首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of changes in sodium and osmolarity on renin secretion has been studied in the isolated perfused rat kidney. Perfusion with low sodium buffer (110 mM/l) produced a significant increase in renin secretion compared with control experiments (Na+:135 mM/l). Since the presence of tubules seems necessary for such an effect to take place, it suggests that the high renin secretion stimulated by a low sodium buffer centers in the Macula densa. Perfusion with high sodium buffer (170 mM/l; osmolarity 350 mOs/l) induces a stimulation on renin release. However, a greater rise in renin is achieved in control experiments if choline chloride increases the osmolarity from 300 to 350 mOs/l. All this suggests that high sodium buffer, independently of its osmotic effect, has an inhibitory role on renin release.  相似文献   

2.
Calcium (Ca) is an inhibitory second messenger in renin secretion, and it has been proposed that some first messengers, such as angiotensin II (A-II), antidiuretic hormone (ADH), and N6-cyclohexyladenosine (CHA), increase Ca and thereby inhibit renin secretion by mobilizing Ca from intracellular sequestration sites. The present experiments were designed to test this proposal by using dantrolene, an antagonist of intracellular Ca mobilization. Dantrolene stimulated renin secretion by rat renal cortical slices in a concentration dependent manner; at 0.0, 0.1, and 0.5 mM dantrolene, secretory rates were 8.1 +/- 0.6, 9.4 +/- 0.6 (p less than 0.05), and 14.9 +/- 1.2 (p less than 0.0001) GU/g x hr, respectively. These results could be interpreted to mean that Ca mobilization is occurring at a finite rate during the basal state, and that by antagonizing this process, dantrolene lowers intracellular Ca and thereby stimulates renin secretion. However, 0.1 mM dantrolene failed to antagonize the inhibitory effects on renin secretion of A-II, ADH, and CHA, and only CHA-induced inhibition of renin secretion was antagonized by 0.5 mM dantrolene. We conclude that if A-II, ADH, and CHA inhibit renin secretion by mobilizing Ca from an intracellular storage site, then the site is insensitive to dantrolene.  相似文献   

3.
These experiments were designed to elucidate which of two second messengers (cyclic 3',5' adenosine monophosphate [c-AMP]; intracellular calcium [Cai]) was more closely related to the renin secretory process. The rat renal cortical slice preparation was used. Agents which previously were shown to inhibit basal renin secretion by increasing Cai (ouabain, vanadate, angiotensin II, antidiuretic hormone, and 60 mM K) antagonized and/or blocked isoproterenol-stimulated secretion, which is thought to be mediated by adenylate cyclase activation and increased levels of c-AMP. The stimulatory effect of dibutyryl c-AMP was antagonized and/or blocked by the same agents which antagonized and/or blocked isoproterenol-stimulated secretion. Thus, the inhibitory effects of these agents on isoproterenol-stimulated secretion cannot be explained by a Ca-induced decrease in c-AMP production. Secretory rate was stimulated by a potent phosphodiesterase inhibitor (3-isobutyl-1-methylxanthine). A combination of this and dibutyryl c-AMP produced even greater stimulation. Ouabain blocked the stimulatory effect of this combination. These results are not consistent with an invariant direct relationship between c-AMP and renin secretory rate, but are consistent with an inverse relationship between Ca; and renin secretion. Further, they are consistent with the hypothesis that in isoproterenol-stimulated renin secretion. c-AMP is the second and Cai the third or the final messenger.  相似文献   

