首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two proteolytic thermophilic aerobic bacterial strains, PA-9 and PA-5, were isolated from Buranga hot springs in western Uganda. The cells were rods, approximately 10–12 μm in length and 3 μm in width. Isolate PA-9 grew at between 38°C and 68°C (optimum, 62°C), and PA-5 grew at between 37°C and 72°C (optimum, 60°C). Both isolates grew optimally at pH 7.5–8.5. Their 16S rRNA gene sequences indicated that they belong to the newly described genus Geobacillus. Zymogram analysis of the crude enzyme extracts revealed the presence of two extracellular proteases for isolate PA-5, and at least eight for isolate PA-9. The optimum temperature and pH for casein-degrading activity were 70°C, pH 6.5 for isolate PA-9, but caseinolytic activity could also be observed at 2°C. In the case of isolate PA-5, optimal activity was observed over a temperature and pH range of 50–70°C and pH 5–10, respectively. Received: 26 November 2001 / Accepted: 12 December 2001  相似文献   

2.
From a shallow marine hydrothermal system at Vulcano (Italy), a new hyperthermophilic member of the Archaea was isolated. The cells are coccoid – shaped and possess up to five flagella. They grow between 56° and 93°C (optimum 85°C) and pH 5.0–9.5 (optimum 9.0). The organism is strictly anaerobic and grows heterotrophically on defined amino acids and complex organic substrates such as casamino acids, yeast extract, peptone, meat extract, tryptone, and casein. Polysulfide and elemental sulfur are reduced to H2S. In the absence of polysulfide or elemental sulfur, the isolate grows at a significantly reduced rate. Growth is not influenced by the presence of H2. DNA–DNA hybridization and 16S rRNA partial sequences indicated that the new isolate belongs to the genus Thermococcus, and represents a new species, Thermococcus acidaminovorans. The type strain is isolate AEDII10 (DSM 11906). Received: September 24, 1997 / Accepted: January 1, 1998  相似文献   

3.
 A marine fungus was isolated from the black tiger prawn Penaeus monodon at Nha Trang, Vietnam, on March 20, 2001 and named isolate NJM 0131. The fungus was identified as Haliphthoros milfordensis from the characteristics of asexual reproduction, and its physiological characteristics were investigated. Although the optimum temperature for growth of the isolate was 25°–30°C, the fungus grew at a wide range of temperatures (15°–40°C). H. milfordensis grew well in 50%–100% seawater, but poorly in PYG agar containing 1.0%–5.0% NaCl and KCl. The fungus grew at a wide range of pH (4.0–11.0) with the optimum pH value of 7.0–9.0. The isolate also showed pathogenicity to swimming crab larvae (Portunus trituberculatus) by artificial infection, but mortality was not high. This is the first report of disease in the black tiger prawn P. monodon in Vietnam caused by H. milfordensis. Received: July 22, 2002 / Accepted: January 21, 2003 Correspondence to:K. Hatai  相似文献   

4.
An alkaliphilic nonsulfur purple bacterial (NPB) strain “Green” was isolated from sediments of the littoral zone of the soda lake (mineralization 22 g/l, pH 9.5) in the Barguzin River valley (Eastern Siberia). The cells of the new isolate are ovoid or polymorphic at latter stages. The photosynthetic membrane structures are of vesicular type. Bacteriochlorophyll a and carotenoids of both spheroidene and spirilloxanthin type are the photosynthetic pigments. Two light-harvesting systems (LH1 and LH2) are present. The new isolate is a photoheterotroph and a facultative aerobe. It grows well in the dark on organic substrates; anaerobic phototrophic growth is poor. The isolate is alkaliphilic with pH optimum of 8.5–9.5. The most abundant cell growth occurred at 5–40 g/l NaCl (optimum at 10 g/l) and 30 °C. The DNA G+C base content was 69.9 mol %. Analysis of 16S rRNA gene sequences revealed a 10% difference with the most closely related NPB (Rhodobacter species). Rubrimonas cliftoensis, a bacteriochlorophyll a-containing bacterium, is the closest relative (93.3% similarity). It is proposed that strain “Green” should be placed in the new genus and new species Rubribacterium polymorphum gen. nov., sp. nov. GenBank accession number: 16S rRNA-EU857676.  相似文献   

