首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The current models for branchial acid excretion in fishes include Na(+)/H(+) exchange and the electrogenic excretion of H+ via H+-ATPase. The predominant route of acid excretion in some freshwater fishes is thought to be via the H+-ATPase/Na+ channel system. The euryhaline Fundulus heteroclitus may not fit this profile even when adapted to freshwater (FW). We hypothesize that the Na+/H+ exchanger (NHE) in this species may play a predominant role in acid-base regulation for both marine and FW adapted animals. Acidosis induced by ambient hypercapnia (1% CO2 in air), resulted in an increase in net H+ excretion to the water in F. heteroclitus pre-adapted to FW, brackish (isoosmotic; BW) and seawater (SW). Both FW and SW adapted mummichogs were tested for NHE protein expression using mammalian NHE antibodies, and we identified NHE-like immunoreactive proteins in gill membrane preparations from both groups. Hypercapnia induced a approximately three-fold elevation in gill NHE2-like protein in FW animals but SW adapted fish showed inconsistent NHE3-like protein expression. There was no change in NHE-1 levels in FW fish. In contrast, SW animals demonstrated a significant increase in both NHE1 and NHE3-like proteins following hypercapnia but limited expression of the NHE2 protein. We hypothesize that different isoforms of NHE may be preferentially expressed depending on the salinity to which the animals are adapted. Net H+ transfers during acidosis may be driven, at least in part by the action of these transporters.  相似文献   

2.
Changes in branchial vacuolar-type H(+)-ATPase B-subunit mRNA and Na+, K(+)-ATPase alpha- and beta-subunit mRNA and ATP hydrolytic activity were examined in smolting Atlantic salmon exposed to hyperoxic and/or hypercapnic fresh water. Pre-smolts, smolts, and post-smolts were exposed for 1 to 4 days to hyperoxia (100% O2) and/or hypercapnia (2% CO2). Exposure to hypercapnic water for 4 days consistently decreased gill vacuolar-type H(+)-ATPase B-subunit mRNA levels. Salmon exposed to hyperoxia had either decreased or unchanged levels of gill B-subunit mRNA. Combined hyperoxia + hypercapnia decreased B-subunit mRNA levels, although not to the same degree as hypercapnic treatment alone. Hyperoxia generally increased Na+, K(+)-ATPase alpha- and beta-subunit mRNA levels, whereas hypercapnia reduced mRNA levels in presmolts (beta) and smolts (alpha and beta). Despite these changes in mRNA levels, whole tissue Na+, K(+)-ATPase activity was generally unaffected by the experimental treatments. We suggest that the reduced expression of branchial vacuolar-type H(+)-ATPase B-subunit mRNA observed during internal hypercapnic acidosis may lead to reduction of functional V-type H(+)-ATPase abundance as a compensatory response in order to minimise intracellular HCO3- formation in epithelial cells.  相似文献   

3.
Acid-base regulation in fishes: cellular and molecular mechanisms   总被引:6,自引:0,他引:6  
The mechanisms underlying acid-base transfers across the branchial epithelium of fishes have been studied for more than 70 years. These animals are able to compensate for changes to internal pH following a wide range of acid-base challenges, and the gill epithelium is the primary site of acid-base transfers to the water. This paper reviews recent molecular, immunohistochemical, and functional studies that have begun to define the protein transporters involved in the acid-base relevant ion transfers. Both Na(+)/H(+) exchange (NHE) and vacuolar-type H(+)-ATPase transport H(+) from the fish to the environment. While NHEs have been thought to carry out this function mainly in seawater-adapted animals, these proteins have now been localized to mitochondrial-rich cells in the gill epithelium of both fresh and saltwater-adapted fishes. NHEs have been found in the gill epithelium of elasmobranchs, teleosts, and an agnathan. In several species, apical isoforms (NHE2 and NHE3) appear to be up-regulated following acidosis. In freshwater teleosts, H(+)-ATPase drives H(+) excretion and is indirectly coupled to Na(+) uptake (via Na(+) channels). It has been localized to respiratory pavement cells and chloride cells of the gill epithelium. In the marine elasmobranch, both branchial NHE and H(+)-ATPase have been identified, suggesting that a combination of these mechanisms may be utilized by marine elasmobranchs for acid-base regulation. An apically located Cl(-)/HCO(3)(-) anion exchanger in chloride cells may be responsible for base excretion in fresh and seawater-adapted fishes. While only a few species have been examined to date, new molecular approaches applied to a wider range of fishes will continue to improve our understanding of the roles of the various gill membrane transport processes in acid-base balance.  相似文献   

