首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Girdling of 1-year-old Salix babyionica L. plants resulted in an early accumulation of compounds which co-chromatographed with cytokinin glucosides in both the bark and buds below the girdle. In the bark the cytokinin glucosides were present in high levels in both girdled and non-girdled plants. In the buds of non-girdled plants. however, glucoside concentration was initially low but then increased rapidly after ringing and reached a maximum level prior to any visible signs of bud swell. With the onset of lateral shoot growth the glucoside cytokinins decreased while the cytokinins that co-chromatographed with zeatin and its derivatives increased. As the cytokinin glucosides are generally considered to be storage forms, their accumulation in the bark and buds below the girdle apparently does not reflect synthesis but rather transport towards a more competitive sink. In the case of Salix plants the lateral buds would appear to have the ability to hydrolyze these glucosylated zeatin derivatives and then to utilize them for bud development. It is suggested that in the presence of a functional root system lateral buds do not synthesize cytokinins de novo, but that they do have the metabolic capacity to convert cytokinins transported to them.  相似文献   

2.
The young and old leaves of Salix babylonica contain at least four cell division-inducing compounds which coeluted with zeatin, zeatin riboside and their glucosylated derivatives. During the course of the growing season quantitative changes in the cytokinin content of the leaves were observed. The cytokinin glucosides increased as the leaves aged. The compounds which co-chromatographed with zeatin and zeatin riboside initially increased until early autumn and then decreased as the leaves senesced. It appears as though the cytokinins transported from the roots are metabolized in the leaves and are converted to their glucosides. Although it has been reported in the literature that Salix root exudate contains very small amounts of cytokinin in late summer and autumn, these compounds increase in the leaves for most of the growing season, suggesting that the leaves may not only obtain cytokinins from the roots but may well be an active site of cytokinin synthesis. It is, however, possible that cytokinins are also transported to the leaves via the phloem, thus accounting for their accumulation in these organs.  相似文献   

3.
The dynamics of the cytokinin content in detached leaves of wheat (Triticum durum, cv. Bezenchukskaya 139) seedlings moistened with ammonium nitrate or water (control) was studied by immunoenzyme analysis. Leaf treatment with water was accompanied by a transient accumulation of cytokinins, maybe due to their release from their O-glucosylated forms. An increase in the contents of zeatin and its riboside after their initial decrease in detached leaves treated with ammonium nitrate could not occur due to their release from stored forms (nucleotides or O-glucosides) because the contents of zeatin and its riboside increased simultaneously with the content of stored cytokinins. The accumulation of isopentenyladenosine and zeatin nucleotide, which occurred simultaneously with an increase in the content of zeatin and zeatin riboside, permits a supposition that cytokinins can be synthesized in detached wheat leaves treated with ammonium nitrate.  相似文献   

4.
Cytokinin Activity in Lupinus albus   总被引:1,自引:0,他引:1  
The cytokinin content of the root exudate and leaves of fruiting white lupin plants (Lupinus albus L.) was investigated at 2 weekly intervals after anthesis of the lowest flower on the primary inflorescence. Up to 8 weeks after anthesis the level of cytokinins in the root exudate increased. However, at 10 weeks after anthesis insufficient sap was produced for analysis. Cytokinins co-eluting with zeatin and zeatin riboside were detected in the root exudate after fractionation on Sephadex LH-20. The cytokinin levels in the mature leaves steadily increased up to 8 weeks after anthesis and thereafter remained relatively constant. Three peaks of activity, co-eluting with zeatin, zeatin riboside and the glucoside cytokinins were recorded in the leaf extracts. The level of glucoside cytokinins in the leaves was high at 8 and 10 weeks after anthesis. Paper chromatography of extracts of fruits collected at 2 weeks after anthesis indicated that as fruit development proceeded there was a build up of cytokinin in this region of the plant. It is suggested that, in the white lupin, the cytokinins translocated to the shoot are accumulated in the leaves and in the fruits and that it is only later when there is a considerable decrease in sap (10 weeks after anthesis) production that a decreasing supply of cytokinins leads to shoot senescence.  相似文献   