5.
A variety of autotrophic, sulfur- and hydrogen-oxidizing thermophilic bacteria were isolated from thermogenic composts at temperatures of 60–80° C. All were penicillin G sensitive, which proves that they belong to the Bacteria domain. The obligately autotrophic, non-spore-forming strains were gram-negative rods growing at 60–80°C, with an optimum at 70–75°C, but only under microaerophilic conditions (5 kPa oxygen). These strains had similar DNA G+C content (34.7–37.6 mol%) and showed a high DNA:DNA homology (70–87%) with Hydrogenobacter strains isolated from geothermal areas. The facultatively autotrophic strains isolated from hot composts were gram-variable rods that formed spherical and terminal endospores, except for one strain. The strains grew at 55–75° C, with an optimum at 65–70° C. These bacteria were able to grow heterotrophically, or autotrophically with hydrogen; however, they oxidized thiosulfate under mixotrophic growth conditions (e.g. pyruvate or hydrogen plus thiosulfate). These strains had similar DNA G+C content (60–64 mol%) to and high DNA:DNA homology (> 75%) with the reference strain of Bacillus schlegelii. This is the first report of thermogenic composts as habitats of thermophilic sulfur- and hydrogen-oxidizing bacteria, which to date have been known only from geothermal manifestations. This contrasts with the generally held belief that thermogenic composts at temperatures above 60° C support only a very low diversity of obligatory heterotrophic thermophiles related to Bacillus stearothermophilus. Received: 20 July 1995 / Accepted: 25 September 1995  相似文献   

6.
A new type of gas-vacuolated, sulfate-reducing bacterium was isolated at 10° C from reduced mud (E0 < 0) obtained from a temperate estuary with thiosulfate and lactate as substrates. The strain was moderately psychrophilic with optimum growth at 18–19° C and a maximum growth temperature of 24° C. Propionate, lactate, and alcohols served as electron donors and carbon sources. The organism grew heterotrophically only with hydrogen as electron donor. Propionate and lactate were incompletely oxidized to acetate; traces of lactate were fermented to propionate, CO2, and possibly acetate in the presence of sulfate. Pyruvate was utilized both with and without an electron acceptor present. The strain did not contain desulfoviridin. The G+C content was 48.4 mol%. The differences in the 16S rRNA sequence of the isolate compared with that of its closest phylogenetic neighbors, bacteria of the genus Desulfobulbus, support the assignment of the isolate to a new genus. The isolate is described as the type strain of the new species and genus, Desulforhopalus vacuolatus. Received: 4 March 1996 / Accepted: 17 June 1996  相似文献   

7.
α-l-Rhamnosidase was extracted and purified from the cells of Pseudomonas paucimobilis FP2001 with a 19.5% yield. The purified enzyme, which was homogeneous as shown by SDS-PAGE and isoelectric focusing, had a molecular weight of 112,000 and an isoelectric point of 7.1. The enzyme activity was accelerated by Ca2+ and remained stable for several months when stored at –20 °C. The optimum pH was 7.8; the optimum temperature was 45 °C. The K m, V max and k cat for p-nitrophenyl α-l-rhamnopyranoside were 1.18 mM, 92.4 μM · min–1 and 117,000 · min–1, respectively. Examination of the substrate specificity using various synthetic and natural l-rhamnosyl glycosides showed that this enzyme had a relatively broader substrate specificity than those reported so far. Received: 24 May 1999 / Accepted: 7 October 1999  相似文献   

