首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monti JM  Jantos H 《Life sciences》2004,75(17):2027-2034
The effects L-arginine (0.15-0.60 micromol), a nitric oxide precursor, and SIN-1 (3-morpholino-sydnonimine; linsidomine) (0.05-0.2 micromol), a nitric oxide donor, on spontaneous sleep were studied in adult rats implanted for chronic sleep recordings. L-arginine or SIN-1 given intracerebroventricularly during the light phase of the light-dark cycle induced no significant changes in sleep variables. On the other hand, administration of L-arginine or SIN-1 during the dark phase significantly increased slow wave sleep and reduced waking during the first 4 h of the recording period. The time spent in rapid-eye-movement sleep (REMS) was not significantly modified. The increase of slow wave sleep and/or reduction of waking was already evident during the first 2 h of recording. On the other hand, values of these variables were not different from control values during post-injection hours 5 and 6. Our findings confirm the role of nitric oxide, generated from L-arginine or released from SIN-1, in the regulation of sleep variables in the rat.  相似文献   

2.
Cholinergic neurons of the basal forebrain supply the neocortex with ACh and play a major role in regulating behavioral arousal and cortical electroencephalographic activation. Cortical ACh release is greatest during waking and rapid eye movement (REM) sleep and reduced during non-REM (NREM) sleep. Loss of basal forebrain cholinergic neurons contributes to sleep disruption and to the cognitive deficits of many neurological disorders. ACh release within the basal forebrain previously has not been quantified during sleep. This study used in vivo microdialysis to test the hypothesis that basal forebrain ACh release varies as a function of sleep and waking. Cats were trained to sleep in a head-stable position, and dialysis samples were collected during polygraphically defined states of waking, NREM sleep, and REM sleep. Results from 22 experiments in four animals demonstrated that means +/- SE ACh release (pmol/10 min) was greatest during REM sleep (0.77 +/- 0.07), intermediate during waking (0.58 +/- 0.03), and lowest during NREM sleep (0.34 +/- 0.01). The finding that, during REM sleep, basal forebrain ACh release is significantly elevated over waking levels suggests a differential role for basal forebrain ACh during REM sleep and waking.  相似文献   

3.
To investigate the effects of short-term sleep deprivation on the sleep pattern during pregnancy, cortical and hippocampal EEG and locomotor activity were recorded within 24-hours in a "disk-over-water" paradigm in 18 Wistar rats. Rats were adapted to experimental situation and were able to move across the rotating disk without falling in water. Then a polysomnogram was recorded for 3 sequential days in the control group 1 (n = 12) without disk rotation. On the next day non-pregnant rats (experimental group 1, n = 6) were subjected to the sleep deprivation procedure with a pre-set program of disk rotation from 11:00 to 14:00 during 3 sequential days. Other 6 rats (experimental group 2) were subjected to sleep deprivation on the 5-7th day of pregnancy. EEG and locomotor activity were also constantly recorded during the sleep deprivation procedure. In control group 2 (n = 6, without sleep deprivation), a polysomnogram was recorded on the 5-7th day of pregnancy. As compared to non-pregnant rats, sleep intensity of pregnant rats increased during the first hours after the deprivation, and a considerable rebound of REM sleep took place. Sleep pattern during the off-light 12 hours remained unchanged. The results suggest that homeostatic compensation of sleep deprivation effects in rats on the first week of pregnancy is more efficient than in control non-pregnant animals.  相似文献   

4.
在海拔2300m选择健康成年男性5人,急进抵海拔4660m,用多导监测仪分别在两地连续7h监测夜间睡眠、呼吸状态和血氧饱和度变化,进行自身对比。结果发现:(1)急进高海拔后,总睡眠时间、有效睡眠指数、Ⅲ~Ⅳ期深睡眠均较中度高原减少(p<0.01);总觉醒时间、Ⅰ~Ⅱ期浅睡眠高海拔较中度高原增多(p<0.05):(2)急进高海拔后,有3名健康人出现周期性呼吸,其中1名健康者出现周期性呼吸119次,伴有中枢性睡眠呼吸暂停,最低Sao_2为78%;(3)同海拔高度夜间睡眠时与清醒时Sao_2相比较,中度高原下降4.2%,高海拔下降11.2%(p<0.01);高海拔与中度高原夜间清醒时Sao_2相比较下降7.4%,睡眠时下降14.4%(p<0.001)。结果提示:(1)睡眠加重了高原人原有的低氧血症;(2)低氧血症导致睡眠结构的紊乱和睡眠质量的降低;(3)睡眠中出现的周期性呼吸,应视为机体的一种自我保护机制;(4)频发的周期性呼吸或睡眠呼吸暂停将影响大脑机能。  相似文献   

