was observed that increasing the concentration and the distance of the diglycine motif on and from the liposome surface could significantly improve the efficiency of liposome modification by proteins. It is anticipated that this strategy can be widely useful for the modification of liposomes by other proteins.  相似文献   

8.
Synthetic biology is an emerging field that aims at constructing artificial biological systems by combining engineering and molecular biology approaches. One of the most ambitious research line concerns the so-called semi-synthetic minimal cells, which are liposome-based system capable of synthesizing the lipids within the liposome surface. This goal can be reached by reconstituting membrane proteins within liposomes and allow them to synthesize lipids. This approach, that can be defined as biochemical, was already reported by us (Schmidli et al. J. Am. Chem. Soc. 113, 8127-8130, 1991). In more advanced models, however, a full reconstruction of the biochemical pathway requires (1) the synthesis of functional membrane enzymes inside liposomes, and (2) the local synthesis of lipids as catalyzed by the in situ synthesized enzymes. Here we show the synthesis and the activity - inside liposomes - of two membrane proteins involved in phospholipids biosynthesis pathway. The proteins, sn-glycerol-3-phosphate acyltransferase (GPAT) and lysophosphatidic acid acyltransferase (LPAAT), have been synthesized by using a totally reconstructed cell-free system (PURE system) encapsulated in liposomes. The activities of internally synthesized GPAT and LPAAT were confirmed by detecting the produced lysophosphatidic acid and phosphatidic acid, respectively. Through this procedure, we have implemented the first phase of a design aimed at synthesizing phospholipid membrane from liposome within from within — which corresponds to the autopoietic growth mechanism.  相似文献   

9.
The fusion between enzyme-containing liposomes and substrate-containing liposomes was studied, utilizing conformationally altered cytochrome c as fusion mediator under stress conditions. The liposomes were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and liposome aggregation and subsequent liposome fusion were induced by the addition of cytochrome c, which was partially denatured by 0.5 M guanidinium hydrochloride (GuHCl). In the presence of 0.5 M GuHCl, cytochrome c was found to have a significantly large local hydrophobicity which was determined with the aqueous two-phase partitioning method. Under these conditions, cytochrome c could efficiently bind to POPC bilayer membranes as quantitatively evaluated by immobilized liposome chromatography (ILC). The retardation of cytochrome c treated with 0, 0.5, and 1 M GuHCl on ILC could be correlated with the corresponding local hydrophobicity of cytochrome c. The enzymatic reaction triggered by liposome fusion involved the proteolytic enzyme alpha-chymotrypsin and its substrate succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide (Suc-AAPF-pNA), which were separately trapped in POPC liposomes. Addition of partially denatured cytochrome c (most likely in the molten globule state) to the mixture of enzyme- and substrate-containing liposomes resulted in the release of one of the hydrolysis products, p-nitroaniline, to the outer phase of the fused liposomes, indicating that the enzymatic reaction occurred during the liposome fusion process. Such a coupled fusion-reaction system may have specific advantages over the conventional fusion analysis and may find application as drug delivery system.  相似文献   

10.
11.
Paclet MH  Coleman AW  Vergnaud S  Morel F 《Biochemistry》2000,39(31):9302-9310
NADPH oxidase activity depends on the assembly of the cytosolic activating factors, p67-phox, p47-phox, p40-phox, and Rac with cytochrome b(558). The transition from an inactive to an active oxidase complex induces the transfer of electrons from NADPH to oxygen through cytochrome b(558). The assembly of oxidase complex was studied in vitro after reconstitution in a heterologous cell-free assay by using true noncontact mode atomic force microscopy. Cytochrome b(558) was purified from neutrophils and Epstein-Barr virus-immortalized B lymphocytes and incorporated into liposomes. The effect of protein glycosylation on liposome size and oxidase activity was investigated. The liposomes containing the native hemoprotein purified from neutrophils had a diameter of 146 nm, whereas after deglycosylation, the diameter was reduced to 68 nm, although oxidase activity was similar in both cases. Native cytochrome b(558) was used after purification in reconstitution experiments to investigate the topography of NADPH oxidase once it was assembled. For the first time, atomic force microscopy illustrated conformational changes of cytochrome b(558) during the transition from the inactive to the active state of oxidase; height measurements allow the determination of a size of 4 nm for the assembled complex. In the processes that were studied, p67-phox displayed a critical function; it was shown to be involved in both assembly and activation of oxidase complex while p47-phox proceeded as a positive effector and increased the affinity of p67-phox with cytochrome b(558), and p40-phox stabilizes the resting state. The results suggest that although an oligomeric structure of oxidase machinery has not been demonstrated, allosteric regulation mechanisms may be proposed.  相似文献   