8.
Four gram-negative, aerobic, motile, non-spore, forming rods with a wide pH and temperature range for growth (pH 7.0–11.0, optimum pH 8.0; 20–45°C, optimum 28°C) strains were isolated from root nodules of Sphaerophysa salsula and characterized by means of a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the four strains formed a new lineage related to the genus Rhizobium and the sequence similarities between the isolate and the most related type strain Rhizobium giardinii was 96.5%. These strains also formed a distinctive group from the reference strains for defined Rhizobium species based on housekeeping gene sequences (atpD and recA), BOX-PCR fingerprinting, phenotypic features and symbiotic properties. The representative strain CCNWGS0238T has DNA-DNA relatedness of less than 33.4% with the most closely related species R. giardinii. It is therefore proposed as a new species, Rhizobium sphaerophysae sp. nov., with isolate CCNWGS0238T (=ACCC17498T = HAMBI3074T) as the type strain.  相似文献   

9.
β-Galactosidase was isolated from the cell-free extracts ofLactobacillus crispatus strain ATCC 33820 and the effects of temperature, pH, sugars and monovalent and divalent cations on the activity of the enzyme were examined.L. crispatus produced the maximum amount of enzyme when grown in MRS medium containing galactose (as carbon source) at 37°C and pH 6.5 for 2 d, addition of glucose repressing enzyme production. Addition of lactose to the growth medium containing galactose inhibited the enzyme synthesis. The enzyme was active between 20 and 60°C and in the pH range of 4–9. However, the optimum enzyme activity was at 45°C and pH 6.5. The enzyme was stable up to 45°C when incubated at various temperatures for 15 min at pH 6.5. When the enzyme was exposed to various pH values at 45°C for 1 h, it retained the original activity over the pH range of 6.0–7.0. Presence of divalent cations, such as Fe2+ and Mn2+, in the reaction mixture increased enzyme activity, whereas Zn2+ was inhibitory. TheK m was 1.16 mmol/L for 2-nitrophenyl-β-d-galactopyranose and 14.2 mmol/L for lactose.  相似文献   

10.
The Aspergillus niger feruloyl esterase gene (faeA) was cloned into Saccharomyces cerevisiae via a yeast expression vector, resulting in efficient expression and secretion of the enzyme in the medium with a yield of ~2 mg/l. The recombinant enzyme was purified to homogeneity by anion-exchange and hydrophobic interaction chromatography. The specific activity was determined to be 8,200 U/μg (pH 6.5, 20°C, 3.5 mM 4-nitrophenyl ferulate). The protein had a correct N-terminal sequence of ASTQGISEDLY, indicating that the signal peptide was properly processed. The FAE exhibited an optimum pH of 6–7 and operated optimally at 50°C using ground switchgrass as the substrate. The yeast clone was demonstrated to catalyze the release of ferulic acid continuously from switchgrass in YNB medium at 30°C. This work represents the first report on engineering yeast for the breakdown of ferulic acid crosslink to facilitate consolidated bioprocessing.  相似文献   

11.
A phosphate solubilizing and antagonistic bacterial strain, isolated from a Western Ghat forest soil in Kerala province, India (designated as NII-0906), showed cold tolerance and grew from 10 to 37°C (optimum temperature 30°C). It was a Gram-positive, rod shaped, 0.8–1.6 μm in size, and exhibited tolerance to a wide pH range (5–12; optimum 7.0) and salt concentration up to 7% (w/v). The isolate showed maximum similarity with Exiguobacterium marinum TF-80T based on 16S rRNA analysis. It solubilized tricalcium phosphate under in vitro conditions. The phosphate solubilization was estimated along a temperature range (5–40°C), and maximum activity (84.7 μg mL−1 day−1) was recorded at 30°C after 10 days of incubation. The phosphate solubilizing activity coincided with a concomitant decrease in pH of the medium. The isolate also exhibited antifungal activity against phytopathogenic fungi in Petri dish assays and produced siderophore and hydrogen cyanide. The strain’s plant growth promotion properties were demonstrated through a cowpea-based bioassay under greenhouse conditions. The bacterial inoculation resulted in significant increment in plant root, stem and as well as in plant biomass. Further, scanning electron microscopic study revealed the root colonization in cowpea. These results could offer potential perspective for the strain to be used as plant growth-promoting rhizobacteria, which could be used as an inoculant for regional crops.  相似文献   