4.
There is evidence that three inhibitors of Na,K-ATPase activity--ouabain, K-free extracellular fluid, and vanadate--inhibit renin secretion by increasing Ca2+ concentration in juxtaglomerular cells, but in the case of vanadate, it is uncertain whether the increase in Ca2+ is due to a decrease in Ca2+ efflux (inhibition of Ca-ATPase activity, or inhibition of Na,K-ATPase activity, followed by an increase in intracellular Na+ and a decrease in Na-Ca exchange) or to an increase in Ca2+ influx through potential operated Ca channels (inhibition of electrogenic Na,K transport, followed by membrane depolarization and activation of Ca channels). In the present experiments, the rat renal cortical slice preparation was used to compare and contrast the effects of ouabain, of K-free fluid, and of vanadate on renin secretion, in the absence and presence of methoxyverapamil, a Ca channel blocker. Basal renin secretory rate averaged 7.7 +/- 0.3 GU/g/60 min, and secretory rate was reduced to nearly zero by 1 mM ouabain, by K-free fluid, by 0.5 mM vanadate, and by K-depolarization (increasing extracellular K+ to 60 mM). Although 0.5 microM methoxyverapamil completely blocked the inhibitory effect of K-depolarization, it failed to antagonize the inhibitory effects of ouabain, of K-free fluid, and of vanadate. A concentration of methoxyverapamil two hundred times higher (100 microM) completely blocked the inhibitory effects of vanadate, but still failed to antagonize the effects of ouabain and of K-free fluid. Collectively, these observations demonstrate that vanadate-induced inhibition of renin secretion cannot be attributed entirely to Na,K-ATPase inhibition, since in the presence of methoxyverapamil, the effect of vanadate differed from the effects of either ouabain (a specific Na,K-ATPase inhibitor) or K-free fluid. Moreover, it cannot be attributed entirely to a depolarization-induced influx of Ca2+ through potential-operated Ca channels, since methoxyverapamil antagonized K-depolarization-induced inhibition of renin secretion much more effectively than it antagonized vanadate-induced inhibition.  相似文献   

5.
Effects of atrial natriuretic peptide (ANP) on renin release in isolated rat glomeruli were investigated. ANP suppressed renin release by 25% at 5 x 10(-8) M when glomeruli were incubated in a medium containing 1.26 mM calcium (p = 0.0019). When glomeruli were incubated in a calcium free medium containing 2 mM EGTA, ANP suppressed stimulated renin release significantly at 5 x 10(-8) and 5 x 10(-9) M by 25% (p = 0.0204, and p = 0.0101, respectively). These results indicate that ANP suppresses renin release in a dose dependent manner, probably through a calcium independent process.  相似文献   

6.
The purpose of these experiments was to characterize the effects of diltiazem on renin secretion from rat renal cortical slices. Incubation of slices in 60 versus 4 mM K medium almost completely abolished renin secretion. Diltiazem antagonized the inhibitory effect in a concentration-dependent manner but had no effect on secretion of slices incubated in 4 mM K medium. Lowering extracellular Ca enhanced the efficacy of diltiazem. These observations demonstrate that Ca influx through voltage-sensitive Ca channels mediates the inhibitory effect of depolarization and further demonstrate that such channels are not open in the basal state of this preparation. In the presence of a concentration of diltiazem which blocked the inhibitory effects of depolarization, both angiotensin II and antidiuretic hormone (ADH) still inhibited secretion. Therefore, both these peptides inhibit secretion by mechanisms which are independent of the voltage-sensitive Ca channels. These observations confirm and extend previous observations suggesting that Ca plays an inhibitory coupling role in the control of renin secretion.  相似文献   

7.
Pancreatic B-cell calcium as histochemically detectable with glyoxal bis (2-hydroxyanil) = GBHA was studied in isolated islets of fed rats. GBHA has previously been shown by us to detect an ionized or readily ionizable Ca-fraction (GBHA-Ca). In the presence of Ca++ (2.5 mM), high glucose (15 mM) induced a rapid decrease (30%) of islet GBHA-Ca followed by a rise between 30 and 60 min to levels above the initial value. At low glucose (0 or 2.5 mM) GBHA-Ca showed a slight and gradual decline under these conditions. Omission of Ca++ at low glucose rapidly decreased (30%) islet GBHA-Ca. This decrease was markedly inhibited by high glucose, although glucose did not induce insulin secretion under these conditions. Preincubation in the absence of Ca++ (15 min) depleted islet GBHA-Ca, but partial restoration occurred during subsequent incubation with Ca++ at low glucose. By contrast, high glucose completely restored GBHA-Ca within 5 min, followed by a decline and a subsequent rise. Reintroduction of Ca++ also rapidly restored the glucose-induced insulin secretion. These results indicate that islet GBHA-Ca represents a mobile Ca-fraction which is dependent on extracellular Ca++ and which responds very rapidly to glucose stimulation. It is suggested that changes of GBHA-Ca in the B-cells may reflect changes in the Ca pool involved in the insulin secretory mechanism.  相似文献   

