首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autophagy, a major degradative pathway of the lysosomal system, has been implicated in various neurodegenerative diseases. During autophagic process, organelles and proteins are encapsulated in double-membrane vacuoles called autophagosomes, which finally fuse with lysosomes to form autolysosomes where incorporated materials are degraded. Despite extensive investigations in identifying the molecular components that participate in autophagy, little is known about routes and dynamics of autophagosomes/autolysosomes in the neurites of live cells. Hence, in the present study, we aim to investigate the biophysical characteristics of neuritic transport of autolysosomes in PC12 cells. Our study demonstrated that monomeric red fluorescence protein-light chain 3 (mRFP-LC3)-labeled autolysosomes were motile and moved along PC12 neurites in both anterograde and retrograde directions with a bias towards the nucleus during starvation. By using image processing, quantitative analysis was made to show the dynamic biophysical characteristics of these vesicles. The average velocity of anterograde and retrograde transport was 0.33±0.04μm/s and 0.39±0.05μm/s, respectively. Disruption of microtubules by nocodazole completely abolished their movements, suggesting the neuritic transport of autolysosomes depends on microtubules. The directional transport of autolysosomes was also affected by blockage of motor protein activity. Altogether, our study documents many aspects of the highly dynamic movement of autolysosome in PC12 neurites. Autolysosomes transported in a bi-directional manner along microtubules by dynein and kinesin motor proteins. These findings provide valuable insight into understanding the mechanism and control of autophagy in neurites under physiological and pathological conditions.  相似文献   

2.
Accumulating evidence suggests that axon and dendrite (or neurite) degeneration both in vivo and in vitro requires self-destructive programs independent of cell death programs to segregate neurite degeneration from cell soma demise. This review will deal with the mechanisms of neurite degeneration caused by several experimental paradigms including trophic factor deprivation and Wallerian degeneration as well as those under pathological conditions. The involvement of autophagy and mitochondrial dysfunction is emphasized in these mechanisms. The mechanisms through which protective agents including the Wld(s) protein rescue neurites from degeneration or fail to do so will be discussed.  相似文献   

3.
Spinal muscular atrophy (SMA) is a genetic disorder characterized by degeneration of spinal cord motoneurons (MNs), resulting in muscular atrophy and weakness. SMA is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene and decreased SMN protein. SMN is ubiquitously expressed and has a general role in the assembly of small nuclear ribonucleoproteins and pre-mRNA splicing requirements. SMN reduction causes neurite degeneration and cell death without classical apoptotic features, but the direct events leading to SMN degeneration in SMA are still unknown. Autophagy is a conserved lysosomal protein degradation pathway whose precise roles in neurodegenerative diseases remain largely unknown. In particular, it is unclear whether autophagosome accumulation is protective or destructive, but the accumulation of autophagosomes in the neuritic beadings observed in several neurite degeneration models suggests a close relationship between the autophagic process and neurite collapse. In the present work, we describe an increase in the levels of the autophagy markers including autophagosomes, Beclin1 and light chain (LC)3-II proteins in cultured mouse spinal cord MNs from two SMA cellular models, suggesting an upregulation of the autophagy process in Smn (murine survival motor neuron protein)-reduced MNs. Overexpression of Bcl-xL counteracts LC3-II increase, contributing to the hypothesis that the protective role of Bcl-xL observed in some SMA models may be mediated by its role in autophagy inhibition. Our in vitro experimental data indicate an upregulation in the autophagy process and autophagosome accumulation in the pathogenesis of SMA, thus providing a valuable clue in understanding the mechanisms of axonal degeneration and a possible therapeutic target in the treatment of SMA.  相似文献   