12.
Protein synthesis by pure translation systems   总被引:1,自引:0,他引:1  
We have developed a partially recombinant, cell-free, protein-synthesis system reconstituted solely from those essential elements of the Escherichia coli translation system, termed protein synthesis using recombinant elements (PURE). It provides higher reaction controllability in comparison to crude cell-free protein-synthesis systems for translation studies and biotechnology applications. The PURE system stands out among translation methods in that it provides not only a simple and unique "reverse" purification method of separating the synthesized protein from reaction mixture, but also that the system can be tailor-made according to individual protein requirements. In this paper, two new approaches to obtaining active proteins are described: the use of molecular chaperones, and modification of the reaction conditions. Several possible applications of the PURE system are also discussed.  相似文献   

13.
The synthesis and assembly of photosystem II (PS II) proteins of spinach chloroplasts were investigated in three different in vitro systems, i.e., protein synthesis in isolated chloroplasts (in organello translation), read-out translation of thylakoid-bound ribosomes, and transport of translation products from spinach leaf polyadenylated RNA into isolated chloroplasts. Polyacrylamide gel electrophoresis of labeled thylakoid polypeptides in the presence of sodium dodecyl sulfate revealed that the first two systems were capable of synthesizing the reaction center proteins of PS II (47 and 43 kDa), the herbicide-binding protein, and cytochrome b559. The reaction center proteins synthesized in organello were shown to bind chlorophyll and to assemble properly into the PS II core complex. One of the reaction center proteins translated by the thylakoid-bound ribosomes (47 kDa) was also found to be integrated in situ into the complex but was lacking bound chlorophyll. Incorporation of radioactivity into the three extrinsic proteins of the oxygen-evolution system (33, 24, and 18 kDa) was detected only when intact chloroplasts were incubated with the translation products from polyadenylated RNA, showing that these proteins are coded for by nuclear DNA. The occurrence of a precursor polypeptide 6 kDa larger than the 33-kDa protein was immunochemically detected in the translation products.  相似文献   

14.
Although it has been indicated that proteins with chromophoric groups are not suitable for photo-chemically induced dynamic nuclear polarization (photo-CIDNP) measurements, we have successfully obtained these spectra for a heme protein, cytochrome b5. The characteristics of the spectra differed in some points from those so far reported. The intensities of the signals in the aromatic region were very weak, while those of the beta-methylene protons of one histidine and one tryptophan were extremely strong in comparison with the aromatic protons. It was demonstrated, on the basis of the photo-CIDNP spectrum, that one of seven histidines, all three tyrosines and a single tryptophan of the rabbit soluble cytochrome b5 are exposed on the surface of the protein. The results of comparison of the photo-CIDNP spectra for the rabbit soluble and intact, and bovine intact, cytochrome b5 led us to the conclusion that the conformation of the hydrophilic, catalytic part of cytochrome b5 is quite similar among these three proteins. In the presence of Chaps micelles, bovine intact cytochrome b5 was in monomeric form and the histidine signals disappeared from its photo-CIDNP spectrum. When bovine intact cytochrome b5 was reconstituted into egg yolk phosphatidylcholine liposomes, although separate signals due to the protein part were observed in the normal 1H-NMR spectrum, no photo-CIDNP signal could be detected. The normal spectrum suggests that the conformation of the protein embedded in liposomes is similar to that of the oligomeric form without lipids or a detergent.  相似文献   

15.
The ADP/ATP Carrier (AAC) is the most abundant transporter of the mitochondrial inner membrane. The central role that this transporter plays in cellular energy production highlights the importance of understanding its structure, function, and the basis of its pathologies. As a means of preparing proteoliposomes for the study of membrane proteins, several groups have explored the use of cell-free translation systems to facilitate membrane protein integration directly into preformed unilamellar vesicles without the use of surfactants. Using AAC as a model, we report for the first time the detergent-free reconstitution of a mitochondrial inner membrane protein into liposomes using a wheat germ-based in vitro translation system. Using a host of independent approaches, we demonstrate the efficient integration of AAC into vesicles with an inner membrane-mimetic lipid composition and, more importantly, that the integrated AAC is functionally active in transport. By adding liposomes at different stages of the translation reaction, we show that this direct integration is obligatorily cotranslational, and by synthesizing stable ribosome-bound nascent chain intermediates, we show that the nascent AAC polypeptide interacts with lipid vesicles while ribosome-bound. Finally, we show that the presence of the phospholipid cardiolipin in the liposomes specifically enhances AAC translation rate as well as the efficiency of vesicle association and integration. In light of these results, the possible mechanisms of liposome-assisted membrane protein integration during cell-free translation are discussed with respect to the mode of integration and the role of specific lipids.  相似文献   