8.
Carbon monoxide effects on calcium levels in vascular smooth muscle   总被引:4,自引:0,他引:4  
H Lin  J J McGrath 《Life sciences》1988,43(22):1813-1816
Previously we showed that carbon monoxide (CO) relaxes vascular smooth muscle in the working heart and thoracic aorta preparations perfused with hemoglobin-free, Krebs-Henseleit (KH) solution. The CO-induced relaxation was not caused by hypoxia, nor was it mediated by adrenergic influences, adenosine, or prostaglandins. In these studies the effect of CO on calcium (Ca++) concentrations in vascular smooth muscle was determined using 45Ca as a tracer. Isolated rat thoracic aorta segments were incubated with 45Ca and gassed with O2, N2, or CO for 60 min. Verapamil was used to verify the effectiveness of the test system. Ca++ concentrations were 488 +/- 35 and 515 +/- 26 mM/g tissue (X +/- SE) in aortic rings gassed with O2 and N2, respectively. CO reduced Ca++ concentrations significantly (P less than 0.01) by 29% to 369 +/- 18 mM/g tissue. Verapamil treatment reduced Ca++ concentrations by 40% to 314 +/- 23 mM/g tissue. These results suggest that CO relaxes vascular smooth muscle and dilates blood vessels by decreasing Ca++ concentrations in vascular smooth muscle.  相似文献   

9.
Depolarizing response of rat parathyroid cells to divalent cations   总被引:2,自引:0,他引:2       下载免费PDF全文
Membrane potentials were recorded from rat parathyroid glands continuously perfused in vitro. At 1.5 mM external Ca++, the resting potential averages -73 +/- 5 mV (mean +/- SD, n = 66). On exposure to 2.5 mM Ca++, the cells depolarize reversibly to a potential of -34 +/- 8 mV (mean +/- SD). Depolarization to this value is complete in approximately 2-4 min, and repolarization on return to 1.5 mM Ca++ takes about the same time. The depolarizing action of high Ca++ is mimicked by all divalent cations tested, with the following order of effectiveness: Ca++ greater than Sr++ greater than Mg++ greater than Ba++ for alkali-earth metals, and Ca++ greater than Cd++ greater than Mn++ greater than Co++ greater than Zn++ for transition metals. Input resistance in 1.5 mM Ca++ was 24.35 +/- 14 M omega (mean +/- SD) and increased by an average factor of 2.43 +/- 0.8 after switching to 2.5 mM Ca++. The low value of input resistance suggests that cells are coupled by low-resistance junctions. The resting potential in low Ca++ is quite insensitive to removal of external Na+ or Cl-, but very sensitive to changes in external K+. Cells depolarize by 61 mV for a 10- fold increase in external K+. In high Ca++, membrane potential is less sensitive to an increase in external K+ and is unchanged by increasing K+ from 5 to 25 mM. Depolarization evoked by high Ca++ may be slowed, but is unchanged in amplitude by removal of external Na+ or Cl-. Organic (D600) and inorganic (Co++, Cd++, and Mn++) blockers of the Ca++ channels do not interfere with the electrical response to Ca++ changes. Our results show remarkable parallels to previous observations on the control of parathormone (PTH) release by Ca++. They suggest an association between membrane voltage and secretion that is very unusual: parathyroid cells secrete when fully polarized, and secrete less when depolarized. The extraordinary sensitivity of parathyroid cells to divalent cations leads us to hypothesize the existence in their membranes of a divalent cation receptor that controls membrane permeability (possibly to K+) and PTH secretion.  相似文献   