4.
The biochemical mechanisms involved in neurite outgrowth in response to nerve growth factor (NGF) have yet to be completely resolved. Several recent studies have demonstrated that protein kinase activity plays a critical role in neurite outgrowth. However, little information exists about the role of protein phosphatases in the process. In the present study, okadaic acid, a phosphatase inhibitor (specific for types 2A and 1) and tumor promoter, was used to investigate the role of protein phosphatases in neurite outgrowth in PC12 cells. PC12 cells cultured in the presence of 50 ng/ml of NGF started to extend neurites after 1 day. After 3 days, 20-25% of the cells had neurites. Okadaic acid inhibited the rate of neurite outgrowth elicited by NGF with an IC50 of approximately 7 nM. This inhibition was rapidly reversed after washout of okadaic acid. Okadaic acid also enhanced the neurite degeneration of NGF-primed PC12 cells, indicating that continual phosphatase activity is required to maintain neurites. Taken together, these results reveal the presence of an okadaic acid-sensitive pathway in neurite outgrowth and imply that protein phosphatase plays a positive role in regulating the neuritogenic effects of NGE.  相似文献   

5.
6.
Sites of Tubulin Polymerization in PC 12 Cells   总被引:2,自引:0,他引:2  
The site at which tubulin enters into polymer in the neuritic process is a very important datum in terms of our understanding of the mechanism of transport of the microtubular cytoskeleton out the axon. If the form of tubulin being transported out the axon is the microtubule, then assembly of tubulin into microtubules should occur at or near the cell body; if, however, the form of tubulin transported is free tubulin dimer, then assembly can occur at any free microtubule end out the neurite. We have injected a fluorescent analog of tubulin into differentiated PC 12 cells and used differential extraction protocols to extract free dimer but not microtubules. We have imaged these cells before and after extraction by low-light-level video fluorescence microscopy and have used image analysis to examine the sites of tubulin incorporation into polymer or other unextracted components as a function of time. We find that tubulin in the distal reaches of the neurite is found initially as monomer and that its appearance in the unextracted component occurs later. This pattern of appearance of fluorescent tubulin initially in the soluble fraction and later in the unextractable component is qualitatively similar to that reported by other workers for biotinylated tubulin, but we see a larger gap between the rates of appearance in soluble fraction and in polymer. Quantitative analysis of fluorescence intensities in the two compartments with distance out the neurite reveals substantial variation between different neurites: In some neurites, the pattern of variation of unextracted/total tubulin suggests that tubulin enters into the unextracted component primarily near the cell body and that this unextracted component moves out the neurite with time, and in other neurites it suggest that monomer adds into microtubule ends staggered out the neurite. In no case do we see a pattern suggesting that distal addition predominates. These analyses of fluorescence intensities in extracted and unextracted neurites suggest that both transport of polymerized microtubules and monomer addition onto staggered microtubule ends occur in PC12 neurites and that in individual neurites one or the other of these two behaviors may predominate.  相似文献   

7.
The rat pheochromocytoma PC12 cell line has been an invaluable model system for studying neuritogenesis. Nerve growth factor (NGF) elicits multiple aspects of neurite outgrowth in PC12 cells. It is therefore difficult to dissect and assign an individual signaling pathway to each stage of neuritogenesis. We have recently reported the isolation of a variant PC12 cell line, PC12-N1 (N1), which spontaneously extends neuritic processes and exhibits an increased sensitivity to NGF. Here, we show that, under different culture conditions, the cells display three distinct phases of neuritogenesis consisting of neurite initiation, rapid neurite elongation, and a maturation process characterized by the thickening of neurites and increase in cell soma sizes. We demonstrate that signaling through ERK, but not p38 or JNK, is required for the spontaneous neurite initiation and extension. Treatment with low concentrations of NGF induces rapid neurite elongation without affecting neurite branching and cell soma sizes. Such a rapid neurite outgrowth can be blocked by the inhibition of ERK, but not JNK, activities. In the presence of higher concentrations of NGF, the N1 cells undergo further differentiation with many characteristics of mature neurons in culture, e.g. larger cell soma and numerous branches/connections. This process can be completely blocked by inhibiting ERK or JNK activities using specific inhibitors. These results suggest that ERK and JNK signals play different roles in neuritogenesis, and that JNK activity is essential in the late stages of neuritogenesis. Furthermore, our results demonstrate that signaling dosage is important in the activation of a specific pathway, leading to distinctive biological outcomes.  相似文献   