5.
We recorded sleep electroencephalogram longitudinally across ages 9-18 yr in subjects sleeping at home. Recordings were made twice yearly on 4 consecutive nights: 2 nights with the subjects maintaining their ongoing school-night schedules, and 2 nights with time in bed extended to 12 h. As expected, school-night total sleep time declined with age. This decline was entirely produced by decreasing non-rapid eye movement (NREM) sleep. Rapid eye movement (REM) sleep durations increased slightly but significantly. NREM and REM sleep durations also exhibited different age trajectories when sleep was extended. Both durations exceeded those on school-night schedules. However, the elevated NREM duration did not change with age, whereas REM durations increased significantly. We interpret the adolescent decline in school-night NREM duration in relation to our hypothesis that NREM sleep reverses changes produced in plastic brain systems during waking. The "substrate" produced during waking declines across adolescence, because synaptic elimination decreases the intensity (metabolic rate) of waking brain activity. Declining substrate reduces both NREM intensity (i.e., delta power) and NREM duration. The absence of a decline in REM sleep duration on school-night sleep and its age-dependent increase in extended sleep pose new challenges to understanding its physiological role. Whatever their ultimate explanation, these robust findings demonstrate that the two physiological states of human sleep respond differently to the maturational brain changes of adolescence. Understanding these differences should shed new light on both brain development and the functions of sleep.  相似文献   

6.
The Djungarian hamster (Phodopus sungorus) is a markedly photoperiodic rodent which exhibits daily torpor under short photoperiod. Normative data were obtained on vigilance states, electroencephalogram (EEG) power spectra (0.25–25.0 Hz), and cortical temperature (TCRT) under a 168 h light-dark schedule, in 7 Djungarian hamsters for 2 baseline days, 4 h sleep deprivation (SD) and 20 h recovery.During the baseline days total sleep time amounted to 59% of recording time, 67% in the light period and 43% in the dark period. The 4 h SD induced a small increase in the amount of non-rapid eye movement (NREM) sleep and a marked increase in EEG slow-wave activity (SWA; mean power density 0.75–4.0 Hz) within NREM sleep in the first hours of recovery. TCRT was lower in the light period than in the dark period. It decreased at transitions from either waking or rapid eye movement (REM) sleep to NREM sleep, and increased at the transition from NREM sleep to waking or REM sleep. After SD, TCRT was lower in all vigilance states.In conclusion, the sleep-wake pattern, EEG spectrum, and time course of TCRT in the Djungarian hamster are similar to other nocturnal rodents. Also in the Djungarian hamster the time course of SWA seems to reflect a homeostatically regulated process as was formulated in the two-process model of sleep regulation.Abbreviations EEG electroencephalogram - EMG electromyogram - N NREM sleep - NREM non-rapid eye movement - R REM sleep - REM rapid eye movement - SD sleep deprivation - SWA slow-wave activity - TCRT cortical temperature - TST total sleep time - VS vigilance state - W waking  相似文献   

7.
Due to the mixed findings of previous studies, it is still difficult to provide guidance on how to best manage sleep inertia after waking from naps in operational settings. One of the few factors that can be manipulated is the duration of the nap opportunity. The aim of the present study was to investigate the magnitude and time course of sleep inertia after waking from short (20-, 40- or 60-min) naps during simulated night work and extended operations. In addition, the effect of sleep stage on awakening and duration of slow wave sleep (SWS) on sleep inertia was assessed. Two within-subject protocols were conducted in a controlled laboratory setting. Twenty-four healthy young men (Protocol 1: n?=?12, mean age?=?25.1 yrs; Protocol 2: n?=?12, mean age?=?23.2 yrs) were provided with nap opportunities of 20-, 40-, and 60-min (and a control condition of no nap) ending at 02:00?h after ~20?h of wakefulness (Protocol 1 [P1]: simulated night work) or ending at 12:00?h after ~30?h of wakefulness (Protocol 2 [P2]: simulated extended operations). A 6-min test battery, including the Karolinska Sleepiness Scale (KSS) and the 4-min 2-Back Working Memory Task (WMT), was repeated every 15?min the first hour after waking. Nap sleep was recorded polysomnographically, and in all nap opportunities sleep onset latency was short and sleep efficiency high. Mixed-model analyses of variance (ANOVA) for repeated measures were calculated and included the factors time (time post-nap), nap opportunity (duration of nap provided), order (order in which the four protocols were completed), and the interaction of these terms. Results showed no test x nap opportunity effect (i.e., no effect of sleep inertia) on KSS. However, WMT performance was impaired (slower reaction time, fewer correct responses, and increased omissions) on the first test post-nap, primarily after a 40- or 60-min nap. In P2 only, performance improvement was evident 45?min post-awakening for naps of 40?min or more. In ANOVAs where sleep stage on awakening was included, the test x nap opportunity interaction was significant, but differences were between wake and non-REM Stage 1/Stage 2 or wake and SWS. A further series of ANOVAs showed no effect of the duration of SWS on sleep inertia. The results of this study demonstrate that no more than 15?min is required for performance decrements due to sleep inertia to dissipate after nap opportunities of 60?min or less, but subjective sleepiness is not a reliable indicator of this effect. Under conditions where sleep is short, these findings also suggest that SWS, per se, does not contribute to more severe sleep inertia. When wakefulness is extended and napping occurs at midday (i.e., P2), nap opportunities of 40- and 60-min have the advantage over shorter duration sleep periods, as they result in performance benefits ~45?min after waking.  相似文献   