10.
We evaluated changes in cytosolic calcium concentration (Ca++) and steroidogenesis in rat adrenal glomerulosa cells (GC) stimulated with potassium (K+) or angiotensin II (AII). Cytosolic Ca++ concentration was determined using the Ca++-sensitive, fluorescent dye QUIN 2. Raising extracellular K+ increased cytosolic Ca++ from 267 +/- 23 nM at 3.7 mM K+ to a maximum of 377 +/- 40 nM at 8.7 mM K+ (p less than 0.01, N = 23). AII also increased cytosolic Ca++ from 238 +/- 20 nM to a maximum of 427 +/- 42 nM at 10(-7) M (p less than 0.01, N = 16). In parallel studies, K+ and AII stimulated aldosterone secretion from QUIN 2-loaded GC at concentrations similar to those which raised cytosolic Ca++. QUIN 2-loaded cells were as responsive steroidogenically as unloaded cells and showed trypan blue exclusion of 98% suggesting that QUIN 2 did not compromise cellular viability. These results provide direct support for a role of cytosolic Ca++ as a second messenger during stimulation of aldosterone secretion by both K+ and AII.  相似文献   

11.
The roles of calcium in cell signaling consequent to chromatophorotropin action and as an activator of mechanochemical transport proteins responsible for pigment granule translocation were investigated in the red ovarian chromatosomes of the freshwater shrimp Macrobrachium olfersii. Chromatosomes were perfused with known concentrations of free Ca++ (10(-3) to 10(-9) M) prepared in Mg(++)-EGTA-buffered physiological saline after selectively permeabilizing with 25 microM calcium ionophore A23187 or with 10(-8) M red pigment concentrating hormone (RPCH). The degree of pigment aggregation and the translocation velocity of the leading edges of the pigment mass were recorded in individual chromatosomes during aggregation induced by RPCH or A23187 and dispersion induced by low Ca++. Aggregation is Ca++ dependent, showing a dual extracellular and intracellular requirement. After perfusion with reduced Ca++ (10(-4) to 10(-9) M), RPCH triggers partial aggregation (approximately 65%), although the maximum translocation velocities (approximately 16.5 microns/min) and velocity profiles are unaffected. After aggregation induced at or below 10(-5) M Ca++, spontaneous pigment dispersion ensues, suggesting a Ca++ requirement for RPCH coupling to its receptor, or a concentration-dependent, Ca(++)-induced Ca(++)-release mechanism. The Ca(++)-channel blockers Mn++ (5 mM) and verapamil (50 microM) have no effect on RPCH-triggered aggregation. An intracellular Ca++ requirement for aggregation was demonstrated in chromatosomes in which the Ca++ gradient across the cell membrane was dissipated with A23187. At free [Ca++] above 10(-3) M, aggregation is complete; at 10(-4) M, aggregation is partial, followed by spontaneous dispersion; below 10(-5) M Ca++, pigments do not aggregate but disperse slightly. Aggregation velocities diminish from 11.6 +/- 1.2 microns/min at 5.5 mM Ca++ to 7.4 +/- 1.3 microns/min at 10(-4) M Ca++. Half-maximum aggregation occurs at 3.2 x 10(-5) M Ca++ and half-maximum translocation velocity at 4.8 x 10(-5) M Ca++. Pigment redispersion after 5.5 mM Ca(++)-A23187-induced aggregation is initiated by reducing extracellular Ca++: slight dispersion begins at 10(-7) M, complete dispersion being attained at 10(-9) M Ca++. Dispersion velocities increase from 0.6 +/- 0.2 to 3.1 +/- 0.5 microns/min. Half-maximum dispersion occurs at 7.6 x 10(-9) M Ca++ and half-maximum translocation velocity at 2.9 x 10(-9) M Ca++. These data reveal an extracellular and an intracellular Ca++ requirement for RPCH action, and demonstrate that the centripetal or centrifugal direction of pigment movement, the translocation velocity, and the degree of pigment aggregation or dispersion attained are calcium-dependent properties of the granule translocation apparatus.  相似文献   

12.
These experiments were designed to test the hypothesis that cyclosporine A (CSA) inhibits renin secretion and stimulates renal prostaglandin E2 (PGE2) release in vitro. In rat renal cortical slices incubated at 37 degrees C in a buffered and oxygenated physiological saline solution containing 4 mM KCl, CSA concentrations ranging from 1 to 30 microM had no significant effect on renin secretion. Furthermore, partial depolarization of the cells, produced by increasing extracellular KCl concentration to 20 mM, failed to reveal any latent inhibitory or stimulatory effects of CSA on renin secretion. On the other hand, PGE2 release was significantly inhibited by CSA over the same range of concentrations. This inhibitory effect might be explained by the previous findings of others, that CSA inhibits phospholipase A2 activity, thereby decreasing arachidonic acid production, the rate-limiting step in PG synthesis. In conclusion, CSA inhibits PGE2 release but fails to affect renin secretion in vitro. These results suggest that the occasional effects of CSA on renin secretion in intact animals must be attributable to indirect and/or chronic effects.  相似文献   