8.
Cisplatin is the most effective and neurotoxic platinum chemotherapeutic agent. It induces a peripheral neuropathy characterized by distal axonal degeneration that might progress to degeneration of cell bodies and apoptosis. Most symptoms occur nearby distal axonal branches and axonal degeneration might induce peripheral neuropathy regardless neuronal apoptosis. The toxic mechanism of cisplatin has been mainly associated with DNA damage, but cisplatin might also affect neurite outgrowth. Nevertheless, the neurotoxic mechanism of cisplatin remains unclear. We investigated the early effects of cisplatin on axonal plasticity by using non-cytotoxic concentrations of cisplatin and PC12 cells as a model of neurite outgrowth and differentiation. PC12 cells express NGF-receptors (trkA) and respond to NGF by forming neurites, branches and synaptic vesicles. For comparison, we used a neuronal model (SH-SY5Y cells) that does not express trkA nor responds to NGF. Cisplatin did not change NGF expression in PC12 cells and decreased neurite outgrowth in both models, suggesting a NGF/trkA independent mechanism. It also reduced axonal growth (GAP-43) and synaptic (synapsin I and synaptophysin) proteins in PC12 cells, without inducing mitochondrial damage or apoptosis. Therefore, cisplatin might affect axonal plasticity before DNA damage, NGF/trkA down-regulation, mitochondrial damage or neuronal apoptosis. This is the first study to show that neuroplasticity-related proteins might be early targets of the neurotoxic action of cisplatin and their role on cisplatin-induced peripheral neuropathy should be investigated in vivo.  相似文献   

9.
Neuritic retraction represents a prominent feature of the degenerative phenotype associated with mutations in leucine rich repeat kinase 2 (LRRK2) that are implicated in autosomal dominant and some cases of sporadic Parkinson's disease. Alterations in macroautophagy, the vacuolar catabolism of cytoplasmic constituents, have been described in Parkinson's disease. In this study, we utilized retinoic-acid differentiated SH-SY5Y cells to determine whether autophagy contributes to mutant LRRK2-associated neurite degeneration. Transfection of pre-differentiated SH-SY5Y cells with LRRK2 cDNA containing the common G2019S mutation resulted in significant decreases in neurite length, which were not observed in cells transfected with wild type LRRK2 or its kinase-dead K1906M mutation. G2019S LRRK2 transfected cells also exhibited striking increases in autophagic vacuoles in both neuritic and somatic compartments, as demonstrated by fluorescence and western blot analysis of the autophagy marker green fluorescent protein-tagged microtubule-associated protein Light Chain 3 and by transmission electron microscopy. RNA interference knockdown of LC3 or Atg7 , two essential components of the conserved autophagy machinery, reversed the effects of G2019S LRRK2 expression on neuronal process length, whereas rapamycin potentiated these effects. The mitogen activated protein kinase/extracellular signal regulated protein kinase (MAPK/ERK) kinase (MEK) inhibitor 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene (U0126) reduced LRRK2-induced neuritic autophagy and neurite shortening, implicating MAPK/ERK-related signaling. These results indicate an active role for autophagy in neurite remodeling induced by pathogenic mutation of LRRK2.  相似文献   