5.
Immunoaffinity techniques using columns of immobilized antibodies raised against zeatin riboside and isopentenyladenosine were found to be effective in isolating cytoklnins from vegetative, female, and male buds of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco). The purified cytokinins were separated by reverse phase high performance liquid chromatography and analyzed by radioimmunoassay. Confirmation of cytokinin identities was by gas chromatography-mass spectrometry. Immediately prior to bud burst, all bud types contained three major cytokinins: isopentenyladenosine, zeatin riboside, and a hexose conjugate of zeatin riboside (not zeatin riboside O-glucoside). Zeatin-type cytokinins were present in relatively high concentration in vegetative and female buds. In male buds, however, relatively high levels of isopentenyladenosine were found together with low levels of zeatin-type cytokinins.  相似文献   

6.
Cytokinin bases (zeatin and dihydrozeatin) and ribosides (zeatin riboside and dihydrozeatin riboside) were identified as major cytokinins in tobacco xylem sap by radioimmunoassay. When 3H-labelled zeatin riboside or dihydrozeatin riboside were supplied to tobacco plants via the xylem, leaves of differing maturity did not differ appreciably in level of radioactivity or in metabolism of the cytokinin. The major metabolites of zeatin riboside in leaves were adenine, adenosine and adenine nucleotides, whereas that of dihydrozeatin riboside was dihydrozeatin 7-glucoside. Incorporation of [14C]adenine into zeatin was evident in upper green leaves. indicating that young leaves have the capacity to synthesize cytokinins in situ. In contrast, fully expanded green leaves and senescing tobacco leaves exhibited little or no incorporation of [14C]adenine into cytokinins. This difference in cytokinin biosynthetic capacity may contribute to the differing cytokinin levels in leaves of different matirity, and may participate in control of sequential leaf senescence in tobacco.  相似文献   

7.
The cytokinin activity of the root exudate, the leaves, and the apices of vegetative and flowering white lupin plants (Lupinus albus L.) was investigated. The level of cytokinin activity in the root exudate decreased over the 11-week experimental period. Four peaks of cytokinin activity were recorded in the root exudate of 8-week-old plants after fractionation on Sephadex LH-20. Two of these peaks co-eluted with zeatin and zeatin riboside. It is suggested that the remaining peaks represent nucleotide and glucoside cytokinins. The cytokinin levels in extracts of the mature leaves fluctuated slightly over the experimental period. Three peaks of activity co-eluting with zeatin, zeatin riboside and the glucoside cytokinins were recorded in extracts of mature leaves of 8-week-old plants. In the apices cytokinin activity could only be detected in the inflorescences of flowering plants. It would appear that cytokinins produced by the roots accumulate in the fully expanded mature leaves, but are utilized in the rapidly growing apical region and in young expanding leaves.  相似文献   

8.
The presence of endogenous cytokinins were detected in the terminal buds of longan ( Euphoria longana Lam.) after purification by ion exchange and Sephadex LH-20 chromatography, and bioassay, enzymic degradation, high-performance liquid chromatography and gas chromatography-mass spectrometry. Permethylated derivatives of two highly active cytokinin glucoside compounds from dormant buds were: 6-(4-O-β-D-glucosyl-3-methyl-but-2-enylamino) purine (zeatin-O-glucoside) and 9-β-D-ribofuranosyl-6-(4-hydroxy-3-methyl-but-2-enylamino) purine (zeatin riboside-O-glucoside). Simultaneously, four active cytokinins from buds at the stages of leaf flush and flower bud initiation were identified as 6-(4-hydroxy-3-methyl-but- trans -2-enylamino) purine (zeatin), zeatin-9-β-D-ribofuranosylpurine (zeatin riboside), 6-(3-methyl-2-butenyl) aminopurine (isopentenyladenosine, 2iPA) and N-(3-methyl-2-butenyl) adenine (isopentenyladenine, 2iP). The total cytokinin levels were low at leaf flush, with the zeatin and zeatin riboside in the buds about 70% of the total. In the transition of the terminal bud from leaf flush to dormancy, the principal cytokinins were zeatin-O-glucoside and zeatin riboside-O-glucoside. However, significant decreases in the levels of zeatin-O-glucoside and zeatin riboside-O-glucoside and increases in those of zeatin, zeatin riboside, 2iPA and 2iP were observed at flower bud initiation. It is suggested that in longan, the cytokinins that are translocated to the shoots are accumulated in the buds at the dormant stage, and that later there is a considerable increase in free cytokinins during flower bud initiation, leading to the promotion of flower bud development.  相似文献   