13.
Mammalian cells in culture, transfected with human renin gene, can provide a useful tool for studying renin biosynthesis and secretion. We transfected fibroblast cells (mouse L929 and Chinese hamster ovary cells) and pituitary tumor cells (mouse AtT-20) with the human renin gene and a selectable plasmid (pSV2Neo). Transfected fibroblasts synthesize prorenin only. Prorenin is secreted by fibroblasts constitutively and the secretion is not influenced by 8-bromo-cAMP. On the other hand, transfected AtT-20 cells synthesized both prorenin and mature active renin. Transfected AtT-20 cells release prorenin by constitutive secretion but mature renin is secreted by a regulated mechanism since the secretion of the former is not influenced by 8-bromo-cAMP but the release of the latter is significantly stimulated. Our studies demonstrate that human renin may be secreted by at least two cellular pathways: prorenin by a constitutive pathway and mature renin by a regulated pathway. These transfected cells may provide useful models for studies of human renin synthesis, processing, and secretion.  相似文献   

14.
Calcium distribution in Amoeba proteus   总被引:2,自引:1,他引:1  
A preliminary investigation of the distribution of cellular calcium in Amoeba proteus was undertaken. Total cellular calcium under control conditions was found to be 4.59 mmol/kg of cells. When the external Ca++ concentration is increased from the control level of 0.03 to 20 mM, a net Ca++ influx results with a new steady-state cellular calcium level being achieved in integral of 3 h. At steady state the amount of calcium per unit weight of cells is higher than the amount of calcium per unit weight of external solution when the external concentration of Ca++ is below 10 mM. At external Ca++ concentrations above this level, total cellular calcium approaches the medium level of Ca++. Steady-state calcium exchange in Amoeba proteus was determined with 45Ca. There is an immediate and rapid exchange of integral of 0.84 mmol/kg of cells or 18% of the total cellular calcium with the labelled Ca++. Following this initial exchange, there was very little if any further exchange observed. Most of this exchanged calcium could be eliminated from the cell with 1 mM La+++, suggesting that the exchanged calcium is associated with the surface of the cell. Increase in either the external Ca++ concentration of pH raise the amount of exchangeable calcium associated with the cell. Calcium may be associated with the cell surface as a co-ion in the diffuse double layer or bound to fixed negative sites on the surface of the cell. If Ca++-binding sites do exist on the cell surface, there may be more than one type and they may have different dissociation constants. The cytoplasmic Ca++ ion activity is probably maintained at very low levels.  相似文献   

15.
Catecholamine-stimulated salivary fluid secretion (in vitro) by ixodid ticks is reduced by deletion or lowering the concentration of exogenous bathing medium Ca++. The Ca++ antagonist, verapamil, reversibly inhibits dopamine-stimulated secretion. Ionophore A-23187 is unable to induce glands to secrete. Studies in which labeled and unlabeled Ca++ flux were measured indicate that catecholamines induce release of calcium from intracellular stores during secretion. Cyclic AMP/theophylline-stimulated secretion is inhibited by verapamil, and the exclusion of calcium from the support medium. It is concluded that the primary catecholamine stimulus induces cyclic AMP formation and mobilization of Ca++ (intra- and extracellular). Cyclic AMP and calcium are thought to interact to control secretion within the fluid transporting cells of types II and III alveoli.  相似文献   

16.
Acetylglyceryl ether phosphorylcholine (AGEPC), commonly known as platelet activating factor, was found to strongly inhibit renin secretion in cultures rich in juxtaglomerular cells. This inhibitory action of AGEPC was accompanied by an enhanced calcium permeability of the cell membrane as evaluated from measurements of the uptake of 45Ca. Simultaneous addition of the calcium channel blocker verapamil abolished the effects of AGEPC on both renin secretion and calcium permeability. Furthermore, addition of AGEPC to the cell cultures led to a decrease of 32P-labeled phosphatidylinositol 4,5-bisphosphate and to an increase in 3H-labeled diacylglycerol, indicating an activation of phospholipase C by AGEPC.  相似文献   