4.
5.
6.
The time course of osmoregulatory adjustments and expressional changes of three key ion transporters in the gill were investigated in the striped bass during salinity acclimations. In three experiments, fish were transferred from fresh water (FW) to seawater (SW), from SW to FW, and from 15-ppt brackish water (BW) to either FW or SW, respectively. Each transfer induced minor deflections in serum [Na+] and muscle water content, both being corrected rapidly (24 hr). Transfer from FW to SW increased gill Na+,K+-ATPase activity and Na+,K+,2Cl- co-transporter expression after 3 days. Abundance of Na+,K+-ATPase alpha-subunit mRNA and protein was unchanged. Changes in Na+,K+,2Cl- co-transporter protein were preceded by increased mRNA expression after 24 hr. Expression of V-type H+-ATPase mRNA decreased after 3 days. Transfer from SW to FW induced no change in expression of gill Na+,K+-ATPase. However, Na+,K+,2Cl- co-transporter mRNA and protein levels decreased after 24 hr and 7 days, respectively. Expression of H+-ATPase mRNA increased in response to FW after 7 days. In BW fish transferred to FW and SW, gill Na+,K+-ATPase activity was stimulated by both challenges, suggesting both a hyper- and a hypo-osmoregulatory response of the enzyme. Acclimation of striped bass to SW occurs on a rapid time scale. This seems partly to rely on the relative high abundance of gill Na+,K+-ATPase and Na+,K+,2Cl- co-transporter in FW fish. In a separate study, we found a smaller response to SW in expression of these ion transport proteins in striped bass when compared with the less euryhaline brown trout. In both FW and SW, NEM-sensitive gill H+-ATPase activity was negligible in striped bass and approximately 10-fold higher in brown trout. This suggests that in striped bass Na+-uptake in FW may rely more on a relatively high abundance/activity of Na+,K+-ATPase compared to trout, where H+-ATPase is critical for establishing a thermodynamically favorable gradient for Na+-uptake.  相似文献   

7.
8.
Gill mitochondrion-rich (MR) cells contain different molecules to carry out functionally distinct mechanisms. To date, the putative mechanism of Cl(-) uptake through the basolateral chloride channel, however, is less understood. To clarify the Cl(-)-absorbing mechanism, this study explored the molecular and morphological alterations in branchial MR cells of tilapia acclimated to seawater (SW), freshwater (FW), and deionized water (DW). Scanning electron microscopic observations revealed that three subtypes of MR cells were exhibited in gill filament epithelia of tilapia. Furthermore, in DW-acclimated tilapia, the subtype I (ion-absorbing subtype) of MR cells predominantly occurred in gill filament as well as lamellar epithelia. Whole-mount double immunofluorescent staining revealed that branchial ClC-3-like protein and Na(+)/K(+)-ATPase (NKA), the basolateral marker of MR cells, were colocalized in tilapia. In SW-acclimated tilapia, all MR cells of gill filament epithelia exhibited faint fluorescence of ClC-3-like protein. In contrast, only some MR cells in gill filament epithelia of FW and DW tilapia expressed basolateral ClC-3-like protein; however, the fluorescence was more intense in FW and DW tilapia than in SW fish. In hyposmotic groups, the number of MR cells immunopositive for ClC-3-like protein was significantly higher in DW-exposed tilapia. Meanwhile, in gill lamellar epithelia of DW tilapia, all MR cells (subtype I) were ClC-3-like protein immunopositive. Double immunostaining of ClC-3-like protein and Na(+)/Cl(-) cotransporter (NCC) revealed that basolateral ClC-3-like protein and apical NCC were colocalized in some MR cells in FW and DW tilapia. Moreover, both mRNA and protein amounts of branchial ClC-3-like protein were significantly higher in DW-acclimated tilapia. To identify whether the expression of branchial ClC-3-like protein responded to changes in environmental [Cl(-)], tilapia were acclimated to artificial waters with normal [Na(+)]/[Cl(-)] (control), lower [Na(+)] (low Na), or lower [Cl(-)] (low Cl). Immunoblotting of crude membrane fractions for gill ClC-3-like protein showed that the protein abundance was evidently enhanced in tilapia acclimated to the low-Cl environment compared with the other groups. Our findings integrated morphological and functional classifications of ion-absorbing MR cells and indicated that ion-deficient water elevated the numbers of subtype I MR cells in both filament and lamellar epithelia of gills with positive ClC-3-like protein immunostaining and increased the expression levels of ClC-3-like protein. This study is the first to illustrate the exhibition of a basolateral chloride channel potentially responsible for Cl(-) absorption in the ion-absorbing subtype of gill MR cells of tilapia.  相似文献   