9.
To assess the role of endogenous cytokinins in growth and development of Rosa hybrida , their concentrations in bleeding sap and in roots, stem, leaves, axillary shoots and bottom breaks in three stages of development were quantified. Cytokinins were purified by means of immunoaffinity chromatography and HPLC, and identified by retention time, UV spectrum and GC-MS. The major translocation form in the xylem was zeatin riboside (ZR). In all mature tissues, cytokinins of the zeatin-type were predominant, amounting to 80–90% of the total cytokinin concentration. The stems contained high concentrations of cytokinins, probably caused by lateral movement of ZR from the xylem to adjacent stem tissue and the ability of the stem to metabolize cytokinins. In young leaves the contribution of isopentenyl adenine (iP)-type cytokinins to the total cytokinin pool was about 50%, indicating that these leaves might be capable of de novo synthesis of cytokinins. In older leaves, the concentration of an unidentified cytokinin-like compound increased to more than 50% of total cytokinins. This compound, which was also found in the roots, might be a storage form of cytokinins. In young axillary shoots, about 50% of the cytokinins are iP-compounds, suggesting either import of iP-type cytokinins via the phloem or de novo synthesis of cytokinins. In buds forming bottom breaks, ZR and zeatin riboside monophosphate (ZRMP) are the main cytokinins, indicating that these buds receive their cytokinins from the roots.  相似文献   

10.
Following uptake of [(3)H]zeatin riboside and [(3)H]dihydrozeatin riboside by girdled lupin (Lupinus angustifolius L.) stems via the transpiration stream, rapid lateral movement of the radioactivity from xylem to bark was observed. Short-term studies with intact stems, and other studies with excised stem tissues, revealed that the ribosides and/or the corresponding nucleotides were the cytokinin forms which actually moved into the bark tissues. Relative to cytokinin metabolism in xylem plus pith, metabolism in bark was both more rapid and more complex. Riboside cleavage and formation of the O-acetylzeatin and O-acetyldihydrozeatin ribosides and nucleotides were almost completely confined to bark tissues. Exogenous (3)H-labelled O-acetylzeatin riboside was converted to zeatin riboside in bark tissue, but the presence of the acetyl group suppressed degradation to adenine metabolites. The sequestration and modification of xylem cytokinins by stem tissues probably contributes significantly to the cytokinin status of the shoot. New cytokinins identified by mass spectrometry in lupin were: O-acetyldihydrozeatin 9-riboside, a metabolite of exogenous dihydrozeatin riboside in stem bark; O-methylzeatin nucleotide and O-methyldihydrozeatin 9-riboside, metabolites of endogenous cytokinins in stem bark; O-methylzeatin nucleotide and O-methylzeatin 9-riboside, metabolites of exogenous zeatin riboside in excised pod walls.  相似文献   

11.
Treatment of spruce, fir and oak trees with herbicides, which may be one of the forest damage inducing agents, caused pronounced changes in the contents and distribution of indole-3-acetic acid (IAA) and cytokinins (CKs) one year after treatment, i.e. at the time of the first microscopically visible damage in treated trees. In Picea pungens IAA content increased in the terminal buds by about 105 % and in the apical buds of the first order branches by 220 %. The same was true for young sprouts of Abies nordmanniana, while in leaves of oak trees IAA content was decreased by 15 % after glyphosate treatment and by 30 % after 2,4-dichlorophenoxyacetic acid (2,4-D) treatment. Another striking feature was a significantly decreased content of IAA in the lower parts of roots in Picea pungens (50 % of the control), which is accompanied by an increase in IAA content in the middle part of the roots (130 %). On the other hand, the IAA content of both sprouts and roots of A. nordmanniana was significantly increased after herbicide treatment.In P. pungens, the content of free cytokinins (sum of zeatin, zeatin riboside, isopentenyladenine and isopentenyladenosine) decreased due to herbicide treatment. The strongest decrease was seen in roots, especially in their upper and middle parts (the average reduction of cytokinin content in roots was 63 %). In the above-ground organs the reduction was seen namely for isopentenyladenine and isopentenyladenosine, while the abundance of zeatin riboside was, on the other hand, higher in treated plants. In Quercus robur leaves, the total content of cytokinins also decreased, namely after glyphosate treatment. In consequence of these changes, CK/IAA ratio decreased pronouncedly in all organs of herbicide-treated trees, with the exception of oak leaves treated by 2,4-D.  相似文献   