8.
Due to the mixed findings of previous studies, it is still difficult to provide guidance on how to best manage sleep inertia after waking from naps in operational settings. One of the few factors that can be manipulated is the duration of the nap opportunity. The aim of the present study was to investigate the magnitude and time course of sleep inertia after waking from short (20-, 40- or 60-min) naps during simulated night work and extended operations. In addition, the effect of sleep stage on awakening and duration of slow wave sleep (SWS) on sleep inertia was assessed. Two within-subject protocols were conducted in a controlled laboratory setting. Twenty-four healthy young men (Protocol 1: n = 12, mean age = 25.1 yrs; Protocol 2: n = 12, mean age = 23.2 yrs) were provided with nap opportunities of 20-, 40-, and 60-min (and a control condition of no nap) ending at 02:00 h after ~20 h of wakefulness (Protocol 1 [P1]: simulated night work) or ending at 12:00 h after ~30 h of wakefulness (Protocol 2 [P2]: simulated extended operations). A 6-min test battery, including the Karolinska Sleepiness Scale (KSS) and the 4-min 2-Back Working Memory Task (WMT), was repeated every 15 min the first hour after waking. Nap sleep was recorded polysomnographically, and in all nap opportunities sleep onset latency was short and sleep efficiency high. Mixed-model analyses of variance (ANOVA) for repeated measures were calculated and included the factors time (time post-nap), nap opportunity (duration of nap provided), order (order in which the four protocols were completed), and the interaction of these terms. Results showed no test x nap opportunity effect (i.e., no effect of sleep inertia) on KSS. However, WMT performance was impaired (slower reaction time, fewer correct responses, and increased omissions) on the first test post-nap, primarily after a 40- or 60-min nap. In P2 only, performance improvement was evident 45 min post-awakening for naps of 40 min or more. In ANOVAs where sleep stage on awakening was included, the test x nap opportunity interaction was significant, but differences were between wake and non-REM Stage 1/Stage 2 or wake and SWS. A further series of ANOVAs showed no effect of the duration of SWS on sleep inertia. The results of this study demonstrate that no more than 15 min is required for performance decrements due to sleep inertia to dissipate after nap opportunities of 60 min or less, but subjective sleepiness is not a reliable indicator of this effect. Under conditions where sleep is short, these findings also suggest that SWS, per se, does not contribute to more severe sleep inertia. When wakefulness is extended and napping occurs at midday (i.e., P2), nap opportunities of 40- and 60-min have the advantage over shorter duration sleep periods, as they result in performance benefits ~45 min after waking.  相似文献   

9.
Circadian patterns have been observed in infants as early as the first few postnatal days. We hypothesized that, in each sleep-waking state, heart rate variation in several distinct frequency bands would show consistent variations across a night in newborn infants. Twelve-hour night-time recordings of EEG, ECG, EOG, digastric EMG, respiratory movements, and CO2 were obtained from 25 normal full-term infants at 2-7 days postnatal age. The extents of three types of heart rate variation were determined for all epochs identified as quiet sleep, rapid eye movement (REM) sleep, and waking during each 4-hr period of the night. In particular states, the extent of all three types of heart rate variation decreased from the evening (7-11pm) to the late night (11pm-3am). Heart rate variation at the respiratory frequency showed such a time-of-night effect in quiet sleep only, resulting in a significant sleep state effect on respiratory sinus arrhythmia during the evening that disappeared later in the night. Previous studies have indicated that respiratory sinus arrhythmia is enhanced during quiet sleep, relative to other states, after 3 mo of age; the present findings suggest that the tendency for enhancement during quiet sleep is present even in the neonate, although this tendency is only expressed during the evening. Results indicate that time-of-night effects on heart rate variation are not constant across physiological states in neonates, and heart rate variation during the waking state is particularly unresponsive to these time-of-night influences.  相似文献   