10.
Zhang Y  Ding J  Duan W  Fan W 《Bioelectromagnetics》2005,26(5):406-411
The influence of low frequency (50 Hz repetition rate) pulsed electromagnetic field (EMF) on PC12 cell neurite outgrowth in vitro was investigated in this study. We studied the percentage of neurite bearing cells, average length of neurites, and directivity of neurite outgrowth in PC12 cells cultured for 96 h in the presence of nerve growth factor (NGF). PC12 cells were exposed in one incubator to pulsed EMF at 1.36 mT (peak value) generated by a pair of Helmholtz coils, and the control samples were placed in another identical incubator. We found that the pulse duty cycle had significant effect on neurite outgrowth. Low (10%) pulse on-time significantly inhibited the percentage of neurite bearing cells, but at the same time increased the average length of neurites, while 100% on-time (DC) had exactly the opposite effects. Furthermore, we found that neurites were prone to extend along the direction of pulsed EMF with 10% pulse on-time. Our studies show that neurite outgrowth in PC12 cells is sensitive to the pulse duty and this sensitivity was associated with NGF concentration.  相似文献   

11.
The outgrowth of neurites from rat PC12 cells stimulated by combined treatment of nerve growth factor (NGF) with cAMP is significantly more rapid and extensive than the outgrowth induced by either factor alone. We have compared the responses of PC12 cells under three different growth conditions, NGF alone, cAMP alone, and combined treatment, with respect to surface morphology, rapidity of neurite outgrowth, and stability of neurite microtubules, to understand the synergistic action of NGF and cAMP on PC12. Surface events at early times in these growth conditions varied, suggesting divergent pathways of action of NGF and cAMP. This suggestion is strongly supported by the finding that cells exposed to saturating levels of dibutyryl cAMP without substantial neurite outgrowth initiated neurites within 5 min of NGF. This response has been adopted as a convenient assay for NGF. Neurites that regenerated in the three growth conditions showed marked differences in stability to treatments that depolymerize microtubules. The results indicate that microtubules in cells treated with both NGF and cAMP are significantly more stable than in either growth factor alone. We suggest that a shift of the assembly equilibrium favoring tubulin assembly is a necessary prerequisite for the initiation of neurites by PC12.  相似文献   

12.
The Rho family of small GTPases has been implicated in cytoskeletal reorganization and subsequent morphological changes in various cell types. Among them, Rac and Cdc42 have been shown to be involved in neurite outgrowth in neuronal cells. In this study, we examined the role of RhoG, another member of Rho family GTPases, in nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. Expression of wild-type RhoG in PC12 cells induced neurite outgrowth in the absence of NGF, and the morphology of wild-type RhoG-expressing cells was similar to that of NGF-differentiated cells. Constitutively active RhoG-transfected cells extended short neurites but developed large lamellipodial or filopodial structures at the tips of neurites. RhoG-induced neurite outgrowth was inhibited by coexpression with dominant-negative Rac1 or Cdc42. In addition, expression of constitutively active RhoG elevated endogenous Rac1 and Cdc42 activities. We also found that the NGF-induced neurite outgrowth was enhanced by expression of wild-type RhoG whereas expression of dominant-negative RhoG suppressed the neurite outgrowth. Furthermore, constitutively active Ras-induced neurite outgrowth was also suppressed by dominant-negative RhoG. Taken together, these results suggest that RhoG is a key regulator in NGF-induced neurite outgrowth, acting downstream of Ras and upstream of Rac1 and Cdc42 in PC12 cells.  相似文献   