12.
A radioimmunoassay, combined with high-performance liquid chromatography, has been used to analyse the zeatin-type cytokinins of potato (Solanum tuberosum L. cv. Majestic) tubers and tuber buds throughout growth and storage. During tuber growth, zeatin riboside was the predominant cytokinin detected in all tissues. Immediately after harvest, the total cytokinin concentration fell dramatically in the storage tissue, largely as a consequence of the disappearance of zeatin riboside. During storage, levels of cytokinins in the storage tissue remained relatively constant, but increased in the tuber buds. In the buds of tubers stored at 2°C there was a 20-to 50-fold increase in total cytokinin over six weeks, coinciding with the natural break of innate dormancy. At 10°C the rise in the level of bud cytokinins was slower, correlating with the longer duration of innate dormancy. Injecting unlabelled cytokinins into tubers in amounts known to induce sprouting gave rise to increases in cytokinin concentrations in the buds of the same order as the increase associated with the natural break of dormancy. Metabolism of injected cytokinins was greater in non-dormant than in dormant tubers. The roles of cytokinin concentration and the sensitivity of the buds to cytokinin in the control of dormancy are discussed.Abbreviations CK cytokinin - FW fresh weight - HPLC high-performance liquid chromatography - RIA radioimmunoassay - tio6ade 6-(4-hydroxy-3-methylbut-trans-2-enylamino)-purine=zeatin - tio6adeglc9 6-(4-hydroxy-3-methylbut-trans-2-enylamino)-9--D-glucopyranosyl purine=zeatin-9-glucoside - tio6ado 6-(4-hydroxy-3-methylbut-trans-2-enylamino)-9--D-ribofuranosyl purine=zeatin riboside - tio6ado-[3H]-diol a radioactive derivative of zeatin riboside, synthesised by periodate-oxidation followed by [3H]NaBH4-reduction - tio6AMP 6-(4-hydroxy-3-methylbut-trans-2-enylamino)-9--D-5-phosphoribofuranosyl purine=zeatin riboside 5-monophosphate - t(ioglc4)6ade 6-(4-O--D-glucopyranosyl-3-methylbut-trans-2-enylamino)-purine=zeatin-O-glucoside  相似文献   

13.
Chen WS 《Plant physiology》1991,96(4):1203-1206
Lychee (Litchi chinensis) has been analyzed for cytokinins in buds before and after flower bud differentiation, using reversephase high performance liquid chromatography in combination with Amaranthus bioassay and gas chromatography-mass spectrometry-selected ion monitoring. Four cytokinins, zeatin, zeatin riboside, N6-(δ2-isopentenyl)adenine, and N6-(δ6-isopentenyl) adenine riboside, were detected in buds. There was an increase of cytokinin activity in the buds during flower bud differentiation. In dormant buds, the endogenous cytokinin content was low, and the buds did not respond to exogenous cytokinin application. Application of kinetin promotes flower bud differentiation significantly after bud dormancy. These results are interpreted as an indication that the increase in endogenous cytokinin levels during flower bud differentiation may be correlative rather than the cause of flower bud initiation.  相似文献   

14.
The effect of transpiration on cytokinin accumulation and distribution in 7-day-old wheat (Triticum durum Desf.) seedlings grown on nutrient medium supplemented with zeatin or its riboside was studied. The content of cytokinins in plants and nutrient medium was measured by the immunoenzyme analysis; cytokinin distribution between root cells was assessed immunohistochemically using antibodies against zeatin derivatives. The rate of transpiration was reduced 20-fold by plant placing in humid chamber. At normal transpiration, after 6 h of plant incubation on the solution of zeatin, the level of cytokinins in plant tissues increased stronger than after incubation on the solution of zeatin riboside (by 7.3 and 3.5 times, respectively, as compared with control), although the rates of both cytokinin uptake were equal. Most portions of cytokinins were retained in the roots, which was stronger expressed in the case of free zeatin uptake. A decrease in the rate of transpiration did not affect substantially the zeatin absorption from nutrient medium and the total level of cytokinin accumulation in plants, but these indices were sharply decreased in the case of zeatin riboside. In the zone of absorption of both control roots and roots treated with cytokinins, more intense cytokinin immunostaining was observed in the cells of the central cylinder. The interrelation between cytokinin distribution between the cells and apoplast, their inactivation, and transport over the plant and their form (zeatin or zeatin riboside) used for treatment is discussed.  相似文献   