12.
From a hydrothermal vent site off the Mexican west coast (20°50′N, 109°06′W) at a depth of 2,600 m, a novel, hyperthermophilic, anaerobic archaeum was isolated. Cells were round to slightly irregular cocci, 1.2–2.5 μm in diameter and were motile by means of a tuft of flagella. The new isolate grew between 60 and 93°C (optimum: 85°C), from pH 3.5 to 9 (optimum: pH 6.7), and from 0.8 to 8% NaCl (optimum: 2%). The isolate was an obligate organotroph, using chitin, yeast extract, meat extract, and peptone for growth. Chitin was fermented to H2, CO2, NH3, acetate, and formate. H2S was formed in the presence of sulfur. The chitinoclastic enzyme system was oxygen-stable, cell-associated, and inducible by chitin. The cell wall was composed of a surface layer of hex- americ protein complexes arranged on a p6 lattice. The core lipids consisted of glycerol diphytanyl diethers and acyclic and cyclic glycerol diphytanyl tetraethers. The G+C content was 46.5 mol%. DNA/DNA hybridization and 16S rRNA sequencing indicated that the new isolate belongs to the genus Thermococcus, representing a new species, Thermococcus chitonophagus. The type strain is isolate GC74, DSM 10152. Received: 8 May 1995 / Accepted: 26 June 1995  相似文献   

13.
We studied the effects of high temperatures and elevated hydrostatic pressures on the physiological behavior and viability of the extremely thermophilic deep-sea archaeon Thermococcus peptonophilus. Maximal growth rates were observed at 30 and 45 MPa although no significant increases in cell yields were detected. Growth at 60 MPa was slower. The optimal growth temperature shifted from 85° C at 30 MPa to 90–95° C at 45 MPa. Cell viability during the stationary phase was also enhanced under high pressure. A trend towards barophily at pressures greater than those encountered in situ at the sea floor was demonstrated at increasing growth temperatures. The viability of cells during starvation, at high temperature (90, 95° C), and at low temperature (10° C) was enhanced at 30 and 45 MPa as compared to atmospheric pressure. These results show that the extremely thermophilic archaeon T. peptonophilus is a barophile. Received: 21 October 1996 / Accepted: 5 February 1997  相似文献   

14.
A Gram-positive, endospore-forming, catalase- and oxidase-positive, motile, rod-shaped, aerobic bacterium, designated strain JSM 079157T, was isolated from surface seawater off the coastline of Naozhou Island in South China Sea. The organism was able to grow with 1–15% (w/v) total salts (optimum, 4–7%), and at pH 6.0–10.0 (optimum, pH 7.5) and 10–45°C (optimum, 30°C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The predominant menaquinone was MK-7, and the polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The major cellular fatty acids were anteiso-C15:0 (45.1%) and anteiso-C17:0 (16.2%), and the DNA G + C content was 39.5 mol%. A phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 079157T should be assigned to the genus Virgibacillus, being related most closely to the type strains of Virgibacillus litoralis (97.4% sequence similarity), Virgibacillus necropolis (97.3%) and Virgibacillus carmonensis (97.1%). These four strains formed a distinct subcluster in the phylogenetic tree. The levels of DNA–DNA relatedness between the new isolate and the type strains of V. litoralis, V. necropolis and V. carmonensis were 30.4, 19.3 and 12.6%, respectively. The results of the phylogenetic analysis, combined with DNA–DNA relatedness data, phenotypic characteristics and chemotaxonomic information, support the suggestion that strain JSM 079157T represents a new species of the genus Virgibacillus, for which the name Virgibacillus zhanjiangensis sp. nov. is proposed. The type strain is JSM 079157T (=DSM 21084T = KCTC 13227T).  相似文献   