17.
The aim of the study was to assess the involvement of the adenylate cyclase system in calcitonin (CT) secretion from thyroidal C-cells. The cAMP analogues Br-cAMP (10(-6) and 10(-4) mol/l) and DB-cAMP (10(-4) mol/l) and the activators of adenylate cyclase cholera toxin (0.1 microgram/ml and 5 micrograms/ml) and forskolin (10(-7) mol/l and 10(-5) mol/l) were infused for 6 min periods in perfused dog thyroid lobes. CT was measured in thyroid effluent by radioimmunoassay. Br-cAMP and cholera toxin did not alter basal CT secretion. DB-cAMP had a minimal stimulatory effect and forskolin 10(-5) mol/l a moderate stimulatory effect. This was much less than the effect of increasing perfusate Ca++ from 1.5 to 2.0 mmol/l. 10(-4) mol/l Br-cAMP increased the response to Ca++ with approximately 50 per cent. These results suggest that the activity of the adenylate cyclase system of the C-cells by itself is of little importance for CT secretion, but that it may have a role as modulator of the response to Ca++.  相似文献   

18.
In this review, present knowledge of the cellular regulation of renin secretion from renal juxtaglomerular cells has been considered. It appears that calcium is the dominant intracellular regulator of renin secretion and that it acts by inhibiting exocytosis. How calcium exerts this effect is not yet clear, but contraction of myofilaments, opening of chloride channels, and activation of PLA2 could be involved. C-kinase activation and cGMP seem to have an additional inhibitory effect on renin secretion, both in a calcium-dependent fashion. cAMP, on the other hand, stimulates secretion, presumably by decreasing intracellular calcium activity. GTP-binding proteins and electrical properties also seem to be involved in the control of renin secretion. Present knowledge suggests that exocytosis in renal juxtaglomerular cells is regulated by mechanisms which differ from those of other secretory cells, where calcium and C kinase stimulate exocytosis. Revealing the reason for this unusual behavior remains a thrilling task for future research.  相似文献   

19.
The extracellular free [Ca++] in frog ventricular muscle strips was monitored using single-barrel calcium ion-selective microelectrodes. During trains of repetitive stimulation, a heart rate-dependent, sustained fall (depletion) of the extracellular free [Ca++] occurs, which is most likely a consequence of net Ca++ influx into ventricular cells. The magnitude of the [Ca++]0 depletion increases for higher Ringer's solution [Ca++], and is reversibly blocked by manganese ion. Prolonged repetitive field stimulation (20-30 min) activates additional cellular Ca++ efflux, which can balance the additional Ca++ influx caused by stimulation, resulting in abolition of extratrabecular [Ca++]0 depletion in 20-30 min, and hence zero net transmembrane Ca++ flux at steady state. In the poststimulation period of quiescence, cellular Ca++ efflux persists and causes an elevation (accumulation) of the extracellular free [Ca++]. From these [Ca++]0 depletions, quantitative estimates for the net transmembrane Ca++ flux were derived using an analytical solution to the diffusion equation. In the highest Ringer's solution [Ca++] used (1 mM) the calculated net increase of the total intracellular calcium per beat was 6.5 +/- 1.4 mumol/l of intracellular space. This corresponds to an average net transmembrane Ca++ influx of 0.81 +/- 0.17 pmol/cm2/s during the 800-ms action potential. In lower bath [Ca++] the net transmembrane [Ca++] flux was proportionately reduced.  相似文献   

20.
Summary Most renin-positive cells of the preglomerular arteriole are intermediate in morphological appearence between smooth muscle cells and epithelioid cells. Intermediate cells contain, in addition to secretory granules, contractile proteins arranged as a sublemmal network. The paradoxical (inhibitory) role of calcium in renin secretion is explained, on the basis of these findings, by an increased tone of the sublemmal network; this might impair the preexocytotic access of renin granules to the cell membrane.This study was supported by the Deutsche Forschungsgemeinschaft within the Forschergruppe Niere, Heidelberg  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号