13.
The rat pheochromocytoma cell line PC12 has been widely used as a model to study neuronal differentiation. PC12 cells give rise to neurites in response to basic fibroblast growth factor (bFGF). However, it is unclear whether bFGF promotes neurite outgrowth by inducing RhoA inactivation, and a mechanism for RhoA inactivation in PC12 cells in response to bFGF has not been reported. Lysophosphatidic acid (LPA) treatment and the expression of constitutively active (CA)‐RhoA (RhoA V14) impaired neurite formation in response to bFGF, while Tat‐C3 exoenzyme and the expression of dominant negative (DN)‐RhoA (RhoA N19) stimulated neurite outgrowth. GTP‐bound RhoA levels were reduced in response to bFGF, which suggests that the inactivation of RhoA is essential to neurite outgrowth in response to bFGF. To investigate the mechanism of RhoA inactivation, this study examined the roles of p190RhoGAP and Rap‐dependent RhoGAP (ARAP3). DN‐p190RhoGAP prevented neurite outgrowth, while WT‐p190RhoGAP and Src synergistically stimulated neurite outgrowth; these findings suggest that bFGF promotes the inactivation of RhoA and subsequent neurite outgrowth through p190RhoGAP and Src. Furthermore, DN‐Rap1 and DN‐ARAP3 reduced neurite formation in PC12 cells. These results suggest that RhoA is likely to be inactivated by p190RhoGAP and ARAP3 during neurite outgrowth in response to bFGF. J. Cell. Physiol. 224: 786–794, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
We have used monolayers of control 3T3 cells and 3T3 cells expressing transfected human neural cell adhesion molecule (NCAM) or chick N-cadherin as a culture substrate for PC12 cells. NCAM and N-cadherin in the monolayer directly promote neurite outgrowth from PC12 cells via a G-protein-dependent activation of neuronal calcium channels. In the present study we show that ganglioside GM1 does not directly activate this pathway in PC12 cells. However, the presence of GM1 (12.5-100 micrograms/ml) in the co-culture was associated with a potentiation of NCAM and N-cadherin-dependent neurite outgrowth. Treatment of PC12 cells with GM1 (100 micrograms/ml) for 90 min led to trypsin-stable increases in both beta-cholera toxin binding to PC12 cells and an enhanced neurite outgrowth response to N-cadherin. The ganglioside response could be fully inhibited by treatment with pertussis toxin. These data are consistent with exogenous gangliosides enhancing neuritic growth by promoting cell adhesion molecule-induced calcium influx into neurons.  相似文献   

15.
The effects of several kinds of microbial extracellular glycolipids on neurite initiation in PC12 cells were examined. Addition of mannosylerythritol lipid-A (MEL-A), MEL-B, and sophorose lipid (SL) to PC12 cells caused significant neurite outgrowth. Other glycolipids, such as polyol lipid (PL), rhamnose lipid (RL), succinoyl trehalose lipid-A (STL-A) and STL-B caused no neurite-initiation. MEL-A increased acetylcholine esterase (AChE) activity to an extent similar to nerve growth factor (NGF). However, MEL-A induced one or two long neurites from the cell body, while NGF induced many neurites. In addition, MEL-A-induced differentiation was transient, and after 48 h, percentage of cells with neurites started to decrease in contrast to neurons induced by NGF, which occurred in a time-dependent manner. MEL-A could induce neurite outgrowth after treatment of PC12 cells with an anti-NGF receptor antibody that obstructed NGF action. These results indicate that MEL-A and NGF induce differentiation of PC12 cells through different mechanisms. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
PC12 pheochromocytoma cells treated with nerve growth factor (NGF) for two weeks in spinner cultures quickly begin to form processes after plating on an appropriate substrate, while cells freshly exposed to NGF in monolayer culture initiate neurite outgrowth only after a lag period of several days. The present ultrastructural studies indicate that PC 12 cells treated with NGF in spinner cultures do not form neurites, but do form short extensions comparable to those which have been reported within the first two days of exposure to NGF in monolayer cultures. These extensions contain organelles believed to be required for locomotion and for transport of cytoskeletal and membrane components and neurotransmitters. They also form bulbous distensions in which numerous chromaffin-type granules accumulate. These findings suggest that NGF may affect cells in spinner cultures by promoting development or activation of axonal transport mechanisms, and that the existence of these mechanisms may contribute to the neurite outgrowth which the cells exhibit when plated. NGF-treated PC 12 cells in spinner cultures do not accumulate the agranular synaptic-like vesicles, which are typically found in comparably treated monolayer cultures and which have been hypothesized to be sites of acetylcholine storage. These and other data demonstrate that attachment to a substrate can selectively modulate the responses of PC 12 cells to NGF.  相似文献   