9.
We recently cloned an NHE3 orthologue from the gills of the euryhaline Atlantic stingray (Dasyatis sabina), and generated a stingray NHE3 antibody to unequivocally localize the exchanger to the apical side of epithelial cells that are rich with Na(+)/K(+)-ATPase (A MRC). We also demonstrated an increase in NHE3 expression when stingrays are in fresh water, suggesting that NHE3 is responsible for active Na(+) absorption. However, the vast majority of elasmobranchs are only found in marine environments. In the current study, immunohistochemistry with the stingray NHE3 antibody was used to localize the exchanger in the gills of the stenohaline marine spiny dogfish shark (Squalus acanthias). NHE3 immunoreactivity was confined to the apical side of cells with basolateral Na(+)/K(+)-ATPase and was excluded from cells with high levels of vacuolar H(+)-ATPase. Western blots detected a single protein of 88 kDa in dogfish gills, the same size as NHE3 in stingrays and mammals. These immunological data demonstrate that the putative cell type responsible for active Na(+) absorption in euryhaline elasmobranchs is also present in stenohaline marine elasmobranchs, and suggest that the inability of most elasmobranchs to survive in fresh water is not due to a lack of the gill ion transporters for Na(+) absorption.  相似文献   

10.
In the present study, medaka embryos were exposed to acidified freshwater (pH 5) to investigate the mechanism of acid secretion by mitochondrion-rich (MR) cells in embryonic skin. With double or triple in situ hybridization/immunocytochemistry, the Na(+)/H(+) exchanger 3 (NHE3) and H(+)-ATPase were localized in two distinct subtypes of MR cells. NHE3 was expressed in apical membranes of a major proportion of MR cells, whereas H(+)-ATPase was expressed in basolateral membranes of a much smaller proportion of MR cells. Gill mRNA levels of NHE3 and H(+)-ATPase and the two subtypes of MR cells in yolk sac skin were increased by acid acclimation; however, the mRNA level of NHE3 was remarkably higher than that of H(+)-ATPase. A scanning ion-selective electrode technique was used to measure H(+), Na(+), and NH(4)(+) transport by individual MR cells in larval skin. Results showed that Na(+) uptake and NH(4)(+) excretion by MR cells increased after acid acclimation. These findings suggested that the NHE3/Rh glycoprotein-mediated Na(+) uptake/NH(4)(+) excretion mechanism plays a critical role in acidic equivalent (H(+)/NH(4)(+)) excretion by MR cells of the freshwater medaka.  相似文献   

11.
The successful migration of euryhaline teleost fish from freshwater to seawater requires the upregulation of gill Na+-K+-ATPase, an ion transport enzyme located in the basolateral membrane (BLM) of gill chloride cells. Following 39 days of seawater exposure, Arctic char had similar plasma sodium and chloride levels as individuals maintained in freshwater, indicating they had successfully acclimated to seawater. This acclimation was associated with an eightfold increase in gill Na+-K+-ATPase activity but only a threefold increase in gill Na+-K+-ATPase protein number, suggesting that other mechanisms may also modulate gill Na+-K+-ATPase activity. We therefore investigated the influence of membrane composition on Na+-K+-ATPase activity by examining the phospholipid, fatty acid, and cholesterol composition of the gill BLM from freshwater- and seawater-acclimated Arctic char. Mean gill BLM cholesterol content was significantly lower ( approximately 22%) in seawater-acclimated char. Gill Na+-K+-ATPase activity in individual seawater Arctic char was negatively correlated with BLM cholesterol content and positively correlated with %phosphatidylethanolamine and overall %18:2n6 (linoleic acid) content of the BLM, suggesting gill Na+-K+-ATPase activity of seawater-acclimated char may be modulated by the lipid composition of the BLM and may be especially sensitive to those parameters known to influence membrane fluidity. Na+-K+-ATPase activity of individual freshwater Arctic char was not correlated to any membrane lipid parameter measured, suggesting that different lipid-protein interactions may exist for char living in each environment.  相似文献   