10.
Mentation during sleep states is thought to originate in an activation of brain circuits that encode inherited and experiential memories. Spontaneous degradation of the strengths of synapses occurs in all brain circuits because of "turnover" of molecules essential for synaptic function. In circuits employed frequently during waking, synaptic strengths are refreshed and maintained in their dedicated or functional ranges largely through use, by virtue of activity-dependent synaptic plasticity. In circuits employed infrequently during waking, synaptic strengths are refreshed largely during sleep, by circuit activations induced by spontaneous, self-generated, largely low-frequency brain waves, also by virtue of activity-dependent synaptic plasticity. The outputs of circuits activated during sleep do not necessarily rise to the level of 'unconscious' awareness. Such an absence of awareness of the outputs of individual circuits, that is, an absence of dreaming, is proposed to be the primitive condition in animals that sleep. On the other hand, temporal binding of these outputs is accompanied by the thoughts and perceptions of dreams, which is proposed to be the advanced condition. Linking or serial ordering of otherwise 'static' thoughts and perceptions gives rise to continuous, often narrative and veridical, dreams. In all cases, dream contents are derived from the memories--not necessarily veridical--encoded in the reinforced circuitry. In the absence of synaptic strength refreshments during sleep, synaptic strengths in infrequently used circuits would weaken and the circuits would become incompetent, with their encoded memories degraded or lost. Maintenance of synaptic strengths in infrequently used circuitry during sleep apparently does not always achieve perfection. Weakened synapses begin to occur in circuits in appreciable numbers in children after the age of about 5 years. When these 'incompetent' circuits (with weakened synapses) are activated during sleep, there are minimal influences on dream contents, namely, distortions that make some objects, such as animals, faces, and scenes, unrecognizable. As weakened synapses increase in numbers with age, the numbers of distorted objects in dreams also increase. In adults, people in as many as 80% of dreams may be unrecognizable. Besides the normal weakening of synaptic strengths, some synapses become defective, in consequence of deleterious, adventitious, exogenous influences, for example, radiation. As these faulty synapses accumulate in old memories, activation of circuits incorporating them during sleep leads to dreams with incoherent, bizarre, or impossible contents. The infrequent activation of such old, incompetent circuits in some waking conditions leads to false memories, delusions, or hallucinations.  相似文献   

11.
This study investigates evidence, from dream reports, for memory consolidation during sleep. It is well-known that events and memories from waking life can be incorporated into dreams. These incorporations can be a literal replication of what occurred in waking life, or, more often, they can be partial or indirect. Two types of temporal relationship have been found to characterize the time of occurrence of a daytime event and the reappearance or incorporation of its features in a dream. These temporal relationships are referred to as the day-residue or immediate incorporation effect, where there is the reappearance of features from events occurring on the immediately preceding day, and the dream-lag effect, where there is the reappearance of features from events occurring 5-7 days prior to the dream. Previous work on the dream-lag effect has used spontaneous home recalled dream reports, which can be from Rapid Eye Movement Sleep (REM) and from non-Rapid Eye Movement Sleep (NREM). This study addresses whether the dream-lag effect occurs only for REM sleep dreams, or for both REM and NREM stage 2 (N2) dreams. 20 participants kept a daily diary for over a week before sleeping in the sleep laboratory for 2 nights. REM and N2 dreams collected in the laboratory were transcribed and each participant rated the level of correspondence between every dream report and every diary record. The dream-lag effect was found for REM but not N2 dreams. Further analysis indicated that this result was not due to N2 dream reports being shorter, in terms of number of words, than the REM dream reports. These results provide evidence for a 7-day sleep-dependent non-linear memory consolidation process that is specific to REM sleep, and accord with proposals for the importance of REM sleep to emotional memory consolidation.  相似文献   

