首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Mammalian chromosome ends are protected by nucleoprotein structures called telomeres. Telomeres ensure genome stability by preventing chromosome termini from being recognized as DNA damage. Telomere length homeostasis is inevitable for telomere maintenance because critical shortening or over-lengthening of telomeres may lead to DNA damage response or delay in DNA replication, and hence genome instability. Due to their repetitive DNA sequence, unique architecture, bound shelterin proteins, and high propensity to form alternate/secondary DNA structures, telomeres are like common fragile sites and pose an inherent challenge to the progression of DNA replication, repair, and recombination apparatus. It is conceivable that longer the telomeres are, greater is the severity of such challenges. Recent studies have linked excessively long telomeres with increased tumorigenesis. Here we discuss telomere abnormalities in a rare recessive chromosomal instability disorder called Fanconi Anemia and the role of the Fanconi Anemia pathway in telomere biology. Reports suggest that Fanconi Anemia proteins play a role in maintaining long telomeres, including processing telomeric joint molecule intermediates. We speculate that ablation of the Fanconi Anemia pathway would lead to inadequate aberrant structural barrier resolution at excessively long telomeres, thereby causing replicative burden on the cell.  相似文献   

4.
FAAP24, a new XPF endonuclease family member identified by in a recent issue of Molecular Cell, heterodimerizes with FANCM, binds unwound DNA, and reveals how the Fanconi anemia core complex concentrates DNA repair proteins at stalled replication forks.  相似文献   

5.
Fanconi anemia (FA) is a chromosomal instability syndrome characterized by the presence of pancytopenia, congenital malformations and cancer predisposition. Six genes associated with this disorder have been cloned, and mice with targeted disruptions of several of the FA genes have been generated. These mouse models display the characteristic FA feature of cellular hypersensitivity to DNA cross-linking agents. Although they do not develop hematological or developmental abnormalities spontaneously, they mimic FA patients in their reduced fertility. Studies using these animal models provide valuable insights into the involvement of apoptotic pathways in FA, and help characterize the defects in FA hematopoietic cells. In addition, mouse models are also useful for testing treatments for FA.  相似文献   

6.
Summary Peripheral blood lymphocytes from eight Fanconi anemia (FA) patients, 14 FA heterozygotes, and nine normal subjects have been tested for their susceptibility to chromosomal breakage induction by diepoxybutane (DEB) and by two peroxides. In addition, the effect of five antioxidants was investigated in standard cultures and in cultures stressed either with DEB or with butylhydroperoxide (BHP) or with hydrogen peroxide (H2O2). DEB, BHP, and H2O2 dramatically increased the chromosomal breakage levels in homozygous and heterozygous FA cells. A partial correction of chromosomal instability was obtained by treating the patients' lymphocytes with antioxidants. A protective effect was also noted in the DEB or peroxide-stressed lymphocytes of patients and heterozygotes, grown in the presence of antioxidants.  相似文献   

7.
Antioxidant status of Fanconi anemia fibroblasts   总被引:5,自引:1,他引:4  
Summary Several observations in the recent literature have indicated that Fanconi anemia (FA) cells may be primarily deficient in the detoxification of activated oxygen species. To evaluate the antioxidant status of FA fibroblasts, we measured Mn-containing superoxide dismutase (Mn-SOD), CuZn-containing superoxide dismutase (CuZn-SOD), catalase, and glutathione peroxidase activities, as well as cellular glutathione contents and total nonenzymatic antioxidant potential in Fa and control fibroblasts at multiple time point during a single passage. All parameters exhibited a characteristic pattern of changes during a period of 19 days following trypsinization. Unlike FA erythrocytes, which are known to be deficient in CuZn-SOD, FA fibroblasts exhibited normal CuZn-SOD activities. Also, the nonenzymatic antioxidant potential as well as glutathione levels were similar in FA and control fibroblasts. However, Mn-SOD, catalase, and glutathione peroxidase activities were consistently higher in FA fibroblasts. We hypothesize that the elevation of these enzyme activities might reflect a cellular prooxidant state in FA resulting from an increased formation of endogenous oxidizing molecular species that trigger enhanced synthesis of certain enzymatic antioxidant defenses.  相似文献   