15.
Xylanase, β-glucosidase, β-xylosidase, endoglucanase and polygalacturonase production fromCurvularia inaequalis was carried out by means of solid-state and submerged fermentation using different carbon sources. β-Glucosidase. β-xylosidase, polygalacturonase and xylanase produced by the microorganisms were characterized. β-Glucosidase presented optimum activity at pH 5.5 whereas xylanase, poly-galacturonase and β-xylosidase activities were optimal at pH 5.0. Maximal activity of β-glucosidase was determined at 60°C, β-xylosidase at 70°C, and polygalacturonase and xylanase at 55°C. These enzymes were stable at acidic to neutral pH and at 40–45 °C. The crude enzyme solution was studied for the hydrolysis of agricultural residues.  相似文献   

16.
A hyperthermophilic heterotrophic archaeon (strain WB1) was isolated from a thermal pool in the Washburn hot spring group of Yellowstone National Park, USA. WB1 is a coccus, 0.6–1.2 μm in diameter, with a tetragonal S-layer, vacuoles, and occasional stalk-like protrusions. Growth is optimal at 84°C (range 64–93°C), pH 5–6 (range 3.5–8.5), and <1 g/l NaCl (range 0–4.6 g/l NaCl). Tests of metabolic properties show the isolate to be a strict anaerobe that ferments complex organic substrates. Phylogenetic analysis of the 16S rRNA gene sequence places WB1 in a clade of previously uncultured Desulfurococcaceae and shows it to have ≤96% 16S rRNA sequence identity to Desulfurococcus mobilis, Staphylothermus marinus, Staphylothermus hellenicus, and Sulfophobococcus zilligii. The 16S rRNA gene contains a large insertion similar to homing endonuclease introns reported in Thermoproteus and Pyrobaculum species. Growth is unaffected by the presence of S0 or SO4 2−, thereby differentiating the isolate from its closest relatives. Based on phylogenetic and physiological differences, it is proposed that isolate WB1 represents the type strain of a novel genus and species within the Desulfurococcaceae, Thermogladius shockii gen. nov., sp. nov. (RIKEN = JCM-16579, ATCC = BAA-1607, Genbank 16S rRNA gene = EU183120).  相似文献   

17.
β-Glucosidase hydrolyzing cellobiose was extracted from Aureobasidium sp ATCC 20524 and purified to homogeneity. The molecular mass was estimated to be about 331 kDa. The enzyme contained 26.5% (w/w) carbohydrate. The optimum pH and temperature for the enzyme reaction were pH 4 and 80°C, respectively. The enzyme was stable at a wide range of pH, 2.2–9.8, after 3 h and at 75°C for 15 min. The kinetic parameters were determined. The enzyme was relatively stable against typical organic enzyme inhibitors. The enzyme also hydrolyzed gentiobiose, p-nitrophenyl-β-glucoside and salicin. Received 05 November 1998/ Accepted in revised form 14 February 1999  相似文献   

18.
A novel, irregular, coccoid-shaped archaeum was isolated from a hydrothermally heated black smoker wall at the TAG site at the Mid Atlantic Ridge (depth 3650 meters). It grew at between 90°C and 113°C (optimum 106°C) and pH 4.0–6.5 (optimum 5.5) and 1%–4% salt (optimum 1.7%). The organism was a facultatively aerobic obligate chemolithoautotroph gaining energy by H2-oxidation. Nitrate, S2O3 2–, and low concentrations of O2 (up to 0.3% v/v) served as electron acceptors, yielding NH+ 4, H2S, and H2O as end products, respectively. Growth was inhibited by acetate, pyruvate, glucose, starch, or sulfur. The new isolate was able to form colonies on plates (at 102°C) and to grow at a pressure of 25000 kPa (250 bar). Exponentially growing cultures survived a one-hour autoclaving at 121°C. The GC content was 53mol%. The core lipids consisted of glycerol–dialkyl glycerol tetraethers and traces of 2,3-di-O-phytanyl-sn-glycerol. The cell wall was composed of a surface layer of tetrameric protein complexes arranged on a p4-lattice (center-to-center distance 18.5nm). By its 16S rRNA sequence, the new isolate belonged to the Pyrodictiaceae. Based on its GC-content, DNA homology, S-layer composition, and metabolism, we describe here a new genus, which we name Pyrolobus (the "fire lobe"). The type species is Pyrolobus fumarii (type strain 1A; DSM). Received: 28 September 1996 / Accepted: 17 October 1996  相似文献   