16.
Photosynthetic reaction centers (RCs) and their core light-harvesting complexes (LH1-RCs), purified from a thermophile, Thermochromatium (T.) tepidum, and a mesophile, Allochromatium (A.) vinosum, were reconstituted into liposomes. The RC and the LH1-RC in the reconstituted liposomes were found intact from the absorption spectra at about 4 and 40 degrees C respectively. The thermal stability of the RCs of T. tepidum in the liposome was dependent on whether they were surrounded directly by lipids or by the core light-harvesting complexes. The results show that the RC of T. tepidum gains its thermostability through interactions with the LH1. These results are consistent with the result that the thermal stability of the LH1 in T. tepidum is similar in both the reconstituted LH1-RC liposome and ICM. This is clearly different from the mesophilic bacterium, A. vinosum. The thermal stability of RC was also affected by its subunit constitution: the RC containing a cytochrome subunit was more thermostable than the cytochrome-detached RC. This suggests that the cytochrome subunit might play a role in protecting the special pair pigments from denaturation. The thermal denaturation showed a second-order reaction dependence on time. The interaction of the pigments with proteins and/or lipids might be the cause of the second-order reaction profile.  相似文献   

17.
Synthesis of rat liver microsomal cytochrome b5 by free ribosomes   总被引:16,自引:9,他引:7       下载免费PDF全文
Free and membrane-bound polyribosomes were separated from liver homogenates and characterized by electron microscopy. Using the wheat germ cell-free translation system, total translation products of poly A+RNA extracted from free polyribosomes (poly A+RNAf) showed some correlation to total liver cytosol proteins. In contrast, translation products of poly A+RNA from membrane-bound polyribosomes (poly A+RNAmb) showed some similarity to rat serum. Antibody to purified rat serum albumin immunoprecipitated from only the translation products of poly A+RNAmb a single polypeptide of mol wt 68,000. i.e., 3,000 greater than secreted serum albumin. In contrast, antibody to detergent-extracted cytochrome b5 immunoprecipitated from only the translation products of poly A+RNAf a single polypeptide of mol wt 17,500, identical to that of microsomal cytochrome b5. A consideration of the known properties of cytochrome b5 is consistent with an exclusive site of synthesis on free ribosomes.  相似文献   

18.
The effect of cytochrome b on the assembly of the subunits of complex III into the inner mitochondrial membrane has been studied in a mutant of yeast (W-267, Box 6-2) that lacks a spectrally detectable cytochrome b and synthesizes a shortened form of apocytochrome b. We recently reported that several cytochrome b-deficient mutants contained significantly diminished amounts of core proteins I and II as well as the iron-sulfur protein, but contained equal amounts of cytochrome c1 compared to the wild type (K. Sen and D. S. Beattie, Arch. Biochem. Biophys. 242, 393-401, 1985). In the present study, the time course of processing of precursors of both core protein I and the iron-sulfur protein which had accumulated in cells treated with the uncoupler carbonyl m-chlorophenyl hydrazone (CCCP) was noted to be significantly lower in the mutant compared to the wild type. The amounts of the mature forms of these proteins in mitochondria pulse labeled under different conditions was also considerably decreased at all times studied. The synthesis of both proteins appeared to be unaffected in the mutant, as the precursor forms of both proteins accumulated to the same extent when processing in vivo was blocked by CCCP. Furthermore, translation of RNA in a reticulocyte lysate in vitro indicated that the messenger RNAs for both proteins were present in the mutant and translated with equal efficiency. The import into isolated mitochondria of the precursor forms of the iron-sulfur protein synthesized in the cell-free system was also decreased in the mutant mitochondria. In addition, the precursor form was bound to the exterior of the mitochondrial membrane where it was sensitive to digestion with proteases. By contrast, the synthesis and processing of cytochrome c1 appeared to be unaffected in these mutants. These results suggest that cytochrome b is necessary for the proper processing and assembly of both core protein I and the iron-sulfur protein, but not for cytochrome c1, into complex III of the inner mitochondrial membrane.  相似文献   

19.
20.
Abstract: An initiating cell-free protein synthesis system derived from brain was utilized to demonstrate that the intravenous injection of d -lysergic acid diethylamide (LSD) to rabbits induced a transient inhibition of translation following a brief stimulatory period. Subfractionation of the brain cell-free system into postribosomal supernatant (PRS) and microsome fractions demonstrated that LSD in vivo induced alterations in both of these fractions. In addition to the overall inhibition of translation in the cell-free system, differential effects were noted, i.e., greater than average relative decreases in in vitro labeling of certain brain proteins and relative increases in others. The brain proteins of molecular weights 7SK and 95K, which were increased in relative labeling under conditions of LSD-induced hyperthermia, are similar in molecular weight to two of the major "heat shock" proteins reported in tissue culture systems. Injection of LSD to rabbits at 4°C prevented LSD-induced hyperthermia but behavioral effects of the drug were still apparent. The overall decrease in cell-free translation was still observed but the differential labeling effects were not. LSD appeared to influence cell-free translation in the brain at two dissociable levels: (a) an overall decrease in translation that was observed even in the absence of LSD-induced hyperthermia and (b) differential labeling effects on particular proteins that were dependent on LSD-induced hyperthermia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号