12.
Electrographic manifestations (the electrocorticogram — ECoG) of the stages of sleep and waking in the neuronally isolated cortex were studied in freely moving cats. The intensity of the electrographic manifestations of sleep-waking in the isolated cortex depends on the time elapsing after isolation: Whereas they are indistinct in the first weeks, after 4–6 months all stages of sleep and waking found in the normal animal can be recorded in the isolated cortex. The electrographic manifestations during various stages of sleep and waking in the isolated cortex are observed simultaneously with the appearance of the ECoG features of sleep in the opposite, control hemisphere. Of all the stages of sleep and waking, the most variable activity in the isolated cortex is observed in the theta and delta bands, the ways by which sleep activity arises in the isolated cortex are discussed.Scientific-Research Institute of Experimental Medicine, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 8, No. 6, pp. 559–567, November–December, 1976.  相似文献   

13.
The sleep-wake behavior of a boy was investigated from 5 weeks up to four years of age. The protocol consisted of recording waking and sleep states by direct observation by his mother and eventually by the housemaid. Data were divided in 7-day segments and these segments were then divided in 10-minute binary information about asleep or awake. Fast Fourier Transform (FFT) was applied to obtain the frequency spectrum for each 7-day epoch, and the results were submitted to statistical test for the identification of significant component frequencies. Data were also divided in 21-day epochs and 30-minute windows in order to detect infradian periodicities. Overall rhythmicity increased during the four years with the circadian component as the major contribution after the fifth week of life. The semicircadian and the 8-hour components had maximum contributions during the second and third years, and the 6-, 5- and 4-hour components during the first year. After the beginning of his attendance to school, the boy showed a decrease of the semicircadian component, explained by the absence of an afternoon nap and an increase of the circadian component. Infradian periodicities were not found during the whole four years.  相似文献   

14.
The sleep-wake behavior of a boy was investigated from 5 weeks up to four years of age. The protocol consisted of recording waking and sleep states by direct observation by his mother and eventually by the housemaid. Data were divided in 7-day segments and these segments were then divided in 10-minute binary information about asleep or awake. Fast Fourier Transform (FFT) was applied to obtain the frequency spectrum for each 7-day epoch, and the results were submitted to statistical test for the identification of significant component frequencies. Data were also divided in 21-day epochs and 30-minute windows in order to detect infradian periodicities. Overall rhythmicity increased during the four years with the circadian component as the major contribution after the fifth week of life. The semicircadian and the 8-hour components had maximum contributions during the second and third years, and the 6-, 5- and 4-hour components during the first year. After the beginning of his attendance to school, the boy showed a decrease of the semicircadian component, explained by the absence of an afternoon nap and an increase of the circadian component. Infradian periodicities were not found during the whole four years.  相似文献   

15.
Pot-grown barley plants (cv. Proctor) were exposed to infection by powdery mildew during four stages of development, G.S. 2–6, G.S. 7–9, G.S. 10-10-5 and G.S. 11 (Feekes scale, Large, 1954). All combinations were examined (i.e. 24 factorial). The numbers of fertile tillers at harvest were significantly reduced by mildew during periods G.S. 2–6 and G.S. 7–9. Numbers of grains per head and grain size (1000 grain weight) were significantly reduced by mildew only during G.S. 2–6. Effects, on components of yield, of the four mildew treatments were found to be almost entirely additive. The only significant interactions found were for grain size: in this instance there was some interaction between treatments at G.S. 2–6 and G.S. 10-10-5 and between treatments at G.S. 2–6, G.S. 7–9 and G.S. 10-10-5.  相似文献   

16.
The effects of bovine beta-casomorphin(1-7) (Tyr-Pro-Phe-Pro-Gly-Pro-Ile) on neonatal sleep in rats were studied. The pups received intraperitoneal injections of beta-casomorphin(1-7) (1 mg, 5 mg, 10 mg, 50 mg, or 100 mg/kg) or a corresponding volume of sodium chloride. In any of the doses used, beta-casomorphin(1-7) had no effect on waking. Only 100 mg/kg caused significant changes in sleep: the percentage of quiet state of the total recording time (TRT) increased and the percentage of active sleep decreased. Beta-casomorphin(1-7) did not cause significant respiratory depression. Naloxone pretreatment (1 mg/kg IP) reversed the effects of beta-casomorphin(1-7) on sleep, a finding which suggests that opiate mu-receptors are involved in mediating the sleep effects of beta-casomorphin.  相似文献   