19.
The extremely thermophilic ethanol-producing strain A3 was isolated from a hot spring in Iceland. The cells were rod-shaped, motile, and had terminal spores; cells from the mid-to-late exponential growth phase stained gram-variable but had a gram-positive cell wall structure when viewed by transmission electron microscopy. Strain A3 used a number of carbohydrates as carbon sources, including xylan, but did not utilize microcrystalline cellulose. Fermentation end products were ethanol, acetate, lactate, CO2, and H2. The temperature optimum for growth was between 70 and 75° C, and growth occurred in the range of 50–75° C. The pH range for growth was 4.7–8.8, with an optimum at pH 7.0. Strain A3 was sensitive to tetracycline, chloramphenicol, penicillin G, neomycin, and vancomycin at 100 mg/l but was not sensitive to chloramphenicol and neomycin at 10 mg/l, which indicates that strain A3 belongs to the eubacteria. Addition of 50.66 kPa H2 or 2% NaCl did not affect growth. The isolate grew in the presence of exogenously added 4% (w/v) ethanol. The G+C ratio was 37 mol%. 16S rDNA studies revealed that strain A3 belongs to the genus Thermoanaerobacter. Genotypic and phenotypic differences between strain A3 and other related species indicate that strain A3 can be assigned to a new species, and the name Thermoanaerobacter mathranii is proposed. Received: 7 October 1996 / Accepted: 14 March 1997  相似文献   

20.
A Gram-positive, moderately halophilic, facultatively alkaliphilic, catalase- and oxidase-positive, obligately aerobic, filamentous actinomycete strain, designated YIM 90022T, was isolated from saline soil collected from the Qaidam Basin, north-west China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the new isolate was a member of the genus Nocardiopsis and the sequence similarities between the isolate and the type strains of members of the genus Nocardiopsis were in the range of 95.1–98.7%. Phenotypic and chemotaxonomic properties of this organism also indicated that strain YIM 90022T was a member of the genus Nocardiopsis. The strain grew well on most of the media tested, producing yellow-white to deep brown substrate mycelium and white aerial mycelium. Light gray to deep brown diffusible pigments were produced. The substrate mycelium was well developed and fragmented with age; the aerial mycelium produced long, straight to flexuous spore chains with non-motile, smooth-surfaced, rod-shaped spores on them. The strain grew in the presence of 1–15% (w/v) total salts (optimum, 3–5%) and at pH 6.0–10.5 (optimum, pH 8.5) and 10–45°C (optimum, 30°C). Whole-cell hydrolysates of strain YIM 90022T contained meso-diaminopimelic acid and no diagnostic sugars. The predominant menaquinones were MK-10(H4), MK-9(H8), MK-10(H6) and MK-10(H8). Polar lipids comprised diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol and phosphatidylmethylethanolamine. The major cellular fatty acids were iso-C16:0, anteiso-C17:0, 10-methyl-C18:0 and 10-methyl-C17:0. The DNA G + C content of strain YIM 90022T was 71.5 mol%. The combination of phylogenetic analysis, DNA–DNA relatedness data, phenotypic characteristics and chemotaxonomic data supported the suggestion that strain YIM 90022T represents a new species of the genus Nocardiopsis, for which the name Nocardiopsis terrae sp. nov. is proposed. The type strain is YIM 90022T (=CCTCC AA 208011T =KCTC 19431T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号