17.
Gicerin/CD146 is a cell adhesion molecule, which belongs to the immunoglobulin (Ig) superfamily. We have reported that it has a homophilic binding activity, which participates in the neurite extension from embryonic neurons. To elucidate how gicerin is involved in the neurite extension mechanism, we employed PC12 cells, which expresses gicerin/CD146. PC12 cells extend longer neurites by nerve growth factor (NGF) on gicerin substrate than on without gicerin substrate, which indicates that gicerin participates in neurite extension by NGF. We also found that the expression of gicerin in PC12 cells is induced by NGF. Over-expression of gicerin also promotes neurite extension by gicerin-gicerin homophilic interaction. These findings suggested that increase of gicerin expression by NGF promotes the gicerin-gicerin homophilic interaction resulting in the neurite extension.  相似文献   

18.
We investigated the effect ofnanoscale topography on neurite development in pheochromocytoma (PC12 cells) by culturing the cells on substrates having nanoscale pillars and pores with sizes comparable with filipodia. We found that cells on nanopillars and nanopores developed fewer and shorter neurites than cells on smooth substrates, and that cells on nanopores developed more and longer neurites than cells on nanopillars. These results suggest that PC12 cells were spatially aware of the difference in the nanoscale structures of the underlying substrates and responded differently in their neurite extension. This finding points to the possibility of using nanoscale topographic features to control neurite development in neurons.  相似文献   

19.
Minocycline, a semi-synthetic second-generation derivative of tetracycline, has been reported to exert neuroprotective effects both in animal models and in clinic trials of neurological diseases. In the present study, we first investigated the protective effects of minocycline on oxygen-glucose deprivation and reoxygenation-induced impairment of neurite outgrowth and its potential mechanism in the neuronal cell line, PC12 cells. We found that minocycline significantly increased cell viability, promoted neurite outgrowth and enhanced the expression of growth-associated protein-43 (GAP-43) in PC12 cells exposed to oxygen-glucose deprivation/reoxygenation injury. In addition, immunoblots revealed that minocycline reversed the overexpression of phosphorylated myosin light chain (MLC) and the suppression of activated extracellular signal-regulated kinase 1/2 (ERK1/2) caused by oxygen-glucose deprivation/reoxygenation injury. Moreover, the minocycline-induced neurite outgrowth was significantly blocked by Calyculin A (1 nM), an inhibitor of myosin light chain phosphatase (MLCP), but not by an ERK1/2 inhibitor (U0126; 10 μM). These findings suggested that minocycline activated the MLCP/MLC signaling pathway in PC12 cells after oxygen-glucose deprivation/reoxygenation injury, which resulted in the promotion of neurite outgrowth.  相似文献   

20.
Phosphatidylinositol-(3,4,5)-trisphosphate (PIP3), a product of phosphatidylinositol 3-kinase, is an important second messenger implicated in signal transduction and membrane transport. In hippocampal neurons, the accumulation of PIP3 at the tip of neurite initiates the axon specification and neuronal polarity formation. We show that guanylate kinase-associated kinesin (GAKIN), a kinesin-like motor protein, directly interacts with a PIP3-interacting protein, PIP3BP, and mediates the transport of PIP3-containing vesicles. Recombinant GAKIN and PIP3BP form a complex on synthetic liposomes containing PIP3 and support the motility of the liposomes along microtubules in vitro. In PC12 cells and cultured hippocampal neurons, transport activity of GAKIN contributes to the accumulation of PIP3 at the tip of neurites. In hippocampal neurons, altered accumulation of PIP3 by overexpression of GAKIN constructs led to the loss of the axonally differentiated neurites. Together, these results suggest that, in neurons, the GAKIN-PIP3BP complex transports PIP3 to the neurite ends and regulates neuronal polarity formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号