17.
Characteristics of sleep and sleep problems were investigated in 43 individuals with 11q terminal deletion disorder (Jacobsen syndrome). Data were collected using a sleep questionnaire. Ten individuals (23%) had a sleep problem. Settling problems, frequent night waking and early waking occurred in 2 (4%), 7 (16%) and 2 (6%) individuals, respectively. Twenty-two individuals (54%) had a history of sleep problems. Twenty-five individuals (60%) showed restless sleep and 23 individuals (54%) slept in an unusual position. Apart from frequent coughs, no significant relationships were found between the presence of a sleep problem and other variables, such as age, level of ID, breathing problems, heart defects, constipation, daytime activity and behavioral diagnosis, restless sleep and sleeping in an unusual positions.  相似文献   

18.
In 22 children (11 boys and 11 girls), aged 9 to 13 years, respiration was monitored during one night of sleep. No child had a significant history of breathing problems during sleep. Sleep was recorded using standard techniques (electroencephalography, electrooculography, electromyography), and respiration was measured with nasal thermistors and abdominal or thoracic strain gauges. Respiratory pauses (five seconds or longer) were determined for all sleep stages. Respiratory rate was scored only in the first and last sleep cycles and during ten waking minutes before sleep onset. Respiratory rate was significantly affected by wakefulness or stage of sleep: highest in wakefulness and stage 1, lowest in stage 2 of the last sleep cycle. Regularity of respiratory rate showed a similar effect. Variance of respiratory rate was significantly lower in girls than boys. Respiratory pauses during sleep were seen in every child, ranging from 3 to 40 pauses per night (average, 17.2 for boys and 18.0 for girls). Significantly greater numbers of pauses per minute were seen in stage 1 and rapid eye movement (REM) sleep than in stages 2, 3 and 4. The longest respiratory pause was 25 seconds. The conclusion is made that a small number of respiratory pauses during sleep are normal in children of this age.  相似文献   

19.
The hypocretin (orexin) system is involved in sleep/wake regulation, and antagonists of both hypocretin receptor type 1 (HCRTR1) and/or HCRTR2 are considered to be potential hypnotic medications. It is currently unclear whether blockade of either or both receptors is more effective for promoting sleep with minimal side effects. Accordingly, we compared the properties of selective HCRTR1 (SB-408124 and SB-334867) and HCRTR2 (EMPA) antagonists with that of the dual HCRTR1/R2 antagonist almorexant in the rat. All 4 antagonists bound to their respective receptors with high affinity and selectivity in vitro. Since in vivo pharmacokinetic experiments revealed poor brain penetration for SB-408124, SB-334867 was selected for subsequent in vivo studies. When injected in the mid-active phase, SB-334867 produced small increases in rapid-eye-movement (REM) and non-REM (NR) sleep. EMPA produced a significant increase in NR only at the highest dose studied. In contrast, almorexant decreased NR latency and increased both NR and REM proportionally throughout the subsequent 6 h without rebound wakefulness. The increased NR was due to a greater number of NR bouts; NR bout duration was unchanged. At the highest dose tested (100 mg/kg), almorexant fragmented sleep architecture by increasing the number of waking and REM bouts. No evidence of cataplexy was observed. HCRTR1 occupancy by almorexant declined 4-6 h post-administration while HCRTR2 occupancy was still elevated after 12 h, revealing a complex relationship between occupancy of HCRT receptors and sleep promotion. We conclude that dual HCRTR1/R2 blockade is more effective in promoting sleep than blockade of either HCRTR alone. In contrast to GABA receptor agonists which induce sleep by generalized inhibition, HCRTR antagonists seem to facilitate sleep by reducing waking "drive".  相似文献   

20.
John J  Wu MF  Boehmer LN  Siegel JM 《Neuron》2004,42(4):619-634
Noradrenergic, serotonergic, and histaminergic neurons are continuously active during waking, reduce discharge during NREM sleep, and cease discharge during REM sleep. Cataplexy, a symptom associated with narcolepsy, is a waking state in which muscle tone is lost, as it is in REM sleep, while environmental awareness continues, as in alert waking. In prior work, we reported that, during cataplexy, noradrenergic neurons cease discharge, and serotonergic neurons greatly reduce activity. We now report that, in contrast to these other monoaminergic "REM-off" cell groups, histamine neurons are active in cataplexy at a level similar to or greater than that in quiet waking. We hypothesize that the activity of histamine cells is linked to the maintenance of waking, in contrast to activity in noradrenergic and serotonergic neurons, which is more tightly coupled to the maintenance of muscle tone in waking and its loss in REM sleep and cataplexy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号