12.
In mammals, the Na+/H+ exchanger 3 (NHE3) is expressed with Na+/K+-ATPase in renal proximal tubules, where it secretes H+ and absorbs Na+ to maintain blood pH and volume. In elasmobranchs (sharks, skates, and stingrays), the gills are the dominant site of pH and osmoregulation. This study was conducted to determine whether epithelial NHE homologs exist in elasmobranchs and, if so, to localize their expression in gills and determine whether their expression is altered by environmental salinity or hypercapnia. Degenerate primers and RT-PCR were used to deduce partial sequences of mammalian NHE2 and NHE3 homologs from the gills of the euryhaline Atlantic stingray (Dasyatis sabina). Real-time PCR was then used to demonstrate that mRNA expression of the NHE3 homolog increased when stingrays were transferred to low salinities but not during hypercapnia. Expression of the NHE2 homolog did not change with either treatment. Rapid amplification of cDNA was then used to deduce the complete sequence of a putative NHE3. The 2,744-base pair cDNA includes a coding region for a 2,511-amino acid protein that is 70% identical to human NHE3 (SLC9A3). Antisera generated against the carboxyl tail of the putative stingray NHE3 labeled the apical membranes of Na+/K+-ATPase-rich epithelial cells, and acclimation to freshwater caused a redistribution of labeling in the gills. This study provides the first NHE3 cloned from an elasmobranch and is the first to demonstrate an increase in gill NHE3 expression during acclimation to low salinities, suggesting that NHE3 can absorb Na+ from ion-poor environments.  相似文献   

13.
We report the presence of the ion transporting proteins V-H(+)-ATPase, Na(+)/K(+)-ATPase and NHE2 in the gill epithelium of the Pacific hagfish Epatretus stoutii. Heterologous antibodies recognized single bands of the appropriate sizes for the three transporters in western blots. Immunohistochemical staining revealed that the distribution of labeled cells in the gill epithelium was identical for the three proteins. Immunopositive cells were most abundant in the primary filament from the afferent side of the gill pouch, and their number diminished towards the lamella. Na(+)/K(+)-ATPase-like immunoreactivity (L-IR) occurred throughout the cell cytoplasm, probably associated to the basolateral tubular system. V-H(+)-ATPase L-IR was similar to Na(+)/K(+)-ATPase, although some cells had slightly heavier staining in either the supra- or infra-nuclear region. NHE2 L-IR was also generally cytoplasmic, but a minority of the cells had stronger immunoreactivity in the apical region. In general, all three ion transporting proteins were localized in the same cells, as estimated from 4-microm immunostained consecutive sections. We hypothesize that these putative ion-transporting cells are involved in systemic acid/base regulation and discuss other possible roles. This is the first report of V-H(+)-ATPase in myxinoids, and the first NHE2 report in the Pacific hagfish.  相似文献   