15.
This paper deals with the quantitative determination of free and bound cytokinins in clubroot tissue and in Plasmodiophora brassicae Woron, infected Brassica campestris L. callus tissue. The fractions were separated in a butanol soluble fraction containing the free cytokinins such as zeatin and zeatin riboside and a water soluble fraction containing the bound cytokinins. The butanol fraction was extensively purified and analysed by high pressure liquid chromatography (HPLC). The butanol fraction contained cytokinins which cochromatographed with zeatin and zeatin riboside and not with dihydrozeatin. Zeatin and zeatin riboside were quantitatively determined by HPLC. Recovery of the cytokinins varied between 30–50%. Clubs contained 50–160 ng zeatin and 210–300 ng zeatin riboside per g dry weight. Callus tissue contained 133 ng zeatin and 169 ng zeatin riboside per g dry weight. Clubs, callus as well as healthy tissue contain large amounts of bound cytokinins. Upon treatment of the water soluble fraction first with alkaline phosphatase and then with β-glucosidase biologically active fractions were found which coeluted with zeatin and zeatin riboside on Sephadex LH20 in 20% ethanol. Evidence is presented for a novel cytokinin in the water soluble fraction which yields free zeatin and glucose-6-phosphate after treatment with β-glucosidase.  相似文献   

16.
We studied the effects of cytokinin benzyladenine (BA) and ethylene on the senescence in the dark of detached leaves of Arabidopsis thaliana(L.) Heynh wild-type plants and theeti-5mutant, which was described in the literature as the ethylene-insensitive one. Leaf senescence was assessed from a decrease in the chlorophyll content. The content of endogenous cytokinins (zeatin and zeatin riboside) was estimated by the ELISA technique. We demonstrated that the content of endogenous cytokinins in the leaves of the three-week-old eti-5mutants exceeded that of the wild-type leaves by an order of magnitude; in the five-week-old mutants, by several times; and in the seven-week-old plants, the difference became insignificant. Due to the excess of endogenous cytokinins in the three–five-week-old mutant leaves, their senescence in the dark was retarded and exogenous cytokinin affected these leaves to a lesser extent. The seven-week-old mutant and the wild-type leaves, which contained practically similar amounts of endogenous cytokinins, did not differ in these indices. Thus, the level of endogenous cytokinins determined the rate of senescence and the leaf response to cytokinin treatment. Ethylene accelerated the senescence of detached wild-type leaves. Ethylene action increased with increasing its concentration from 0.1 to 100 l/l. BA (10–6M) suppressed ethylene action. Similar data were obtained for the eti-5mutant leaves. We therefore suggest that the mutant leaves comprised the pathways of the ethylene signal reception and transduction, which provided for the acceleration of their senescence.  相似文献   

17.
The effect of dark and light treatment on endogenous cytokinins in internodes and buds of Iris was determined. Plant material was purified by chromatographic methods and cytokinins were assayed by an immunoassay.An indirect competitive enzyme immunoassay for the determination of zeatin- and isopentenyl-adenine cytokinins was developed. This assay, which is not dependent on the titre of the antibodies raised against zeatin riboside and isopentenyl-adenosine appeared to be specific, highly sensitive and more reproducible compared to a direct competitive enzyme immunoassay for cytokinins.Isopentenyl-adenosine was the most abundant cytokinin found, followed by zeatin: the latter counteracts bud blast when injected into dark-treated plants. Smaller amounts of isopentenyl-adenine and zeatin riboside were found. Results are in agreement with the hypothesis that deficiency of growth substances like cytokinins plays an important role in the occurrence of flower-bud blasting.A possible role for the major endogenous cytokinin, isopentenyl-adenosine, which earlier was found not to be effective in counteracting bud blast when injected into buds of dark-treated plants, is discussed.  相似文献   