8.
The authors studied the effect of mitomycin C (MMC) and bromodeoxyuridine (BrdU) on the induction of chromosome aberrations on lymphocytes of four patients with Fanconi anemia (FA) and of one normal subject. A control culture and six experiments were designed to test the possible synergic effect of MMC and BrdU. Their results revealed no evidence of MMC-BrdU synergism on the induction of chromosome aberrations in FA lymphocytes. However, chromosomes showed more damage when FA cells were harvested 24 h after MMC stress than when cells were harvested shortly after treatment. This can be explained by a DNA repair defect or by a toxic effect of oxygenation of cells during the procedure.  相似文献   

9.
Wang LC  Stone S  Hoatlin ME  Gautier J 《DNA Repair》2008,7(12):1973-1981
Fanconi anemia (FA) is a recessive genetic disorder characterized by hypersensitivity to crosslinking agents that has been attributed to defects in DNA repair and/or replication. FANCD2 and the FA core complex bind to chromatin during DNA replication; however, the role of FA proteins during replication is unknown. Using Xenopus cell-free extracts, we show that FANCL depletion results in defective DNA replication restart following treatment with camptothecin, a drug that results in DSBs during DNA replication. This defect is more pronounced following treatment with mitomycin C, presumably because of an additional role of the FA pathway in DNA crosslink repair. Moreover, we show that chromatin binding of FA core complex proteins during DNA replication follows origin assembly and origin firing and is dependent on the binding of RPA to ssDNA while FANCD2 additionally requires ATR, consistent with FA proteins acting at replication forks. Together, our data suggest that FA proteins play a role in replication restart at collapsed replication forks.  相似文献   

10.
Fanconi anemia and DNA replication repair   总被引:3,自引:0,他引:3  
Patel KJ  Joenje H 《DNA Repair》2007,6(7):885-890
There has been a recent profusion of reviews on Fanconi anemia (FA), which will give readers a comprehensive outline of the field R.D. Kennedy, A.D. D'Andrea, The Fanconi anemia/BRCA pathway: new faces in the crowd, Genes Dev. 19 (2005) 2925-2940; L.J. Niedernhofer, A.S. Lalai, J.H. Hoeijmakers, Fanconi anemia (cross)linked to DNA repair, Cell 123 (2005) 1191-1198; H. Joenje, K.J. Patel, The emerging genetic and molecular basis of Fanconi anaemia, Nat. Rev. Genet. 2 (2001) 446-457. Here, we will focus on key areas that place the FA proteins in the context of DNA repair during replication. In addition, where possible we will put forward propositions that in our opinion need addressing, and where possible provide models that can be tested.  相似文献   

11.
Garner E  Smogorzewska A 《FEBS letters》2011,585(18):2853-2860
The Fanconi anemia (FA) pathway maintains genome stability through co-ordination of DNA repair of interstrand crosslinks (ICLs). Disruption of the FA pathway yields hypersensitivity to interstrand crosslinking agents, bone marrow failure and cancer predisposition. Early steps in DNA damage dependent activation of the pathway are governed by monoubiquitylation of FANCD2 and FANCI by the intrinsic FA E3 ubiquitin ligase, FANCL. Downstream FA pathway components and associated factors such as FAN1 and SLX4 exhibit ubiquitin-binding motifs that are important for their DNA repair function, underscoring the importance of ubiquitylation in FA pathway mediated repair. Importantly, ubiquitylation provides the foundations for cross-talk between repair pathways, which in concert with the FA pathway, resolve interstrand crosslink damage and maintain genomic stability.  相似文献   