14.
In this study, we aimed to establish an experimental model to study the role of the gill mitochondrion-rich cells (MRCs) of freshwater fish in Na(+) uptake and to examine the effect of adjusting external Na(+) and Cl(-) ions on selected ion transporters in gill MRCs. Japanese eels (Anguilla japonica) acclimated to deionized (DI) water for 2 weeks were transferred directly to (a) ion-supplemented artificial freshwater (AF), (b) Na(+) -deficient AF, or (c) Cl(-) -deficient AF for 2 days. The effects of the transfer on the expression levels of ion transporters in isolated gill cells were investigated. Our data demonstrated that the 2-day acclimation in ion-supplemented AF, Na(+) -deficient AF, or Cl(-) -deficient AF led to a significant increase in serum osmolarity attributed mainly to an increase in serum Na(+) and/or Cl(-) levels when compared with DI-acclimated eel. Significant inductions of V-type H(+) -ATPase (V-H(+) -ATPase) and cotransporter (NBC1) mRNA expression in gill MRCs were detected in AF-acclimated fish. In fish acclimated to Na(+) -deficient AF, mRNA expression levels of V-H(+) -ATPase, NBC1, and Na(+) /H(+) -exchanger-3 (NHE3) were significantly increased in MRCs. Fish acclimated to Cl(-) -deficient AF showed no observable change in expression levels of ion transporters in gill MRCs. In addition, expression levels of ion transporters in pavement cells were stable throughout the 2-day experiments. These data indicate that the level of Na(+) in freshwater is important for altering the mRNA expression of ion transporters in gill MRCs, which supports the notion that gill MRCs play important roles in freshwater Na(+) uptake.  相似文献   

15.
Whole body calcium influx, branchial calcium efflux, and renal Ca2+ excretion were measured in rainbow trout (Oncorhynchus mykiss) exposed to hypercapnia. These experiments were performed to assess the potential impact on Ca2+ balance of the changes in gill morphology known to accompany respiratory acidosis in this species. After 48 h of hypercapnia, gill filamental chloride cell fractional area was significantly reduced. Despite this reduction and the presumed involvement of the chloride cell in calcium influx, whole body calcium influx was increased after 12 h of hypercapnia and remained elevated for 48 h. Branchial calcium efflux was unaltered during hypercapnia exposure, whereas renal Ca2+ excretion was elevated over preflux values only at 6 h of hypercapnia. Measurement of the kinetics of whole body calcium influx after 48 h of hypercapnia revealed a significant increase in the maximal uptake rate of Ca2+, yet the affinity constant of Ca2+ uptake was unaffected. Measurements of high-affinity Ca2+ -ATPase activities and ATP-dependent Ca2+ transport of gill basolateral membrane vesicles revealed that the ATP-dependent Ca2+ extrusion mechanism of the gills was not affected by hypercapnia. The results of the present study clearly show that the reduced chloride cell surface area that accompanies hypercapnia in trout does not impair calcium homeostasis. Although adjustments to the basolateral membrane high affinity Ca2+ transporter do not appear to play a role, the mechanism(s) underlying the maintenance of calcium homeostasis under hypercapnic conditions are unresolved. Accepted: 1 July 1996  相似文献   

16.
Mechanism of acid adaptation of a fish living in a pH 3.5 lake   总被引:1,自引:0,他引:1  
Despite unfavorable conditions, a single species of fish, Osorezan dace, lives in an extremely acidic lake (pH 3.5) in Osorezan, Aomori, Japan. Physiological studies have established that this fish is able to prevent acidification of its plasma and loss of Na(+). Here we show that these abilities are mainly attributable to the chloride cells of the gill, which are arranged in a follicular structure and contain high concentrations of Na(+)-K(+)-ATPase, carbonic anhydrase II, type 3 Na(+)/H(+) exchanger (NHE3), type 1 Na(+)-HCO(3)(-) cotransporter, and aquaporin-3, all of which are upregulated on acidification. Immunohistochemistry established their chloride cell localization, with NHE3 at the apical surface and the others localized to the basolateral membrane. These results suggest a mechanism by which Osorezan dace adapts to its acidic environment. Most likely, NHE3 on the apical side excretes H(+) in exchange for Na(+), whereas the electrogenic type 1 Na(+)-HCO(3)(-) cotransporter in the basolateral membrane provides HCO(3)(-) for neutralization of plasma using the driving force generated by Na(+)-K(+)-ATPase and carbonic anhydrase II. Increased expression of glutamate dehydrogenase was also observed in various tissues of acid-adapted dace, suggesting a significant role of ammonia and bicarbonate generated by glutamine catabolism.  相似文献   