18.
The cytokinin complex in tobacco leaves of various maturities was characterized by radioimmunoassay and mass spectrometry. Zeatin was the major base, whereas zeatin riboside was identified as the main riboside. in leaves of all maturities studied. Relative to upper younger leaves, the basal yellow leaves had reduced levels of both cytokinin bases and ribosides. Exogenous applications of dihydrozeatin and zeatin to detached tobacco leaves in amounts sufficient to delay senescence, elevated cytokinin base and riboside levels 2–5 fold. Presenescent and senescent leaves of intact plants showed quantitatively similar changes in cytokinin content. which therefore appear to be of significance in control of senescence. When supplied exogenously, the principal cytokinin bases found to occur in tobacco leaves (zeatin and dihydrozeatin) were markedly more effective than auxins and gibberellic acid in retarding senescence. Localised application of cytokinins to leaf blades of detopped plants was much less effective than application to intact plants. The cytokinin induced senescence retardation in tobacco leaves was independent of effects on directed metabolite transport. Evidence that endogenous levels of active cytokinins in intact tobacco leaves are involved in control of sequential leaf senescence is discussed.  相似文献   

19.
In order to investigate the possibility that cytokinins control transpiration indirectly through affecting leaf senescence, a direct comparison was made of the effect of different cytokinins on transpiration and senescence of oat leaves (Avena sativa L. cv. Forward). Senescence was assessed by measuring chlorophyll loss. The synthetic cytokinins N6 benzyladenine (BA) and kinetin delayed senescence and increased transpiration of oat leaves to a greater extent than did the naturally occurring compounds zeatin, Nb2 isopentenyladenine (i6 Ade) and 6-ø-hydroxybenzyladenosine (hyd-BA riboside). During the early stages of the transpiration experiment zeatin showed similar or greater activity than BA. This period was longest when freshly excised leaves were used, was reduced when leaves were used after incubation in distilled water in the dark for 20 h and was eliminated by incubation in cytokinin solution in the dark. After this period the activity of zeatin declined relative to BA. The effect of cytokinins in increasing transpiration occurred only in the light; no effect was observed in the dark. BA showed higher activity than zeatin in senescence tests but both cytokinins were less effective as the tests progressed, this decrease in activity being more rapid when older leaves were used. The results are discussed in relation to the mechanisms by which endogenous cytokinins might control sensecence and transpiration in oat leaves and to the value of the oat leaf senscence and transpiration bioassays as tests for cytokinin activity of plant extracts.  相似文献   

20.
Cytokinins, a class of phytohormones, appear to play an important role in the processes of plant development. We genetically engineered the Agrobacterium tumefaciens isopentenyl transferase gene, placing it under control of a heat-inducible promoter (maize hsp70). The chimeric hsp70 isopentenyl transferase gene was transferred to tobacco and Arabidopsis plants. Heat induction of transgenic plants caused the isopentenyl transferase mRNA to accumulate and increased the level of zeatin 52-fold, zeatin riboside 23-fold, and zeatin riboside 5[prime]-monophosphate twofold. At the control temperature zeatin riboside and zeatin riboside 5[prime]-monophosphate in transgenic plants accumulated to levels 3 and 7 times, respectively, over levels in wild-type plants. This uninduced cytokinin increase affected various aspects of development. In tobacco, these effects included release of axillary buds, reduced stem and leaf area, and an underdeveloped root system. In Arabidopsis, reduction of root growth was also found. However, neither tobacco nor Arabidopsis transgenic plants showed any differences relative to wild-type plants in time of flowering. Unexpectedly, heat induction of cytokinins in transgenic plants produced no changes beyond those seen in the uninduced state. The lack of effect from heat-induced increases could be a result of the transient increases in cytokinin levels, direct or indirect induction of negating factor(s), or lack of a corresponding level of competent cellular factors. Overall, the effects of the increased levels of endogenous cytokinins in non-heat-shocked transgenic plants seemed to be confined to aspects of growth rather than differentiation. Since no alterations in the programmed differentiation pattern were found with increased cytokinin levels, this process may be controlled by components other than absolute cytokinin levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号