12.
13.
Fanconi anemia is a cancer-prone disease characterized by progressive loss of blood cells, skeletal defects and stunted growth. Studies of a nuclease acting on double-stranded DNA have revealed an enzyme alteration in cells derived from Fanconi patients. A particulate fraction isolated from cultured human lymphoblasts and fibroblasts was solubilized with detergent and subjected to isoelectric focusing. Nuclease activity observed in four normal cell lines bands in a pH gradient with a pI of 6.3. Four cell lines belonging to complementation group A exhibit an increase in the pI of that nuclease to 6.8. These observations provide a new diagnostic for this disorder. Analysis of this enzyme in tetraploid cultures derived from fusion of normal and Fanconi cells suggest that the normal phenotype is dominant. That observation supports the hypothesis that the Fanconi A gene is required for modification of the nuclease pI. Definition of the molecular basis of this enzyme alteration should provide insight into the primary genetic lesion in this disorder.  相似文献   

14.
The cell cycle of lymphocytes in Fanconi anemia   总被引:6,自引:0,他引:6  
Summary BrdU-incorporation techniques were used to study the cell cycle in 18 cases of Fanconi's anemia (FA).By comparison with controls, a significant slowing of the cell cycle of lymphocytes in vitro was observed in all FA patients, and possibly in FA heterozygotes, although to a lesser degree. It is probable that the demonstration of the slowing is dependent on the culture conditions. No slowing was observed in other patients affected by at least one of the symptoms of FA. The slow cell cycle of FA cells is mostly due to a very long G2-phase. A relationship between slow cell cycle and chromatid anomalies exists, the slower cells being significantly more frequently carriers of radial figures than the faster cells, in the same patient.  相似文献   

15.
16.
17.
Specific cellular defects in patients with Fanconi anemia   总被引:6,自引:0,他引:6  
Measurements of plating efficiency, accumulation of metaphases and generation times have shown that fibroblast from patients with Fanconi anemia (FA) have decreased probability of completing a further division after successful mitosis. Thus FA cells show decreased growth rates and increased generation times. We have also measured the survival of FA fibroblasts and lymphoblasts after treatment with a variety of mutagens. All FA cells show an increased sensitivity to drugs such as MMC and psoralen plus long wave length UV which cause DNA interstrand crosslinks. FA strains show varying degrees of sensitivity to these drugs and the extent of this sensitivity seems to be characteristic of each patient. FA cells are equal to controls in their sensitivity to other alkylating agents such as ethyl methane sulfonate, N-methyl-N1-nitro-N-nitrosoguanidine and actinomycin D. Both the decreased growth and increased drug sensitivity may result from defect in DNA replication or repair.  相似文献   

18.
Fanconi anemia (FA) is a recessive cancer prone syndrome featuring bone marrow failure and hypersensitivity to DNA crosslinks. Nine FA genes have been isolated so far. The biochemical function(s) of the FA proteins remain(s) poorly determined. However, a large consensus exists on the evidence that, to cope with DNA cross-links, a cell needs a functional FA pathway. In this review, we resume current understanding of how the FA pathway works in response to DNA damage and how it is integrated in a complex network of proteins involved in the maintenance of the genetic stability.  相似文献   

19.
Fanconi anemia (FA) is a recessive chromosomal instability syndrome that is clinically characterized by multiple symptoms. Chromosome breakage hypersensitivity to alkylating agents is the gold standard test for FA diagnosis. In this study, we provide a detailed laboratory protocol for accurate assessment of FA diagnosis based on mitomycin C (MMC) test. Induced chromosomal breakage study was successful in 171 out of 205 aplastic anemia (AA) patients. According to the sensitivity of MMC at 50 ng/ml, 38 patients (22.22%) were diagnosed as affected and 132 patients (77.17%) as unaffected. Somatic mosaicism was suspected in an 11-year-old patient with a FA phenotype. Twenty-six siblings of FA patients were also evaluated and five of them (19.23%) were diagnosed as FA. From this study, a standard protocol for diagnosis of FA was developed. It is routinely used as a diagnostic test of FA in Tunisia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号