17.
This review examines the branchial mechanisms utilized by freshwater fish to regulate internal acid-base status and presents a model to explain the underlying basis of the compensatory processes. Rainbow trout, Oncorhynchus mykiss, and brown bullhead, Ictalurus nebulosus, were examined under a variety of experimental treatments which induced respiratory and metabolic acid-base disturbances. Acid-base regulation was achieved by appropriate adjustments of Na+ and Cl- net fluxes across the gills which, in turn, were accomplished by variable contributions of three different branchial mechanisms: 1) differential changes in Na+ and Cl- diffusive effluxes, 2) changes in internal substrate (H+, HCO3-) availability, and 3) morphological adjustments to the gill epithelium. Differential diffusive efflux of Na+ over Cl- was involved only during periods of metabolic alkalosis. The importance of internal substrate availability was demonstrated using a two-substrate model. According to the model, ionic flux rates (J(in)Cl-, J(in)Na+) are determined not only by the concentration of the external ion (Na+, Cl-) but also by the concentration of the internal counterion (H+, HCO3-). This system provides for an "automatic negative feedback" to aid in the compensation of metabolic acid-base disturbances. Morphological alteration of the gill epithelia and the associated regulation of chloride cell (CC) fractional area is an essential third mechanism which is especially important during respiratory acid-base disturbances. Specifically, fish vary the availability of the CC associated Cl-/HCO3- exchange mechanism by physical covering/uncovering of CCs by adjacent pavement cells.  相似文献   

18.
Vectorial Na(+) reabsorption across the proximal tubule is mediated by apical entry of Na(+), primarily via Na(+)/H(+) exchanger isoform 3 (NHE3), and basolateral extrusion via the Na(+) pump (Na(+)-K(+)-ATPase). We hypothesized that regulation of Na(+) reabsorption should involve not only the activity of the basolateral Na(+)-K(+)-ATPase, but also the apical NHE3, in a concerted manner. To generate a cell line that overexpresses Na(+)-K(+)-ATPase, opossum kidney (OK) cells were transfected with the rodent Na(+)-K(+)-ATPase alpha(1)-subunit (pCMV ouabain vector), and native cells were used as a control. The existence of distinct functional classes of Na(+)-K(+)-ATPase in wild-type and transfected cells was confirmed by the inhibition profile of Na(+)-K(+)-ATPase activity by ouabain. In contrast to wild-type cells, transfected cells exhibited two IC(50) values for ouabain: the first value was similar to the IC(50) of control cells, and the second value was 2 log units greater than the first, consistent with the presence of rat and opossum alpha(1)-isozymes. It is shown that transfection of OK cells with Na(+)-K(+)-ATPase increased Na(+)-K(+)-ATPase and NHE3 activities. This was associated with overexpression of the Na(+)-K(+)-ATPase alpha(1)-subunit and NHE3 in transfected OK cells. The abundance of the Na(+)-K(+)-ATPase beta(1)-subunit was slightly lower in transfected OK cells. In conclusion, the increase in expression and function of Na(+)-K(+)-ATPase in cells transfected with the rodent Na(+) pump alpha(1)-subunit cDNA is expected to stimulate apical Na(+) influx into the cells, thereby accounting for the observed stimulation of the apical NHE3 activity.  相似文献   

19.
20.
Na(+)/H(+)-exchangers (NHE) mediate acid extrusion from duodenal epithelial cells, but the isoforms involved have not previously been determined. Thus we investigated 1) the contribution of Na(+)-dependent processes to acid extrusion, 2) sensitivity to Na(+)/H(+) exchange inhibitors, and 3) molecular expression of NHE isoforms. By fluorescence spectroscopy the recovery of intracellular pH (pH(i)) was measured on suspensions of isolated acidified murine duodenal epithelial cells loaded with 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Expression of NHE isoforms was studied by RT-PCR and Western blot analysis. Reduction of extracellular Na(+) concentration ([Na(+)](o)) during pH(i) recovery decreased H(+) efflux to minimally 12.5% of control with a relatively high apparent Michaelis constant for extracellular Na(+). The Na(+)/H(+) exchange inhibitors ethylisopropylamiloride and amiloride inhibited H(+) efflux maximally by 57 and 80%, respectively. NHE1, NHE2, and NHE3 were expressed at the mRNA level (RT-PCR) as well as at the protein level (Western blot analysis). On the basis of the effects of low [Na(+)](o) and inhibitors we propose that acid extrusion in duodenal epithelial cells involves Na(+)/H(+) exchange by isoforms NHE1, NHE2, and NHE3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号